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1. Introduction

Geometric tomography (the term introduced by R. Gardner in [7]) is a field of

mathematics engaged in extracting information about a geometric object from data

on its sections or projections to reconstruct the geometric object. The reconstruction

of convex domain using random sections makes it possible to simplify the calculation,

since mathematical statistics methods can be used to estimate the geometric charac-

teristics of random sections. The integral geometric concepts such as the distribution

of the chord length, the distribution of the distance between two random points in

a convex body and many others carry some information about the body. In this

article for a d-dimensional convex body D we define two new integral geometric

concepts: conditional moments of the chord length distribution of a convex body

and conditional moments of the distribution of the distance of two random points

in D. Also in this article we find the relation between the two concepts.

By Rd (d > 2) we denote the d-dimensional Euclidean space, by Sd−1 the unit

sphere in Rd centered at the origin. Let Ld be the Lebesgue measure on Rd. For

ω ∈ Sd−1 by eω we denote the hyperplane containing the origin and orthogonal to

ω. Let N be the set of nonnegative integers. Let Gd be the space of all lines in

Rd. We use the usual parametrization of a line g = (ω, P ), where ω ∈ Sd−1 is the

direction of g and P is the intersection point of g and eω. By [D] we denote the

set of lines intersecting D. In Gd we consider the invariant measure (with respect

to the group of Euclidean motions) µ (·). It is known that the element dg of the
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measure, up to a constant, has the following form ([8], [1], [3])

(1.1) dg = dωdP,

here dω and dP are elements of the Lebesgue measure on Sd−1 and the hyperplane,

respectively.

Definition 1.1. Let D be a compact convex set in Rd below we call D a convex body.

We consider the random line g with normed invariant measure ( dg
µ([D]) , here µ([D])

is the invariant measure of lines intersecting [D]). For a random line g intersecting

D by X(g) we denote the length of the chord D ∩ g. The conditional n-th moment

of the distribution of the chords length (with respect to condition X > u > 0) we

define as:

(1.2) In,u =
1

µ([D])

∫
X(g)>u

X(g)ndg, n = 1, 2, ...

Lemma 2.2 (below) gives the explicit formula for µ([D]). In the sequel by FX (t)

we denote the distribution function of X(g).

Definition 1.2. For two independent uniformly distributed points Q1, Q2 in a

convex domain D we denote the distance between the points by r = |Q1 − Q2|.
The conditional n-th moment of the distribution of the distance (with respect to

condition r > u > 0) we define as:

(1.3) Jn,u =
1

Ld(D)
2

∫
|Q1−Q2|>u

rndQ1dQ2

here Ld(D) is the volume of D, dQi (i = 1, 2) is the usual Lebesgue’s measure in

Rd. Also, in the sequel by Fr(u) we denote the distribution function of the distance

of two uniformly distributed points Q1, Q2 in a convex body D.

In the following theorem we obtain relation between the conditional moments of

the distribution of the distance of two random points in D and the conditional

moments of the distribution of the chords length.

Theorem 1.1. Let D be a convex domain and u > 0. For any n ∈ N
(1.4)

Jn,u =
Ld−1 (∂D)Ld−2

(
Sd−2

)
Ld(D)2 (d− 1)

(
I0,uu

n+d+1

(n+ d+ 1)
− I1,uu

n+d

n+ d
+

In+d+1,u

(n+ d) (n+ d+ 1)

)
.

The moments of the distribution of the chords length and the distribution of the

distance between two independent uniformly distributed point in a convex domain

was considered in [8] and [6].

For the planar case d = 2 (1.4) was proved in [4].
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For the distribution function of the distance between two independent uniformly

distributed points in a convex body in Rd we have

Theorem 1.2.

(1.5)

Fr (u) = 1− J0,u = 1−
Ld−1 (∂D)Ld−2

(
Sd−2

)
Ld(D)2 (d− 1)

(
I0,uu

d+1

d+ 1
− I1,uu

d

d
+

Id+1,u

d(d+ 1)

)
.

2. Preliminary results

To prove Theorem 1.1 we need to prove the following lemmas. Let D ⊂ Rd be a

convex body.

Lemma 2.1. For the invariant measure of the lines intersecting D we have

(2.1) µ ([D]) =
Ld−1 (∂D)Ld−2

(
Sd−2

)
2 (d− 1)

.

Proof. By definition we have

(2.2)

µ ([D]) =

∫
[D]

dg =

∫
[D]

dωdP =
1

2

∫
Sd−1

dω

∫
Dω

dP =
1

2

∫
Sd−1

Ld−1 (Dω) dω,

where Dω is the orthogonal projection of D onto hyperplane eω. For ξ ∈ Sd−1 we

denote by s(ξ) the point on ∂D the outer normal of which is ξ. In [6] ( see also [2])

was proved that

(2.3) Ld−1 (Dω) =
1

2

∫
∂D

| cos (̂ω, ξ)|dsξ,

where dsξ is the element of (d − 1)-dimensional Lebesgue’s measure on ∂D and

(̂ω, ξ) is the angle between two directions ω and ξ. Substituting (2.3) into (2.2) and

using the Fubini’s theorem we obtain

(2.4) µ ([D]) =
1

4

∫
Sd−1

∫
∂D

| cos (̂ω, ξ)|dsξdω =
1

4

∫
∂D

∫
Sd−1

| cos (̂ω, ξ)|dωdsξ.

For any ξ ∈ Sd−1 we have (see [2])

(2.5)
∫
Sd−1

| cos (̂ω, ξ)|dω =
2Ld−2

(
Sd−2

)
d− 1

.

Finally substituting (2.5) into (2.4) we obtain

(2.6) µ ([D]) =
Ld−2

(
Sd−2

)
2 (d− 1)

∫
∂D

dsξ =
Ld−1 (∂D)Ld−2

(
Sd−2

)
2 (d− 1)

Lemma 2.1 is proved.

Now we consider a pair of points (Q1, Q2) inRd. There are two equivalent representations

of (Q1, Q2).

1. A pair of points Q1, Q2 can be determined by the usual cartesian coordinates.
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2. A pair of points Q1, Q2 can be determined by the line g = (ω, P ) passing

through the points and pair of two one dimensional coordinates (t1, t2) which

determine Q1 and Q2 on the line g (for 3-dimensional case see [8]). Thus

(2.7) (Q1, Q2) = (g, t1, t2) = (ω, P, t1, t2).

Note that as a reference point on g one can take the point P on g.

Lemma 2.2. The Jacobian of that transform (2.7) is

(2.8) dQ1dQ2 = |t1 − t2|d−1dt1dt2dωdP.

Proof. For a fixed Q1 we represent Q2 by polar coordinates with respect to Q1. It

is known that

(2.9) dQ2 = rd−1drdω

where r = |Q1 − Q2| and ω is the direction of the vector
−−−→
Q1Q2. For a fixed ω the

point Q1 can be represented by P and t1. Thus

(2.10) dQ1 = dt1dP

and by multiplying (2.9) and (2.10) and taking into account that r = |t1 − t2|, we
get

(2.11) dQ1dQ2 = |t1 − t2|d−1dt1dt2dωdP.

Lemma 2.2 is proved.

In the sequel also, we use the following lemma. For a random line g intersecting a

convex body D ⊂ Rd we have the following lemma.

Lemma 2.3. Let X(g) be the length of the chord D ∩ g. We have

(2.12)
∫

[D]

X(g)dg =
Ld (D)Ld−1

(
Sd−1

)
2

Proof. By definition we have (g = (ω, P ))

(2.13)
∫

[D]

X(g)dg =
1

2

∫
Sd−1

dω

∫
Dω

X (ω, P ) dP.

For any ω ∈ Sd−1 it is obvious that X (ω, P ) dP is the element of d-dimensional

volume of D, hence the integrating by dP over Dω we get Ld (D).

(2.14)
∫

[D]

X (g) dg =
1

2

∫
Sd−1

dω

∫
Dω

X (ω, P ) dP =

=
Ld (D)

2

∫
Sd−1

dω =
Ld (D)Ld−1

(
Sd−1

)
2
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3. Proof of Theorem 1.1

Let Q1, Q2 are two independent uniformly distributed points in a convex body

D. For a random line g intersecting D we denote by X(g) = |g∩D| the length of the

intersection. For u > 0 using (2.8), (2.1) and taking into account r = |Q1 −Q2| =
|t1 − t2| we have

(3.1) Jn,u =
1

Ld(D)2

∫
|P1−P2|>u

|P1 − P2|n dQ1dQ2 =

1

Ld(D)2

∫
X(g)>u

∫
|t1−t2|>u

|t1 − t2|n+d−1dt1dt2dg.

Consider the internal integral of (3.1). For two points t1 and t2 chosen at random,

independently with uniform distribution in a segment of length X > u we have.

(3.2)
∫
|t1−t2|>u

|t1 − t2|n+d−1dt1dt2 = 2

∫ X−u

0

dt1

∫ X

t1+u

(t2 − t1)
n+d−1

dt2 =

= 2

∫ X−u

0

(X − t1)
n+d

n+ d
− un+d

n+ d
dt1 = 2

(
un+d+1

(n+ d+ 1)
− Xun+d

n+ d
+

Xn+d+1

(n+ d) (n+ d+ 1)

)
Substituting (3.2) into (3.1) we get

(3.3)

Jn,u =
2

Ld(D)2

∫
X(g)>u

(
un+d+1

(n+ d+ 1)
− X(g)u

n+d

n+ d
+

X(g)n+d+1

(n+ d) (n+ d+ 1)

)
dg

=
Ld−1 (∂D)Ld−2

(
Sd−2

)
Ld(D)2 (d− 1)

(
I0,uu

n+d+1

(n+ d+ 1)
− I1,uu

n+d

n+ d
+

In+d+1,u

(n+ d) (n+ d+ 1)

)
.

Theorem 1.1. is proved.

Not that for u > Diam(D), both sides of (3.3) are 0.

Corollary 3.1. For u = 0 and d = 2 from (3.1) for a convex domain D we get the

following well known formula (see [8])

(3.4) Jn,0 =
2L1 (∂D)

L2(D)2

(
In+3,0

(n+ 2) (n+ 3)

)
.

Corollary 3.2. For n = 0 we get

(3.5) J0,u =
Ld−1 (∂D)Ld−2

(
Sd−2

)
Ld(D)2 (d− 1)

(
I0,uu

d+1

d+ 1
− I1,uu

d

d
+

Id+1,u

d(d+ 1)

)
.

Taking into account

(3.6) J0,u =
1

Ld(D)2

∫
|Q1−Q2|>u

dQ1dQ2 = 1− Fr (u)

we get the following theorem.
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4. A representation for In,u

Now we are going to find a representations for I0,u, I1,u, Id+1,u.

1. For I0,u we have

(4.1) I0,u =
2(d− 1)

Ld−1(∂D)Ld−2(Sd−2)

∫
X(g)>u

dg =P (X(g) > u) =

(1− P (X(g) 6 u)) = 1− FX (u) .

Here FX (t) is the chord length distribution function.

2. For the derivative of I1,u we have

(4.2) (I1,u)
′

=

(∫
X(g)>u

X(g)
dg

µ([D])

)′
= − lim

∆u→0

∫
u<X(g)<u+∆u

X(g) dg
µ([D])

∆u
=

− lim
∆u→0

uP (u < X(g) < u+ ∆u)

∆u
= −ufX (u) ,

here fX (t) is the density function of the chord length distribution of X(g).

It follows from Lemma 2.3 that

(4.3) I1,0 =
(d− 1)Ld(D)Ld−1(Sd−1)

Ld−1(∂D)Ld−2(Sd−2)
.

Integrating (4.2) and taking into account (4.3) we get

(4.4) I1,u =
(d− 1)Ld(D)Ld−1(Sd−1)

Ld−1(∂D)Ld−2(Sd−2)
−
∫ u

0

vfx (v) dv.

3. By the same way (see (4.2)) for the derivative of Id+1,u we have

(4.5) (Id+1,u)
′

=

(∫
X(g)>u

X(g)
d+1 dg

µ([D])

)′
= −ud+1fX (u) .

It follows from (3.3) that

(4.6) Id+1,0 =
(d− 1)d(d+ 1)Ld(D)2

Ld−1(∂D)Ld−2(Sd−2)
.

Integrating (4.5) and taking into account (4.6) we get

(4.7) Id+1,u =
(d− 1)d(d+ 1)Ld(D)2

Ld−1(∂D)Ld−2(Sd−2)
−
∫ u

0

vd+1fX((v) dv.

Finally substituting (4.7), (4.4), (4.1) into (3.5) we obtain the following relation

between the distribution function of the distance of two uniformly distributed points

of D and the chord length distribution function of D.
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Theorem 4.1. Let D be a convex body in Rd. For u > 0

(4.8)

Fr (u) = 1−
Ld−1 (∂D)Ld−2

(
Sd−2

)
Ld(D)2 (d− 1)

(
ud+1

d+ 1
− (d− 1)Ld(D)Ld−1(Sd−1)

dLd−1 (∂D)Ld−2(Sd−2)
ud+

(d− 1)Ld(D)2

Ld−1 (∂D)Ld−2(Sd−2)
− ud

2

∫ u

0

FX(v)dv +
1

d

∫ u

0

vdFX(v)dv

)
.

For the planar case d = 2 (4.8) was proved in [5] (see also [4]).
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