Известия НАН Армении, Физика, т.56, №2, с.184–207 (2021)

УДК 577:54:53

НЕИНВАЗИВНЫЕ МЕТАЛОКСИДНЫЕ СЕНСОРЫ НА ВЫДЫХАЕМЫЙ ДИАБЕТИКОМ АЦЕТОН

В. М. АРУТЮНЯН

Ереванский государственный университет, Ереван, Армения

*e-mail: kisahar@ysu.am

(Поступила в редакцию 4 февраля 2020 г.)

В работе представлены и обсуждены работы, выполненные по неинвазивным метал оксидным сенсорам (хемирезисторам) на выдыхаемый диабетиком ацетон, как в Ереванском госуниверситете, так и за рубежом. Приведены технологии и параметры разработанных в ЕГУ и мире хемирезисторов на основе диоксида олова, триоксида вольфрама, оксида цинка, Fe₂O₃, In₂O₃ и TiO₂. Исследования скорее всего имеет смысл начинать с концентрации ацетона 1 ppm. Проведены измерения отклика хемирезисторов из SnO₂, легированного MWCNT, при характерной для диабетиков, находящихся на сравнительно начальной стадии болезни, концентрации выделяемого ими ацетона от 1 до 12 ppm.

1. Введение

Человек в небольшом количестве выдыхает сложную смесь различных газов, включая углекислый газ, водяной пар, кислород, азот и более 1000 соединений. Последние либо генерируются в организме (эндогенные), либо абсорбируются из окружающей среды (экзогенные) [1]. В последнее время дыхание человека начали использовать как потенциальный инструмент для неинвазивной диагностики болезней [2-3]. В частности, присутствие биомаркеров в выдыхаемом человеком воздухе указывает на ряд заболеваний, таких, например, как рак легких [4,5], рак груди [6], астма и хроническая обструктивная болезнь легких [7] и диабет [8,9]. Такие летучие органические соединения (ЛОС) как, например, формальдегид и толуол известны как биомаркер для пациентов с раком легких, аммиак – при гемодиализе, H₂S – при галитозе, изопрен – при болезни сердца, бензол –при интенсивном курении и пентан – при острой астме [2,3].

В последнее время возрос интерес к полупроводниковым газовым сенсорам [10–19], в частности, для обнаружения ЛОС для неинвазивного лечения человека. Заметим, что по данным Всемирной организации здравоохранения в настоящее время в мире насчитывается около 450 миллионов человек, страдающих диабетом, и это число потенциально может достичь 700 миллионов уже к 2045 году. Число больных сахарным диабетом в Армении сегодня составляет 73 тыс.

Как было указано выше, выдыхаемый человеком воздух содержит тысячи

различных ЛОС, полученных в организме в результате метаболических процессов. У пациентов с сахарным диабетом эндогенный ацетон вырабатывается в печени главным образом в результате кетогенеза [20]. В некоторых случаях, таких как голодание, физические упражнения и диабет, печень вырабатывает кетоны, которые действуют как дополнительный источник энергии, которые затем метаболизируются в ацетон и другие кетоновые тела. При этом организм использует жиры вместо глюкозы. Сегодня измерение концентрации глюкозы в крови дает основную информацию для диагностики диабета. Показано, что концентрация ацетона в выдыхаемом воздухе коррелирует с концентрацией ацетона в крови. Измерение содержания ацетона в выдыхаемом воздухе может обеспечить лучший диагностический контроль диабетического состояния пациента, чем использование только измерения уровня глюкозы в крови [21]. При этом, обнаружение ацетона в выдыхаемом воздухе может быть осуществлено быстконцентрации рым и приемлемым для пациента способом, альтернативным традиционным методам определения глюкозы в крови. Сегодня многие пациенты, страдающие диабетом, должны несколько раз в день проверять уровень сахара в крови, что требует частого и многократного прокалывания их пальца, что болезненно и небезопасно. Установлено, что глюкоза обнаруживается и при анализе слез, слюны и мочи, но их соответствующие измерители на коммерческом уровне пока не доступны пациентам.

Итак, ацетон сегодня считается основным маркером дыхания при метаболических (диабетических) условиях, так как диабет - один из факторов, который может привести к изменению уровня ацетона в дыхании. Возраст, образ жизни, профессия и соблюдение кетогенной диеты влияют на концентрацию ацетона в лыхании. Заметим, что концентрация ацетона в вылыхаемом возлухе у здоровых людей находится в диапазоне от 0.3 до 1.0 ppm. У пациентов с типичными симптомами диабета (полиурия, полидипсия и необъяснимая потеря веса) наблюдается повышенная концентрация глюкозы в крови. Помимо гипергликемии, гипогликемия также может повредить человеческий организм. Клинически гипогликемия определяется как состояние, при котором концентрация глюкозы в крови пациента ниже нормы. Для пациентов пожилого возраста коэффициент риска гипогликемии выше. Гипогликемия ночью относительно высока и ее трудно контролировать с помощью традиционных методов определения уровня глюкозы в крови. Строгий контроль уровня глюкозы в крови также может свидетельствовать об увеличении риска гипогликемии. Следовательно, непрерывный мониторинг глюкозы у диабетиков может иметь большее клиническое значение (см. также [1,22]. Вместе с тем подчеркнем, что определение конкретного газа в выдыхаемом пациентом воздухе является полезным и многообещающим инструментом диагностики не только у людей с диабетом, но и при других различных заболеваниях.

Измерения концентрации ацетона в дыхании в медицинских учреждениях

обычно осуществляются такими методами как газовая хроматография в сочетании с масс-спектрометрией, твердофазная микроэкстракция, высокоэффективная жидкостная хроматография, масс-спектрометрия с проточной ионной трубкой и жидкостная хроматография-масс-спектрометрия [4]. Они обеспечивают высокоселективный анализ ЛОС в выдыхаемом воздухе. Хотя упомянутые выше аналитические методы очень чувствительны и избирательны для диагностики сахарного диабета, они дороги и не могут использоваться вне больниц из-за больших габаритов и веса. Очень важно учитывать на практике, что сахарный диабет часто следует многократно диагностировать ежедневно, что исключает контроль состояния пациентов, находящихся вне медицинского учреждения.

2. Хемирезисторы на основе оксидов металлов

Метал оксидные полупроводниковые газовые сенсоры широко используются для обнаружения различных газов. Такие датчики изготавливают методами современной микроэлектронной техники, они имеют низкую стоимость и высокую чувствительность. Сегодня исследования в этой области ведутся с целью значительного понижения подогрева рабочего тела сенсора (его рабочей температуры) с типичного для них значения 300–500°C до температуры, близкой к комнатной, а также понимания сложных физических и химических явлений на поверхности этих детекторов, механизмов чувствительности, путей повышения селективности сенсора к тому или иному газу. Поскольку электрическое сопротивление в полупроводниковом оксиде металла резко меняется в присутствии окисляющих или восстанавливающих газов, во многих случаях необходимо его использовать для создания на их основе хемирезистивных сенсоров. Несколько таких факторов, как площадь поверхности, размер частиц в сенсоре, дефекты кристаллов, пористость структуры и его стехиометрия, сильно влияют на работу таких датчиков.

Заметим, что для обнаружения ацетона используются химические газовые сенсоры, изготовленные из таких полупроводниковых оксидов металлов, как SnO₂, WO₃, ZnO, Fe₂O₃, In₂O₃ и TiO₂. Легирование их металлом или его оксидом, покрытие катализаторами, уменьшение размера частиц, контроль пористости и морфологии используются для изготовления наиболее эффективных наносенсоров различных газов на основе оксидов металлов и других полупроводников. Ниже обсуждены некоторые перспективные сенсоры ацетона, изготовленные из указанных выше полупроводниковых метал оксидов, и их некоторые параметры (см. Таблицу).

2.1. Сенсоры из диоксида олова

Диоксид олова SnO_2 с широкой запрещенной зоной 3.6 эВ широко используется для обнаружения таких токсичных химикатов, как CH₄, H₂, C₂H₅OH, бензин, CO, C₂H2, H₂O₂, NO₂, NO, NH₃ и H₂S. «Чистый» (без примесей) SnO₂ и

Сенсор	Раб. температура	Отклик (ppm)	Литература
SnO ₂ <mwcnt></mwcnt>	250	4.70<0.2>	16,17, 23, 33
		1002<1000>	
SnO ₂ <mwcnt></mwcnt>	200	120<2.5>	24
SnO ₂ NF <graphene></graphene>	350	10.04 (5)	25
WO ₃ <si></si>	400	1.5 (0,6)	26
WO ₃ <c></c>	300	3.6 (1)	27
WO ₃ <pt></pt>	300	2.67 (2)	28
WO ₃ <cu></cu>	300	2.88 (5)	29
WO ₃ <graphene></graphene>	300	6.96(12)	30
WO ₃ (RuO ₂) Nanofiber	350	78.61 (5)	31
ZnO <ce></ce>	24	3 (5)	32

Табл. Сенсоры ацетона на основе металоксидов

оксиды других металлов, как правило, обладают низкой чувствительностью к газам при довольно высокой рабочей температуре предварительного нагрева сенсора.

Легирование (допирование) диоксида олова некоторыми металлами или углеродными нанотрубками является одним из способов повышения чувствительности таких датчиков. Отклик SnO₂ сенсоров может быть значительно улучшен путем легирования объема оксида во время его сенсибилизации или легирования металлами Co, Au, Pd, Pt и т. д. Например, сенсоры из SnO₂ <Co> по сравнению с датчиками из чистого SnO₂характеризуются улучшенным откликом на ацетон, более высокой селективностью и быстрыми временами отклика и восстановления [18–33]. На рис.1 показан отклик на ацетон наносенсоров на основе SnO₂ [33].

Датчики ацетона, изготовленные из SnO2, легированного различными

Рис.1. Отклик наносенсоров на основе SnO₂ в зависимости от рабочей температуры для 1, 3, 5 и 10 ppm, соответственно [33].

примесями, описаны в [18,33]. Серия толстых пленок нанокомпозита диоксида олова, легированного Co₃O₄, была приготовлена в [34] шлифованием, трафаретной печатью и спеканием. Композитные пленки показали хороший отклик на ацетон при 300°С. При этой температуре максимальный отклик сенсора на ацетон с концентрацией 1000 ррт в воздухе составлял 235, что примерно в 5 раз больше, чем у чистого SnO₂ без Co₃O₄ [35]. Добавление полупроводника р-типа Со3О4 к полупроводнику n-типа SnO2 способствовало увеличению селективности сенсора по ацетону по сравнению с Н₂ и СО. Измерения показывали, что электрическое сопротивление сенсора уменьшается при воздействии на него восстановительного газа. Чувствительность к газу имеет колоколообразную зависимость от рабочей температуры, достигая максимума при 300°С. Добавление Co₃O₄ не приводит к смещению корреляций между откликом газа и температурой в сторону более низких температур. Сенсоры из SnO_2 , содержащих Ag_2O и PdO, имели сдвиг максимума рабочей температуры в сторону более низких температур [36,37]. Заметим еще раз, что реакция легированного 5 мол.% Со образцов на спирт и ацетон намного больше, чем у чистого SnO₂, что доказывает очень заметный стимулирующий эффект загрузки Со₃О₄. Отклик сенсора чистого Со₃О₄ на несколько газов с концентрацией 1000 ppm при 300°С значительно меньше по сравнению с откликом сенсора из чистого SnO₂. Чувствительность датчика ухудшается при добавлении чрезмерного количества Co₃O₄. Возможно, слишком много реактивных центров затрудняет реакцию молекул газа во внутренней части толстой пленки. При оптимальной рабочей температуре $T_0 = 180^{\circ}$ С соотношение между чувствительностью толстой пленки SnO₂ и концентрацией паров ацетона показано на рис.2. Наносенсор SnO₂ был чувствителен к низким концентрациям ацетона. Здесь *Т*_А – температура отжига.

Механизм чувствительности к ацетону и свойства и толстых пленок SnO₂ обсуждены в [38]. Характеристики чувствительности к парам ацетона тонких

Рис.2. Зависимость отклика наносенсора SnO_2 от концентрации ацетона при рабочей температуре 180°С [18].

пленок SnO₂, легированных кобальтом, представлены в [39]. Структурные и микроструктурные исследования сенсора SnO₂, легированного PbO, для обнаружения метанола, пропанола и ацетона выполнены в [40]. Газовые сенсоры на основе оксида олова для высокоселективного обнаружения ацетона с концентрацией ниже 1 ppm, имеющей вид шелковицы, наполненной оксидом самария, были исследованы в [41]. Отклик, селективность, оптимальная рабочая температура, времена отклика и восстановления были исследованы в [42] для SnO₂, легированного оксидом церия, и нелегированного SnO₂.

В [1,43] обсуждены размерные эффекты в сенсорах. Как и ожидалось, было обнаружено, что уменьшение размера частиц и увеличение пористости материала повышает чувствительность детектора. Оксиды металлов с мелкими зернами, нанонити, нанотрубки, нанопроволоки и т. д. приводят к более высокой чувствительности сделанных из них сенсоров. Средний размер зерна был уменьшен до нескольких нанометров. Микроструктура играет решающую роль и чувствительность сенсора можно ее значительно повысить, используя материалы с очень малым размером зерна. Отклик составил 33, когда датчики подвергались воздействию ацетона при 330°С. Времена отклика и восстановления на ацетон составляли примерно 5 и 8 с, соответственно [44].

Для обнаружения ацетона Чой и соавт. [45] использовали нановолокна SnO_2 , функционализированные восстановленным оксидом графена (RGO). Заметное количество ацетона было достигнуто путем увеличения легирования RGO до 5 мас.% и повышения рабочей температуры до 350°С. Прогнозируемый предел обнаружения ацетона для этих датчиков при легировании 5 мас.% составлял всего 100 bpm. Вероятнее всего, RGO образовывал непрерывные пути для перколяции частиц заряда, которые контролируют электрический транспорт в нановолокне. Высокоселективные характеристики при обнаружении ацетона, видимо, обусловлены комбинированным синергетическим эффектом пористой нанотрубчатой морфологии и равномерным распределением нанокатализаторов Pt / PtO_x на тонкостенных нанотрубках (NT) SnO₂, которые могут обеспечивать как химическую, так и электронную сенсибилизацию. Кроме того, были разработаны сенсоры с тремя различными чувствительными слоями (NT Pt-PS SnO₂, NT Pt- SnO₂ и NT PS- SnO₂.) [46–49].

В [50] разработан гетероструктурный сенсор ацетона на основе полых SnO_2 , легированных NiO, путем сочетания техники электроспиннинга и процедуры прокаливания. Превосходные чувствительные характеристики предложенного датчика были связаны с его структурой с полой сердцевиной и легированием никелем. Повышенный отклик к ацетону можно связать с образованием p-n-переходов между зернами NiO p-типа и SnO_2 n-типа. Фактически, наличие гетеропереходов, образованных между NiO p-типа и SnO_2 n-типа, увеличивало сопротивление сенсора и отклик сенсоров к ацетону. Датчик газа на основе нановолокон NiO- SnO_2 имел максимальный отклик к ацетону при рабочей температуре 275° С, а датчик на основе NiO показывал максимальный отклик при 325° С. NiO- SnO₂ проявляет лучшую селективность, чем сенсор из NiO, характерен предпочтительный отклик на ацетон. Следовательно, нановолокна NiO- SnO₂ могут быть использованы для селективного обнаружения ацетона. Кроме того, также измерялась стабильность NiO и NiO-SnO₂ во времени. Оба сенсора имеют хорошую стабильность к ацетону с концентрацией 20 ppm в течение 60 дней. Об высокочувствительных сенсорах ацетона на основе электропряденых нановолокон SnO₂, легированных Eu, сообщается в [51,52]. Рабочая температура таких датчиков составляла 280°С. Наносенсоры SnO₂, легированные Y, были разработаны в [53].

Сенсоры, изготовленные из оксидов металлов, легированных углеродными нанотрубками (УНТ), имели высокую чувствительность и лучшую стабильность [8]

2.2. Сенсоры ацетона из нанокомпозитов SnO₂ <MWCNT>

В Ереванском государственном университете (ЕГУ) показано, что функционализация многостеночными углеродными нанотрубками (MWCNT) толстопленочных структур SnO₂ с Ru- катализатором приводит к значительному увеличению отклика на газы ЛОС. Структуры были получены методами зольгель и гидротермального синтеза, а также их комбинацией. Выбор соответствующих режимов для функционализации углеродными нанотрубками (УНТ), а также модификации поверхности толстой пленки Ru-катализатором доложены в [16,33]. Датчики из оксидов металлов, легированных УНТ, имеют более высокую чувствительность, лучшие стабильность и чувствительность [16,54,55]. Для сравнения было проведено испытание всех образцов при различных рабочих температурах и реакции на различные ЛОС. Наибольший и достаточно селективный отклик ($R_a/R_g = 1002$) на пары ацетона при их концентрации 1000 ррт и рабочей температуре 250°C был получен на образцах с массовым соотношением компонентов 1: 200 (MWCNT: SnO₂). Избирательная чувствительность датчиков паров ацетона при массовом соотношении компонентов 1:50 проявляется только при

Рис.3. Зависимость реакции датчика от концентрации паров ацетона [44].

рабочей температуре 300°С. В качестве примера на рис.3 представлена зависимость отклика датчика 1: 200 от концентрации паров ацетона при 150°С. Обратим внимание, что отклик на газ в большом диапазоне их концентраций увеличивается линейно с концентрацией паров ацетона. Это открывает возможность легко реализовать детектор / измеритель концентрации ацетона в выдыхаемом газе.

Очевидно, что легирование оксида металла УНТ приводит к повышению чувствительности и меньшему предварительному нагреву рабочего тела сенсора. Отметим, что в таких функционализированных нанокомпозитах имеют место происходит несколько сложных явлений. Очевидно, что легирование оксида металла УНТ приволит к повышению чувствительности и меньшему предварительному нагреву рабочего тела сенсора. Отметим, что в таких функционализированных нанокомпозитах имеют место несколько сложных явлений. Сеголня невозможно представить полную картину, но мы должны учитывать следующее: МУНТ имеют большую удельную поверхность и наноразмерную структуру. Электропроводность УНТ выше по сравнению с проводимостью металла оксидов, которые могут открыть возможности для. Введение УНТ в метал оксид в основном приводят к снижению сопротивления материалов и увеличению чувствительностьи датчиков. Наночастицы оксида металла в основном контролируют сенсорные характеристики. Поскольку пленка оксида металла имеет в основном n-тип проводимости, а MWCNT имеют p-тип, есть две разные области обеднения в этих гибридных пленках. Обратим внимание, что первая область истощения расположена в поверхность оксида металла, а вторая расположена на границе раздела между наночастицами оксида металла и MWCNT. Адсорбция молекул газа изменяет как толщину обедненных слоев на поверхности наночастиц SnO₂, так и гетероперехода p-MWCNTs / n-SnO₂. Появление наноканалов и образование гетеропереходов приводит к повышенной чувствительности датчика из-за изменения высоты барьера и модуляции слоя обеднения на гетеропереходе. Последний может привести к улучшению чувствительности датчика газа при меньшей рабочей температуре.

Итак, легирование MWCNT двуокиси олова значительно улучшает чувствительность SnO₂ (рис.4). Исследование чувствительности проводилось для различных концентраций MWCNT, чтобы получить самый высокий отклик, как показано на фиг. 4b. Отклик сенсоров нанокомпозитов SnO₂ и SnO₂<0.25% MWCNT> в ацетоне с концентрацией 1 ppm при различных температурах показан на рис.4с. Отклик датчиков SnO₂ и SnO₂<0.25% MWCNT> при различных концентрациях ацетона при 350°C показан на рис.4d.

Заметим также, что нанодатчики на диоксид водорода, выполненные из SnO₂<MWCNT>, обсуждены в [14, 16, 17], а из ZnO<CNT> – в [56]. Ахмадния-Фейзабад и др. [23] также изготовили 1: 200 MWCNT / SnO₂ сенсоры с помощью ультразвука. Они были использованы для обнаружения четырех ЛОС, включая ацетон. Наблюдалось значительное повышение селективности сенсора к ацетону по сравнению к такими газами, как толуол и трихлорэтилен. Нарджинари и д.

Рис.4. (а) Отклик датчиков SnO₂ и SnO₂<0.25% MWCNT> в ацетоне с концентрацией 1 ppm при 250°С. (b) Отклик сенсора SnO₂ в ацетоне с концентрацией 1 ppm для различных загрузок УНТ при 250°С (c) отклик сенсоров нанокомпозитов SnO₂ и SnO₂<0.25% MWCNT> в ацетоне с концентрацией 1 ppm при различных температурах. (d) Отклик датчиков SnO₂ и SnO₂<0.25% MWCNT> при различных концентрациях ацетона при 350°С [57].

[57] разработали высокочувствительный и стабильный во времени сенсор ацетона, используя MWCNT в качестве легиранта для приготовленного методом золь-гель нанокристаллического SnO₂. Упомянуто также, что улучшение характеристик связано с образованием гетероперехода и увеличением адсорбционной способности из-за большей площади поверхности сенсора.

Подробная информация о достижениях в конструкции и параметрах многих металл оксидных газовых сенсоров ацетона дана в обстоятельном обзоре литературы Ализаде и др. [1]. Ниже мы воспользуемся некоторыми данными из [1].

2.3. Хемирезисторы на основе триоксида вольфрама п-типа проводимости

Хемирезисторы на основе триоксида вольфрама n-типа WO₃ с шириной запрещенной зоны 2.6 эВ известны как перспективный материал для определения ЛОС. Хотя большинство известных газовых сенсоров WO₃ основаны на его гамма-фазе [58], эпсилон – фаза WO₃ используется для селективного детектирования ацетона, что объясняется наличием спонтанного электрического дипольного момента в эпсилон-фазе, который увеличивается при взаимодействии с

ацетоном, в свою очередь имеющим большой дипольный момент. Ванг и др. синтезированы наночастицы эпсилон-фазы WO₃ методом пламенного пиролиза. Добавки хрома были использованы для ее стабилизации [59]. Хемирезивные сенсоры WO₃, легированные кремнием, были предложены для термической стабилизации селективной к ацетону эпсилон-фазы WO₃ при рабочих температурах 300-500°С в качестве альтернативы легированию потенциально - токсичным хромом [27,38]. Ригетони и др. [60] разработали датчик выдыхаемого ацетона на основе подложки с подогревом и чувствительной пленки из наночастиц WO₃, легированных кремнием. При оптимизированной температуре 350°C датчик может обнаруживать ацетон даже при очень низких концентрациях (вплоть до 20 bpm) [39]. Гюнтер и др. [61] разработали сенсор ацетона, объединяющий сенсор WO₃:Si с пробоотборником, который извлекает лыхание в конце вылоха. Этот пробоотборник применялся при длительном воздействии на сенсор. Исследования были проведены в основном WO₃ сенсорами, изготовленными методами золь-гель, электроспиннинга, гидротермального осаждения и методики осаждения под скользящим углом. Они улучшали чувствительность к ацетону [62-64]. Преимущества и недостатки различных методов просуммированы в Таблице I в работе [1]. В дополнение к контролю морфологии, для улучшения отклика к газу и селективности используется контроль легирования и размеров WO₃. Например, Гао и др. [65] золь-гель методом были изготовлены тонкие пленки WO₃, легированные Cr₂O₃. Чувствительность к ацетону зависит от пористой структуры, содержания Cr₂O₃, температуры спекания и способа охлаждения. Баи и др. [66] методом электроспиннинга в сочетании с золь-гель методом изготовили полые образцы WO₃, легированные медью. В [67] путем модификации поверхности кислородной плазмой электроспряденных волокон была получена наноструктура WO₃. Для обнаружения ацетона и сероводорода (H₂S) гемитрубки WO₃ были функционализированы с помощью тонких слоев графита либо оксида графена. Чувствительность таких датчиков из гемитрубкок с 0.1 мас.% была исследована в условиях высокой относительной влажности окружающей среды 85–95%. Датчики продемонстрировали селективность чувствительности к ацетону и H₂S по сравнению с другими газами. Отличная чувствительность обусловлена сенсибилизацией материалов на основе графена в следствии модуляции пространственно-заряженных слоев на границах раздела между полутрубками WO₃ n-типа и материалами на основе графена р-типа. Использование добавок на основе графена значительно улучшало чувствительность к ацетону таких композитных материалов при анализе выдыхаемого воздуха. Лучшую газочувствительность триклинных полых волокон WO₃, легированных медью, связывают с более высоким отношением поверхности к объему для полого волокна WO₃, структурой соединения и составом триклинной фазы, что усиливает взаимодействие между ацетоном и WO_3 на поверхности сенсора. Поверхность полученных в [68] одномерных нанотрубок WO₃ со средним диаметром около 200 нм, полученных методом электроспиннинга, была шероховатой и полной выпуклостей, что может предоставить больше места для электронов на поверхности WO₃ для реакции с

ацетоном и повысить чувствительность к нему. Нановолокна WO₃ с пористой морфологией [69] были также получены методом электроспиннинга. Они позволили определить содержание ацетона до 0.1 ppm даже при относительной влажности 95%. Легированные кремнием WO₃, каркасы из нановолокон WO₃и нанолисты RGO с платиной также применялись для определения ацетона [69–71]. Синтезированы также иерархические орехообразные микросферы WO₃ с железом для анализа ацетона в выдыхаемом воздухе [72]. Количество легирования WO₃ железом было оптимизировано, что привело к улучшению отклика на ацетон и очень слабому отклику на NH₃, CO, толуол, метанол, этанол и NO.

Другие многообещающие исследования по разработке высокоселективных и чувствительных сенсоров вылыхаемого воздуха были проведены на уникальных наноструктурах оксидов металлов с катализаторами из благородных металлов [73,74]. Например, Чои и др. [75] синтезированы поликристаллические волокна WO₃ функционализированные каталитическими наночастицами Pt и IrO₂, чтобы изготовить хемирезистивные датчики для анализа выдыхаемого воздуха на диабет и неприятного запаха изо рта путем обнаружения ацетона и H₂S во влажной атмосфере (RH 75%). Волокна Pt- WO₃ показали более высокую чувствительность к ацетону и сероводороду по сравнению с «чистыми» волокнами WO₃. Кроме того, волокна IrO₂-WO₃ показали независимые от температуры чувствительность и селективность в среде с H₂S. Таким образом, высокоселективный перекрестный отклик между H_2S и апетоном был успешно достигнут за счет комбинации частиц IrO₂ на волокнах WO₃. Эта группа предполагает, что полупроводниковые свойства p-типа PtO (0.86 эВ) и полупроводниковые свойства nтипа IrO₂ (2.34 эВ) приводят к совершенно различным свойствам сенсора, что обусловлено химической сенсибилизацией и электрической сенсибилизацией, соответственно. Чои и др. [75] синтезировали тонкостенные гемитрубки WO₃ и каталитические функционализированные платиной гемитрубки WO₃ для обнаружения H₂S и ацетона. Гемитрубки WO₃ продемонстрировали превосходные чувствительность к сероводороду с минимальной реакцией на ацетон и толуол при относительной влажности 85%, в то время как функционализированные платиной гемитрубки WO₃ были чувствительны к ацетону с незначительной реакцией на H₂S. Как упоминалось выше, малый размер кристаллов и большая удельная поверхность определенно полезны для улучшения чувствительности обнаружения газа. Нановолокна WO₃ с наночастицами Rh₂O₃ [76] имели высокую чувствительность к ацетону во влажной атмосфере (95%). Ким и др. [70] разработали WO₃- RuO₂ сенсоры для диагностики диабета. Были проведены исследования с использованием апоферритина в качестве белковой матрицы для равномерного нанесения наночастиц катализатора. Апоферритин – это сферический белок размером 12 нм, состоящий из 24 белковых субъединиц. Он включает в себя внутреннюю полость сферической формы диаметром 7-8 нм, которая может заключать ионы и металл внутри полой клетки. Важно отметить, что внешняя поверхность апоферрита заряжена положительно. Апоферритин в качестве подходящей матрицы и электроспининг в качестве эффективного метода синтеза

нановолокон были использованы для приготовления сенсорного материала. Улучшенный отклик изготовленного сенсора на газообразный ацетон был приписан электронной сенсибилизации RuO₂ и увеличению кислородных вакансий, создаваемых RuO₂. Дизайн и контроль состояния поверхности – еще один возможный способ получения хорошей газовой чувствительности и селективности. Различные кристаллографические грани, соответствующие различным формам оксидов металлов, играют заметную роль [70,77]. Было установлено, что образцы WO₃ с открытыми гранями (002) показывают лучшую чувствительность и селективность к ацетону, чем образцы с гранями (100). Асимметричное распределение ненасыщенных координированных атомов О в О-концевых гранях (002) приводит к искажению электронного облака и возникновению локального электрического дипольного момента на поверхности. Этот локальный электрический дипольный момент увеличивает взаимодействие с ацетоном, имеющим высокий дипольный момент, что придает селективность нанонитям (стержням) WO₃ с открытыми гранями (002). Кроме того, высокая газовая чувствительность является следствием большого количества кислородных вакансий и дефектов на гранях (002) [78]. Инь и др. [79] синтезировали кубообразные нанолисты WO₃ с открытыми гранями (020) и (200) с помощью низкотемпературного гидротермального процесса с добавлением кислоты (HCl). Высокая селективность ацетона связана с асимметричным расположением атомов О на гранях, что приводит к неравномерному распределению электронного облака на них. Высокая чувствительность нанолистов WO₃ к органическим парам с высоким дипольным моментом связана с локальной электрической поляризацией на открытых гранях. В таблице II в [1] собраны данные об оптимальной температуре, времени отклика и восстановления для некоторых разработанных сенсоров ацетона из WO₃, а на рис.5 показан отклик от концентрации ацетона наносенсоров из WO₃.

Рис.5. Чувствительный отклик WO₃ без примесей и, легированного углеродом, спеченных при разных температурах, на ацетон в диапазоне концентраций 0.2–5 ppm при рабочей температуре 300°C.

2.4. Хеморезисторы на основе ZnO

Оксид цинка (ZnO) – полупроводниковое соединение с широкой запрещенной зоной 3.3 эВ. ZnO привлек значительное внимание из-за его заметной реакции на различные газы [47], [80], [81]. Легирование такими металлами, как Sn [82], Mn [83,84], Co [85], Ni [86], Cr [87], Rh [88], Al [89]), редкоземельными металлами [32], [90], CuO [91], а также использование таких благородных металлов, как Au [92–94] и Pt [95], привели к улучшению отклика детекторов ацетона из ZnO. На рис.6 показана зависимость отклика чувствительных к ацетону наночастиц ZnO, декорированных платиной и легированных алюминием.

Рис.6. Чувствительные к ацетону наночастиц ZnO, декорированных платиной и легированных алюминием [89].

Редкоземельные металлы La и Ce благодаря их превосходным каталитическим свойствам используются в качестве сенсибилизаторов, поскольку они могут увеличивать количество активных центров на поверхности полупроводниковых оксидов. С учетом того, что наночастицы Au могут активировать диссоциацию молекулярного кислорода, были получены улучшенные сенсорные свойства таких сенсоров [96]. Сенсоры ацетона, изготовленные из ZnFe₂O [97–99], Zn₂SnO₄ [100], ZnSnO₃ [101], ZnO–CuO [102], SnO₂–ZnO [103,104], ZnO/ZnCo₂O₄ [105], ZnO / графен [106–108], ZnO–CuO /оксид графена [109], графен-ZnFe₂O₄ [110] и ZnO–In₂O₃ [111] доложены в литературе.

Сенсоры ацетона на основе ZnO могут выполняться как тонкие пленки, нановолокна, наноснити, нанопроволоки, пористые наночастицы и т. д. [91–96]. Наблюдалось высокоселективное обнаружение ацетона в дыхании в ZnO сенсоре с квантовыми точками.

Улучшение отклика к ацетону имели твердотельные и полые нановолокна ZnO, синтезированные Be [91], и структуры ZnO в виде снежинок, реализованные Цао и др. [43]. Были изготовлены ZnO сенсоры с различной архитектурой- в виде гантели [97], одуванчика [98], цветка [99], [100], пористой прямоугольной пластины [101], полой наноклетки [102] и наногребенки [44]. Сенсор ZnO для ацетона, по форме похожий на одуванчик, проявил селективность к ацетону при относительной влажности 90% и концентрации ацетона свыше 10 ppm [97]. Сообщено о синтезе стабильной трехмерной (3D) пористой однородной прямоугольной пластины ZnO. Чен и др. предложили для обнаружения ацетона датчик газа ZnO с иерархической наноразмерной структурой [103]. Ли и др. синтезировали иерархические полые наноклетки из ZnO, которые смогли обнаружить ацетон с хорошей селективностью на уровне нескольких частей на миллиард [102].

2.5. Хеморезисторы на основе Fe₂O₃

Гематит (α - Fe₂O₃) является наиболее стабильным оксидом железа в окружающей среде. Информация о хемирезисторах Fe₂O₃ собрана в [1]. Значительные усилия были вложены в создание сенсоров на основе α - Fe₂O₃, чувствительных к ацетону (Ma et al. [112], Sun et al. [113], Guo et al. [114]). Улучшенный отклик наноразмерного Fe₂O₃ связан с его пористостью, малым размером частиц, большой площадью поверхности и образованием области обеднения электронами. Полые и пористые нанотрубки Fe₂O₃ были реализованы методом односоплового электропрядения с последующим отжигом. Ким и др. [115] исследовали гематитовые нанотрубки, синтезированные методом анодирования. Гунаван и др. [116] синтезировали одномерные Fe₂O₃ сенсоры ацетона с золотым покрытием, используя СВЧ облучение. Присутствие наночастиц Аи усиливало диссоциацию О₂, тем самым увеличивая непосредственное поступление кислорода в решетку для окисления ацетона, что приводит к сверхвысокой чувствительности к ацетону. Шан и др. [117] исследовали влияние легирования лантана на отклик нанотрубок Fe₂O₃ на ацетон. Электроформирование с последующим прокаливанием привели из-за присутствия лантана к улучшению переноса носителей заряда в сенсоре и уменьшению размера зерна и, тем самым, увеличению участков поверхности для реакций и каталитической активности лантана при превращении восстановительного газа в соответствующий продукт окисления. Однако реакция датчика на ацетон зависела от влажности и уменьшалась при увеличении относительной влажности. Лю и др. [118] сравнили отклик электропряденых первичных и легированных церием нанотрубок эпсилон- Fe₂O₃ на ацетон. Они объяснили лучшую чувствительность легированных церием нанотрубок к ацетону образованием большего количества дефектов на поверхности нанотрубок после легирования церием, что может привести к большей площади контакта между ацетоном и чувствительным материалом, а также с каталитическим поведением церия при преобразовании восстановительного газа в соответствующий продукт окисления. Джин и др. [119] сообщили о синтезе и измерениях характеристик монодисперсных пористых микрокубов и микросфер Fe₂O₃, легированных медью, и «чистого» Fe₂O₃. Улучшенный отклик на ацетон у частиц Fe₂O₃, легированных медью, по сравнению с «чистыми» частицами, связано с увеличением активных центров в легированных частицах, большой площадью поверхности и размером пор, а также каталитическими свойствами меди. Чакраборти и др. [120] использовали сонохимически изготовленные наноразмерные сенсоры Fe₂O₃ для обнаружения дыхания человека. Бисвал [121] синтезировал чистый нанокристаллический Fe₂O₃, содержащий платину, осажденный с использованием ультразвукового облучения. Они наблюдали усиление отклика на 55% на ацетон при добавлении 1 мас.% платины к α - Fe₂O₃. Гибридные наномассивы 1D / 2D α - Fe₂O₃/SnO₂ для обнаружения ацетона на уровне менее 1 ррт были исследованы в [122].

Рис.7. α- Fe₂O₃/NiO нанонити с гетеропереходом для газоанализатора ацетона [123].

Реакция образцов NiO, α - Fe₂O₃ и α - Fe₂O₃ / NiO на 100 ppm ацетона при различных рабочих температурах показана на рис.7 (см. [123]). Улучшенные газоочувствительные характеристики в ацетона наблюдались в нанонитях (стержнях) из гетеропереходов α - Fe₂O₃ / NiO [123].

На рис. 8 показаны результаты измерений отклика для запатентованного датчика ацетона [53], который предлагает композицию для обнаружения ацетона и способ их приготовления. В состав входят оксид Y-железа (Y- Fe_2O_3), соль сурьмы и контакты платины (Pt). Авторы патента отметили, что датчик, изготовленный с использованием указанного выше состава, селективен к низкой концентрации ацетона для дыхания. В этом патенте США измерения проводились в очень небольшом неудовлетворительном для практики концентраций ацетона – 0.75–1.25 ppm (рис.8). Возможно, такие полупроводниковые датчики для мониторинга диабета и неинвазивные, но дорогие. Измерения характеристик сенсоров на основе Y-Fe-O проводились при рабочей температуре 300°С.

Рис.8. Результаты измерений отклика для запатентованного датчика ацетона [53].

Методом высокочастотного магнетронного распыления в [123] были изготовлены чувствительные к парам ацетона сенсоры на основе металл оксидного твердого раствора Fe₂O₃:Sn. Исследованы газочувствительные характеристики изготовленного сенсора. Под действием ультрафиолетовых лучей Fe₂O₃:Sn сенсор обнаруживает отклик к парам ацетона, начиная с температуры 150°C. Увеличение рабочей температуры сопровождалось параллельным линейным ростом отклика сенсора. Воздействие ультрафиолетовыми лучами не только улучшило чувствительность исследуемого сенсора, но и повысило его быстродействие.

2.6. Хеморезисторы на основе In₂O₃

Оксид индия In_2O_3 представляет собой полупроводник n-типа с широкой запрещенной зоной 3.55–3.75 эВ. Улучшение его чувствительности к ацетону может быть достигнуто путем осаждения Au [124–128], Pt [129], Pd [130] на поверхность этого материала. Для обнаружения ацетона реализованы сенсоры на основе In_2O_3 с различной морфологией (сферические наночастицы [131,132], полые нановолокна [133], пористые полые сферы [49], иерархическая наноструктура [134–144], нанопроволока и нанотрубка [124]). Реализован высокочувствительный и влагостойкий In_2O_3 газовый датчик для диагностики диабета с нанопроволокой Pt. Ксинг и др. [124] изготовили упорядоченные трехмерные макропористые пленки In_2O_3 из инверсного опала для обнаружения ацетона в дыхании человека. Они предложили трехмерные инверсные опалы In_2O_3 –CuO для селективного детектирования ацетона.

2.7. Хемирезисторы на основе TiO₂

Диоксид титана TiO₂ отличается высокой стабильностью, дешевизной и нетоксичностью. TiO₂ обычно представляет собой стабильный материал n-типа в фазе рутила. Но некоторые сообщения опубликованы о полученных методом золь-гель нелегированных нестехиометрических тонких пленках TiO₂ p-типа с

фазой анатаза, который р-типа проводимости и возникает либо из-за вакансии Ті. либо из межузельных атомов кислорода [145]. Релл и др. [146] разработали новую технику осаждения тонких пленок наночастиц ТіО₂ для изготовления газовых сенсоров – матричное импульсное лазерное испарение. Предложенная технология позволила детектировать как пары ацетона, так и этанола при низких концентрациях (20–200 ppm) в сухом воздухе. Денг и др. [147] реализовали датчики газа на основе нанопористой тонкой пленки TiO_2 , с помощью которых обнаружили 1.5 ppm ацетона. Динг и др. [148] изготовили с использованием трафаретной печати на коммерческой пасте P25 TiO₂ функционирующий при комнатной температуре наносенсор ацетона на фотоиндуцированном SWCNT – TiO₂ гибриде со структурой ядро / оболочка. Такой хемирезистор показал линейную, быструю и обратимую реакцию на ацетон на уровне ppm. Напечатанный датчик диоксида титана показал отклик к ацетону, достаточный для диагностики диабета 1 типа. Телеки и др. [149] получили с помощью пиролиза пламенным распылением наноструктурированный анатаз TiO₂ и протестировали его на определение паров ацетона при 500 градусном нагреве. Ян и др. [150] синтезировали новые иерархические микросферы анатаза с селективно протравленными простым гидротермальным методом гранями кристаллов с высокой энергией (001) и обнаружили гораздо более высокое содержание ацетона, чем с помощью микросфер TiO₂ с неповрежденными гранями (001) и слегка протравленными гранями (001). Они предположили, что грани (001) могут действовать как активные центры для поглощения газа и облегчать реакцию обнаружения газа.

Детекторы ацетона, изготовленные из хемирезисторов на основе оксидов других металлов, обсуждены в литературе. Заметим, что существуют и другие хемирезистивные датчики выдыхаемого воздуха на основе оксидов металлов для потенциального использования в диагностике сахарного диабета с использованием ацетона в качестве биомаркера. Сенсоры с достаточно высоким откликом (S = Ra / Rg) на ацетон реализованы также на следующих наноструктурах: нано-композиты Fe₂O₃ / Al – ZnO, нановолокна ядро-оболочка SnO₂ / Au-In₂O₃, иерархические структуры SnO₂-Sm₂O₃, легированные рутением шарики NiO в форме цветка, сферы NiO, легированные W, наночастицы Sm₂O₃ / SnO₂, TiO₂, на нано-кристаллах In₂O₃ [21].

Заметим, что выбор хемирезистивных сенсоров ацетона на основе метал оксидных материалов (в том числе наноструктур) уже очень большой. Какие из таких сенсоров будут использованы в реальных устройствах, зависит от их многих параметров и, конечно же, стоимости наноструктур.

3. Неинвазивная диагностика заболеваний

Сахарный диабет относится к глобальным медико-социальным проблемам XXI века, затронувшим все мировое сообщество. Сахарный диабет – это синдром нарушения углеводного, жирового и белкового обмена, вызванный либо недостаточной секрецией инсулина, либо снижением чувствительности тканей к инсулину. В связи с этим он классифицируется как диабет I типа (он называется инсулинозависимым сахарным диабетом и возникает из-за недостаточной секреции инсулина) и диабет II типа (он называется инсулинозависимым сахарным диабетом и вызывается пониженной чувствительностью тканей-мишеней к метаболическому эффекту инсулина). Такое снижение чувствительности к инсулину часто называют инсулиновой резистентностью [20]. При обоих типах сахарного диабета нарушен метаболизм всех основных пищевых продуктов.

Рис.9. «Здоровые» и «диабетические» области в сенсоре ацетона WO₃, легированного кремнием [151].

Анализ влияния ацетона на пациентов с диабетом скорее всего имеет смысл начинать с 1 ppm. Большинство диабетиков находятся на сравнительно начальной стадии болезни (концентрация выделяемого ацетона до 10–12 ppm), в основном не находятся под ежедневным контролем врачей. Именно для таких больных необходим миниатюрный измеритель глюкозы (сахара). На рис.9 показана зависимость отклика газового сенсора от концентрации ацетона для здорового и больного человека, заимствованная из работы [151].

Исключительно перспективно создание микроэлектронного монитора ацетона типа показанного на рис. 10. Для его реализации необходимо иметь такой метал оксидный сенсор с высокой чувствительностью к ацетону типа измеренного А. Саюнцем в ЕГУ в диапазоне концентраций 1–12 ppm нашего сенсора из SnO₂< MWCNT> (см рис.11).

Нами ранее были реализованы полупроводниковые мониторы, в том числе использующие Arduino Nano процессоры [152–155].

Заметим, что для реализации неинвазивного монитора ацетона с трубкой, типа показанного на рис.10, дополнительно необходимы разработка последней с специальным мундштуком или другого устройства, осушающего выдыхаемый пациентом воздух. Высокая влажность выдыхаемого воздуха предъявляет дополнительные повышенные требования к датчикам. Следовательно, необходимо разработать новый датчик газа или матрицу датчиков газа с подходящим

Рис.10. Общий вид монитора с трубкой для выдыхаемого воздуха.

пределом обнаружения ацетона или использовать предварительный концентратор для предварительного концентрирования биомаркеров в образцах перед анализом. Методика предварительного концентрирования хорошо известна в хроматографии, когда разделительная колонка заполняется молекулами адсорбента. Тот же механизм в основном применяется для концентраторов в биомаркерах при выдохе. Двухступенчатое концентрирование для снижения уровня влажности выдыхаемых образцов сегодня является предпочтительным.

Рис.11. Отклик сенсора ацетона из SnO2<MWCNT>, разработанного в ЕГУ, в диапазоне концентраций 1–12 ppm.

4. Заключение

В последнее время возрос интерес к полупроводниковым газовым сенсорам для неинвазивного контроля различных болезней человека. В работе представлены и обсуждены работы, выполненные по неинвазивным метал оксидным наносенсорам (хемирезисторам) на выдыхаемый диабетиком ацетон как в Ереванском госуниверситете, так и за рубежом. Такие сенсоры изготавливают методами современной микроэлектронной техники, они имеют низкую стоимость и высокую чувствительность к газу. Приведены нанотехнологии и параметры разработанных в ЕГУ и мире хемирезисторов на основе диоксида олова, триоксида вольфрама, оксида цинка, Fe_2O_3 , In_2O_3 и TiO₂. Анализ влияния ацетона на пациентов с диабетом скорее всего имеет смысл начинать с выделяемой человеком концентрации ацетона 1 ppm. В ЕГУ проведены измерения отклика хемирезисторов из SnO₂<MWCNT>, при характерной для диабетиков, находящихся на сравнительно начальной стадии болезни-концентрации выделяемого ацетона от 1 до 12 ppm. Именно для таких больных необходим микроэлектронный измеритель глюкозы (сахара).

ЛИТЕРАТУРА

- 1. N. Alizadeh, H. Jamalabadi, F. Tavoli. IEEE Sensors J., 20, 5 (2020).
- 2. V.M. Aroutiounian. J. Nanomed Nanotechnol, 11, 544 (2020).
- 3. V.M. Aroutiounian. Biomed J Sci & Tech Res, 29(2), 22328 (2020).
- 4. A. Rydosz. Sensors, 18, 2298 (2018).
- 5. J.-E. Chang, D.-S. Lee, S.-W. Ban et al. Sensors & Actuators B, 255, 800 (2018).
- 6. O. Herman-Saffar, Z. Boger, S. Libson et al. Comput. Biol. Med., 96, 227 (2018).
- N.A. Hanania, M. Massanari, N. Jain. Annals of Allergy, Asthma & Immunology, 120, 414 (2018).
- A.A. Karyakin, S.V. Nikulina, D.V. Vokhmyanina et al. Electrochem. Commun., 83, 81 (2017).
- 9. W. Liu, L. Xu, K. Sheng et al. NPG Asia Mater., 10, 293 (2018).
- Dekker Encyclopedia of Nano-science and Nanotechnology, S.E. Lyshevski (Ed.). Second Edition, New York: Taylor and Francis, 2012.
- Semiconductor gas sensors, R. Jaanisco, O.K. Tan (Eds.), Woodhead: Series in Electronic and Optical Materials, 2013.
- 12. F.-G. Banika. Chemical and Biological sensors, Technosphera Press, 2014.
- V.M. Aroutiounian. Intern. Scientific Journal for Alternative Energy and Ecology, 3(23), 21 (2005).
- 14. V.M. Aroutiounian. Sensors & Transducers, 223(7), 9 (2018).
- V.M. Aroutiounian. Intern. Scientific Journal for Alternative Energy and Ecology, 249-251, 38 (2018).
- 16. V.M. Aroutiounian. Sensors & Transducers, 228, 1 (2018).
- 17. V.M. Aroutiounian. Journal of Contemporary Physics, 54, 356 (2019).
- 18. V.M. Aroutiounian. Ibid, 55, 213 (2020).
- 19. M. Masikini, M. Chowdhury, O. Nemraou. J. Electrochemical Society, 167 037537 (2020).
- Сахарный диабет: диагностика, лечение, профилактика (Под ред. И.И. Дедова, М.В. Шестаковой). Москва: «Медицинское информационное агентство», 2011.
- 21. V. Saasa, Th. Malwela, M. Beukes et al. Diagnostics, 8, 12 (2018).
- 22. L. Ta, Sh. Chang, Ch.-J. Chen, J.-T. Liu. Sensors, 20, 6925 (2020).
- 23. S. Ahmadnia-Feyzabad, A.A. Khodadadi, M. Vesali-Naseh, Y. Mortazavi. Sens. Actuators B, Chem., 166, 150 (2012).

- S. Salehi, E. Nikan, A.A. Khodadadi, Y. Mortazavi, Sens. Actuators B, Chem., 205, 261 (2014).
- 25. S.-J. Choi, B.-H. Jang, S.-J. Lee et al. ACS Appl. Mater.Inter., 6, 2588 (2014).
- 26. S.-J. Choi et al., Macromolecular Mater. Eng., 302, Art. no. 1600569 (2017).
- 27. T. Xiao et al., Sens. Actuators B, Chem., 199, 210 (2014).
- 28. S.-J. Choi et al. Anal. Chem., 85, 1792 (2013).
- 29. X. Bai, H. Ji, P. Gao et al. Sens. Actuators B, Chem., 193, 100 (2014).
- 30. P. Gao, H. Ji, Y. Zhou, X. Li. Thin Solid Films, 520, 3100 (2012).
- 31. K.-H. Kim et al. Sens. Actuators B, Chem., 241, 1276 (2017).
- 32. A.J. Kulandaisamy, V. Elavalagan, P. Shankar et al. Ceramics Int., 42, 18289 (2016).
- V. Aroutiounian, Z. Adamyan, A. Sayunts et al. Int. J. Emerging Trends in Science and Technology, 1, 1309 (2014).
- 34. M. Zhang, G. Jiang. Chin. J. Chem. Phys., 20, 317 (2007).
- 35. L. Hu, Y. Li. Environmental Science and Technology, 56, 2644 (2011).
- 36. N. Yamazoe. Sens. Actuators B, 15, 7 (1991).
- 37. A.R. Phani, S.V. Manorama, V.J. Rao. Appl. Phys. Lett., 71, 2358 (1997).
- 38. Y. Chen, H. Qin, Y. Cao et al. Sensors, 18, 3425 (2018).
- 39. S.B. Patil, P.P Patil, M.A. More. Sens. Actuators B, 125, 126 (2007).
- J.K. Srivastava, P. Pandey, V.N. Mishra, R. Dwivedi. J. Natural Gas Chemistry, 20, 179 (2011).
- L.K. Bagal, J.Y. Patil, K.N. Bagal, I.S. Mullaand, S.S. Suryavanshi. Materials Research Innovations, 17, 98, (2013).
- 42. Y. Zhang. J. Colloid Interface Sci., 531, 74 (2018).
- 43. V.M. Aroutiounian. J. Contemp. Physics, 54, 356 (2019).
- 44. V.M. Aroutiounian. J. Contemp. Physics, 54, 216 (2019).
- S.-J. Choi, B.-H. Jang, S.-J. Lee, B. K. Min, A. Rothschild, I.-D. Kim. ACS Appl. Mater. Inter., 6, 2588 (2014).
- 46. F. Usman, J.O. Dennis, A. Abdelkreem. IEEE Access, 7, 5963 (2019).
- 47. T. Lin, X. Lv, Zh. Hu, A. Xu, C. Feng. Sensors, 19, 233 (2019).
- Y.J. Jeong, W.-T. Koo, J.-S. Jang, D.-H. Kim, M.-H. Kim, I.-D. Kim. ACS Appl. Mater. Inter., 10, 2016 (2018).
- 49. Y.J. Jeong, W.-T. Koo, J.-S. Jang, D.-H. Kim, H.-J. Cho, I.-D. Kim. Nanoscale, 10, 13713 (2018).
- 50. W.-T. Koo, J.-S. Jang, S.-J. Choi, H.-J. Cho, I.-D. Kim. ACS Appl. Mater. Inter., 9, 18069 (2017).
- 51. A. Mirzaei, B. Hashemi, K. Janghorban. J. Mater. Sci., Mater. Electron, 27, 3109 (2016).
- 52. Z. Jiang et al. Ceram. Int., 42, 15881 (2016).
- 53. Patents US 9.470,675 B2 и EP2845009B1 Sensor composition for acetone detection in breath.
- 54. V.M. Aroutiounian. Lithuanian Journal of Physics, 55, 319 (2015).
- 55. V. Aroutiounian, Z. Adamyan, A. Sayunts et al. Int. J. Emerging Trends in Science and Technology, 1, 1309 (2014).

- 56. Z. Cao, Y. Wang, Z. Li, N. Yu, Nanoscience. Res. Lett., 11, 347 (2016).
- 57. M.M. Narjinary, P. Rana, A. Sen, M. Pal, Mater. Des., 115, 158 (2017).
- 58. L. Wang, A. Teleki, S.E. Pratsinis, P.I. Gouma. Chem. Mater., 20, 4794 (2008).
- 59. A. Staerz, U. Weimar, N. Barsan. Sensors, 16, 1815 (2016).
- 60. M. Righettoni, A. Tricoli, S. E. Pratsinis. Anal. Chem., 82, 3581 (2010).
- 61. A.T. Güntner et al. ACS Sensors, 4, 268 (2019).
- 62. A. Rydosz, A. Szkudlarek, M. Ziabka et al. IEEE Sensors J., 16, 1004 (2016).
- 63. W.Y. Teoh, R. Amal, L. Mädler. Nanoscale, 2, 1324 (2010).
- 64. G. Solero. Nanosci. Nanotechnol., 7, 21 (2017).
- 65. P. Gao, H. Ji, Y. Zhou, X. Li. Thin Solid Films, 520, 3100 (2012).
- 66. T. Xiao et al. Sens. Actuators B, Chem., 199, 210 (2014).
- 67. S.B. Upadhyay, R.K. Mishra, P.P. Sahay. Ibid, 209, 368 (2015).
- 68. L. Chen et al. Ibid, 255, 1482 (2018).
- 69. A.T. Güntner et al. Anal. Chem., 90, 4940 (2018).
- 70. D.-H. Kim, J.-S. Jang, W.-T. Koo et al. Sens. Actuators B, Chem., 259, 616 (2018).
- 71. D. Wang, Q. Zhang, M. R. Hossain, M. Johnson. IEEE Sensors J., 18, 4399 (2018).
- 72. J.-Y. Shen et al. Sens. Actuators B, Chem., 256, 27 (2018).
- 73. L.F. da Silva et al. J. Alloys Compounds, 683, 186 (2016).
- 74. L. Chen et al. Sens. Actuators B, Chem., 255, 1482 (2018).
- 75. J. Shin, S.-J. Choi, D.-Y. Youn, I.-D. Kim. J. Electroceram., 29, 106 (2012).
- Q.N. Abdullah, F.K. Yam, Z. Hassan, M. Bououdina. J. Colloid Interface Sci., 460, 135 (2015).
- 77. Q.-Q. Jia, H.-M. Ji, D.-H. Wang et al. J. Mater. Chem. A, 2, 13602 (2014).
- 78. M. Yin, L. Yu, S. Liu. J. Alloys Compounds, 696, 490 (2017).
- 79. S.K. Arya, S. Saha, J.E. Ramirez-Vick et al. Analytica Chim. Acta., 737, 1 (2012).
- 80. M.J.S. Spencer. Progr. Mater. Sci., 57, 437 (2012).
- 81. A. Kołodziejczak-Radzimska, T. Jesionowski. Materials, 7(4), 2833 (2014).
- 82. Y. Al-Hadeethi et al. Ceram. Int., 43, 2418 (2017).
- M.H. Darvishnejad, A.A. Firooz, J. Beheshtian, A.A. Khodadadi. RSC Adv., 6, 7838 (2016).
- 84. J. Wang et al. Mater. Des., 121, 69 (2017).
- 85. L. Liu et al. Sens. Actuators B, Chem., 155, 782 (2011).
- 86. X. Zhang, Z. Dong, S. Liu et al. Sens. Actuators B, Chem., 243, 1224 (2017).
- 87. G.H. Zhang et al. Mater. Lett., 165, 83 (2016).
- 88. Z. Chen, Z. Lin, Y. Hong et al. J. Mater. Sci. Mater. Electron., 27, 2633 (2016).
- 89. A. Koo, R. Yoo, S.P. Woo et al. Sens. Actuators B, Chem., 280, 109 (2019).
- 90. F.M. Li et al. J. Alloys Compounds, 649, 1136 (2015).
- 91. Y. Xie, R. Xing, Q. Li et al. Sens. Actuators B. Chem., 211, 255 (2015).
- 92. Y. Li, T. Lv, F.-X. Zhao et al. Electron. Mater. Lett., 11, 890 (2015).
- 93. Y. Lin et al. J. Alloys Compounds, 650, 37 (2015).
- 94. F. Meng et al. Sens. Actuators B, Chem., 219, 209 (2015).
- 95. X. Zhou et al. Ibid, 206, 577 (2015).

- 96. X. Li et al. ACS Appl.Mater. Inter., 7, 17811 (2015).
- 97. X. Zhou et al. Ibid, 7, 15414 (2015).
- 98. Y. Wang et al. Mater. Lett., 183, 378 (2016).
- 99. H. Jung et al. Sens. Actuators B. Chem., 274, 527 (2018).
- 100. Z. Zhang, T. Zhang, T. Zhou et al. RSC Adv., 6, 66738 (2016).
- 101. H.M. Yang et al. Mater. Lett., 182, 264 (2016).
- 102. Q. Chen et al. Ceram. Int., 43, 1617 (2017).
- 103. S.H. Yan et al. Mater. Lett., 159, 447 (2015).
- 104. H.-J. Choi, S.-J. Choi, S. Choo et al. J. Mater. Chem. A, 2, 17683 (2014).
- 105. W.-T. Koo, S.-J. Choi, J.-S. Jang, I.-D. Kim. Sci. Rep., 7, Art. no. 45074 (2015).
- 106. P. Wang et al. Sens. Actuators B., Chem., 230, 477 (2016).
- 107. B.A. Vessalli, C.A. Zito, T.M. Perfecto et al. J. Alloys, 696, 996 (2017).
- 108. H. Zhang, Y. Cen, Y. Du, S. Ruan. Sensors, 16, 1876 (2016).
- 109. C. Wang et al. J. Mater. Chem. A, 2, 18635 (2014).
- 110. F. Liu, X. Chu, Y. Dong, et al. Sens. Actuators B, Chem., 188, 469 (2013).
- 111. X. Chi et al. Mater. Sci. Semicond. Process., 27, 494 (2014).
- 112. J. Ma et al. J. Mater. Chem., 22, 11694 (2012).
- 113. X. Sun, H. Ji, X. Li et al. J. Alloys Compounds, 600, 111 (2014).
- 114. X. Guo, J. Zhang, M. Ni et al. J. Mater. Sci., Mater. Electron., 27, 11262 (2016).
- 115. D.H. Kim et al. ACS Appl. Mater. Inter., 6, 14779 (2014).
- 116. P. Gunawan et al. Langmuir, 28, 14090 (2012).
- 117. H. Shan et al. Sens. Actuators B. Chem., 184, 243 (2013).
- 118. C. Liu, H. Shan, L. Liu et al. Ceram. Int., 40, 2395 (2014).
- 119. W.X. Jin et al. Sens. Actuators B. Chem., 220, 243 (2015).
- 120. S. Chakraborty, D. Banerjee, I. Ray, A. Sen. Current Sci., 94, 237 (2008).
- 121. R.C. Biswal. Ibid, 157, 183 (2011).
- 122. H. Gong, Ch. Zhao, G. Niu, et al. Sensors & Actuators: B. Chemical Research, 2020, ID 2196063 (2020).
- 123. Z. Wang, K. Zhang, T. Fei et al. Sensors & Actuators: B. Chemical, 318, 128191 (2020).
- 124. M.C. Aleksanyan, A.G. Saynts, V.M. Aroutiounian. J. Contemporary Physics, 56, (2021), in press.
- 125. R. Xing et al. Nanoscale, 7(30), 13051 (2015).
- 126. R. Xing et al. Sci. Rep., 5, art. no. 10717 (2015).
- 127. S. Zhang et al. Sens. Actuators B, Chem., 242, 983 (2017).
- 128. F. Li, T. Zhang, X. Gao et al. Sens. Actuators B, Chem., 252, 822 (2017).
- 129. M. Karmaoui et al. Sens. Actuators B, Chem., 230, 697 (2016).
- 130. F. Gong et al. Mater. Lett., 163, 236 (2016).
- 131. H. Liu, F. Qu, H. Gong et al. Mater. Lett., 182, 340 (2016).
- 132. S. Wang et al. J. Chem., 38(10), 4879 (2014).
- 133. X. Liang et al. Ceram. Int., 41, 13780 (2015).
- 134. S. Wang, J. Cao, W. Cui et al. Mater. Lett., 186, 256 (2017).
- 135. L. Liu, S. Li, X. Guo et al. J. Mater. Sci., Mater. Electron., 27, 5153 (2016).

- 136. R. Xing, K. Sheng, L. Xu et al. RSC Adv., 6(62), 57389 (2016).
- 137. S. Park. J. Alloys Compounds, 696, 655 (2017).
- 138. C. Chen, J. Li, R. Mi, Y. Liu. Anal. Methods, 7(3), 1085 (2015).
- 139. K. Anand, J. Kaur, R. C. Singh, R. Thangaraj. Chem. Phys. Lett., 670, 37 (2017).
- 140. J. Bai, B. Zhou. Chem. Rev., 114, 10131 (2014).
- 141. Y. Yang, Y. Liang, R. Hu et al. Mater. Res. Bull., 94, 272 (2017).
- 142. W. Guo, Q. Feng, Y. Tao et al. Mater. Res. Bull., 73, 302 (2016).
- 143. Y. Wang et al. Nanotechnology, 27, Art. no. 425503 (2016).
- 144. Y. Wang, S. Wang, H. Zhang et al. J. Mater. Chem. A, 2, 7935 (2014).
- 145. A. Hazra et al. J. Mater. Sci., Mater. Electron., 24, 1658 (2013).
- 146. F. Hossein-Babaei, M. Keshmiri, M. Kakavand, T. Troczynski. Sens. Actuators B. Chem., 110, 28 (2005).
- 147. R. Rella et al. Sens. Actuators B, Chem., 127(2), 426 (2007).
- 148. L.L. Deng, C.X. Zhao, Y. Ma et al. Anal. Methods., 5, 3709 (2013).
- 149. M. Ding, D.C. Sorescu, A. Star. J. Amer. Chem. Soc., 135, 9015 (2013).
- A. Teleki, S.E. Pratsinis, K. Kalyanasundaram, P.I. Gouma. Sens. Actuators B. Chem., 119, 683 (2006).
- 151. A. Rydosz. Sensors, 18, 2298 (2018).
- 152. V.M. Aroutiounian, A. Hovhannisyan. Biomed. J. Sci. & Tech. Res., 27, 20422 (2020).
- 153. V.M. Aroutiounian, A. Hovhannisyan. Arm. J. Physics, 12, 283 (2019).
- 154. V. Aroutiounian, V. Kirakosyan. Arm. J. Physics, 11, 160 (2018).
- 155. V. Aroutiounian, D. Pokhsraryan, H. Chilingaryan. Arm. J. Physics, 3, 378 (2010).

NON-INVASIVE METALOXIDE SENSORS ON EXHALED ACETON

V.M. AROUTIOUNIAN

The paper presents and discusses works carried out both at Yerevan State University and abroad on non-invasive metal oxide sensors (chemiresistors) for acetone exhaled by a diabetic. The technologies and parameters of chemiresistors based on tin dioxide, tungsten trioxide, zinc oxide, Fe₂O₃, In₂O₃ and TiO₂ developed at YSU and in the world are presented. Most likely. it makes sense to start investigations with 1 ppm acetone. The response of the MWCNT-doped SnO₂ chemiresistors was measured at a concentration of acetone from 1 to 12 ppm, characteristic of diabetics at a relatively early stage of the disease.