ZUBUUSUUP APSNP BBNP UUCPP UQAUBPU UYUABUPU НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИ NATIONAL ACADEMY OF SCIENCES OF ARMENIA ДОКЛАДЫ QUANPB SUBP REPORTS

Zuunnp
Tom 121 2021

No 1

МЕХАНИКА

УДК 539.3

М. С. Мкртчян, М. М. Мкртчян

О напряженном состоянии кусочно-однородного слоя с абсолютно жесткими включениями при антиплоской деформации

(Представлено чл.-кор. НАН РА С. М. Мхитаряном 7/II 2021)

Ключевые слова: кусочно-однородные слои, антиплоская деформация, включение, сингулярные интегральные уравнения.

Введение. В механике композитов, при проектировании различных строительных и авиационных конструкций, в тензометрии и во многих других отраслях прикладной механики и инженерной практики весьма важным представляется исследование вопросов взаимодействия концентраторов напряжений типа включений с массивными телами различных геометрических форм. Это объясняется тем, что вокруг этих концентраторов напряжений образуются локальные поля напряжений с большими и интенсивно изменяющимися градиентами, которые существенно снижают уровень прочности инженерных конструкций и их деталей. Поэтому качественное и количественное исследование вопросов концентрации напряжений представляет как теоретический, так и практический интерес. Такие задачи стали предметом исследования многих авторов [1-5].

В настоящей статье рассматривается задача о напряженном состоянии кусочно-однородного слоя при антиплоской деформации, когда крайние грани слоя усилены стрингерами конечных длин, а на линии стыка разнородных материалов расположена коллинеарная система из произвольного конечного числа абсолютно жестких тонких включений. При помощи преобразования Фурье решение задачи сведено к решению системы сингулярных интегральных уравнений (СИУ) из трех уравнений.

Постановка задач и вывод основных уравнений. Пусть отнесенный к правой прямоугольной системе координат Oxyz кусочно-однородный упругий слой состоит из верхнего слоя $\omega_+ = \left\{-\infty < x, z < \infty, 0 \le y \le h_+ \right\}$ с модулем сдвига G_+ и нижнего слоя $\omega_- = \left\{-\infty < x, z < \infty, -h_- \le y \le 0 \right\}$ с модулем сдвига G_- и в плоскости y=0 содержит систему абсолютно

жестких включений, причем их следы в плоскости Oxy составляют систему отрезков

$$L = \bigcup_{k=1}^{N} [a_k, b_k]; (a_k < b_k; k = 1, 2, ..., N; b_k < a_{k+1}; (k = \overline{1, N-1})).$$

Далее грани верхнего $y=h_{_{\! +}}$ и нижнего $y=-h_{_{\! -}}$ слоя на отрезках $\left[c_{_{\! 1}},d_{_{\! 1}}\right]$ и $\left[c_{_{\! 2}},d_{_{\! 2}}\right]$ усилены стрингерами в виде полос

$$\begin{split} \omega_{1} &= \left\{ c_{1} \leq x \leq d_{1}; h_{+} \leq y \leq h_{+} + h_{1}; -\infty < z < \infty \right\}, \\ \omega_{2} &= \left\{ c_{2} \leq x \leq d_{2}; -h_{-} - h_{2} \leq y \leq -h_{-}; -\infty < z < \infty \right\} \end{split}$$

с модулями сдвигов G_1 , G_2 и высотами h_1 и h_2 соответственно. Предполагается, что на верхней и нижней гранях $y=h_++h_1$, $y=-h_--h_1$ полос ω_1 , ω_2 в направлении оси O_Z действуют равномерно распределенные по оси O_Z касательные силы интенсивностей $T_1(x)$, $T_2(x)$, т.е.

$$au_{yz}\Big|_{y=h_++h_1}=T_1\big(x\big)\; \big(c_1 < x < d_1\big);\; au_{yz}\Big|_{y=-h_--h_2}=T_2\big(x\big)\; \big(c_2 < x < d_2\big),$$
 (1) где au_{yz} — компонента касательных напряжений. Кроме того предположим, что на кромках $x=c_1, x=d_1$ и $x=c_2, x=d_2$ стрингеров в направлении оси Oz действуют равномерно распределенные по этой оси касательные сосредоточенные силы F_1, F_2 и Q_1, Q_2 соответственно. А на систему включений L действуют силы с равнодействующими P_k , направленные по оси Oz и вызывающие продольный сдвиг упругого слоя в направлении оси Oz с базовой плоскостью Oxy .

Требуется определить скачок касательных контактных напряжений на берегах включений и разрушающие напряжения вне системы включений на линии их расположения, а также действующие под стрингерами касательные контактные напряжения. При этом для стрингеров принимается модель Мелана [5, 6].

Для вывода определяющих уравнений поставленной задачи кусочнооднородную упругую полосу вдоль оси Ox разрежем на верхнюю (ω_+) и нижнюю (ω_-) полосы, а затем для действующих на их гранях $y=\pm 0$ напряжений введем следующие обозначения $(L'=R\setminus L; R=(-\infty,\infty))$:

$$-\tau_{yz}\Big|_{y=+0} = T_{+}(x) = \begin{cases} \tau_{+}(x) & (x \in L); \\ \tau(x) & (x \in L'); \end{cases} -\tau_{yz}\Big|_{y=-0} = T_{-}(x) = \begin{cases} \tau_{-}(x) & (x \in L); \\ \tau(x) & (x \in L'). \end{cases}$$
(2)

На системе включений L смещения постоянны:

$$u_z^+(x,y)\Big|_{y=+0} = u_z^-(x,y)\Big|_{y=-0} = g(x) = \delta_k = \text{const}.$$
 (3)

На гранях составной полосы имеем

$$\begin{aligned}
\tau_{yz}^{+}\big|_{y=h_{+}} &= G_{+} \frac{\partial u_{z}^{+}(x,y)}{\partial y} \Big|_{y=h_{+}} = -H_{+}(x) = \begin{cases} -\tau_{1}(x) & (x \in [c_{1},d_{1}]); \\ 0 & (x \notin [c_{1},d_{1}]); \end{cases} \\
\tau_{yz}^{-}\big|_{y=h_{-}} &= G_{-} \frac{\partial u_{z}^{-}(x,y)}{\partial y} \Big|_{y=-h_{-}} = -H_{-}(x) = \begin{cases} -\tau_{2}(x) & (x \in [c_{2},d_{2}]); \\ 0 & (x \notin [c_{2},d_{2}]); \end{cases}
\end{aligned}$$

где $u_z^\pm(x,y)$ — единственные смещения точек составной полосы в направлении оси Oz, а $\tau_1(x)$ и $\tau_2(x)$ — неизвестные пока касательные контактные напряжения под стрингерами. Функции $u_z^\pm(x,y)$ в областях $\omega_+^{(0)} = \left\{ -\infty < x < \infty; 0 < y < h_+ \right\}, \quad \omega_-^{(0)} = \left\{ -\infty < x < \infty; -h_- < y < 0 \right\}$ удовлетворяют уравнению Лапласа

$$\Delta u_z^{\pm}(x,y) = \frac{\partial^2 u_z^{\pm}(x,y)}{\partial x^2} + \frac{\partial^2 u_z^{\pm}(x,y)}{\partial y^2} = 0.$$
 (5)

Введем в рассмотрение следующие функции:

$$\Omega_{+}(x) = \frac{T_{+}(x) + T_{-}(x)}{2}; \ \Phi_{\pm}(x) = \frac{1}{2} \left(\frac{du_{z}^{+}(x, +0)}{dx} \pm \frac{du_{z}^{-}(x, -0)}{dx} \right)$$

$$\Omega_{-}(x) = \frac{T_{+}(x) - T_{-}(x)}{2} = \begin{pmatrix} \psi(x) & (x \in L); \\ 0 & (x \in L'). \end{pmatrix}$$
(6)

С помощью преобразования Фурье по переменной x из уравнения (5) и граничных условий (2)-(4) в соответствии с обозначениями (6) придем к ключевым уравнениям задачи:

$$\Omega_{+}(x) = \frac{G_{+} - G_{-}}{G_{+} + G_{-}} \Omega_{-}(x) + \frac{2G_{+}G_{-}}{\pi (G_{+} + G_{-})} \int_{L} R(x - s) \Omega_{-}(s) ds + \frac{G_{-}}{\pi} \int_{c_{1}}^{d_{1}} Q_{1}(x - s) \tau_{1}(s) ds + \frac{G_{+}G_{-}}{\pi (G_{+} + G_{-})} \int_{c_{2}} Q_{2}(x - s) \tau_{2}(s) ds \qquad (x \in R)$$

$$\Phi_{+}(x) = \frac{2}{\pi(G_{+} + G_{-})} \int_{L}^{\Omega_{-}(s)ds} \frac{2}{x - s} + \frac{2}{\pi(G_{+} + G_{-})} \int_{L}^{K_{1}}(x - s)\Omega_{-}(s)ds + \frac{1}{\pi} \int_{c_{1}}^{d_{1}} Q_{10}(x - s)\tau_{1}(s)ds + \frac{1}{\pi} \int_{c_{2}}^{d_{2}} Q_{20}(x - s)\tau_{2}(s)ds; \quad (x \in R)$$

$$K(x) = \int_{0}^{\infty} \frac{G_{+}th(\lambda h_{+})[th(\lambda h_{-}) - 1] + G_{-}th(\lambda h_{-})[th(\lambda h_{+}) - 1]}{G_{+}th(\lambda h_{+}) + G_{-}th(\lambda h_{-})} \sin(\lambda x)d\lambda;$$

$$K_{1}(x) = \int_{0}^{\infty} \frac{G_{+}[1 - th(\lambda h_{+})] + G_{-}[1 - th(\lambda h_{-})]}{G_{+}th(\lambda h_{+}) + G_{-}th(\lambda h_{-})} \sin(\lambda x)d\lambda; \quad R(x) = \int_{0}^{\infty} \frac{th(\lambda h_{+}) - th(\lambda h_{-})}{G_{+}th(\lambda h_{+}) + G_{-}th(\lambda h_{-})} \cos(\lambda x)d\lambda;$$

$$Q_{1}(x) = \int_{0}^{\infty} \frac{th(\lambda h_{+})}{ch(\lambda h_{+})[G_{+}th(\lambda h_{+}) + G_{-}th(\lambda h_{-})]} \sin(\lambda x)d\lambda;$$

$$Q_{1}(x) = \int_{0}^{\infty} \frac{th(\lambda h_{+})}{ch(\lambda h_{-})[G_{+}th(\lambda h_{+}) + G_{-}th(\lambda h_{-})]} \cos(\lambda x)d\lambda;$$

$$Q_{2}(x) = \int_{0}^{\infty} \frac{th(\lambda h_{-})}{ch(\lambda h_{-})[G_{+}th(\lambda h_{+}) + G_{-}th(\lambda h_{-})]} \sin(\lambda x)d\lambda.$$

Для производных смещений на гранях полос $y = \pm h_+$ имеем

$$\frac{du_{z}^{+}(x,h_{+})}{dx} = -\frac{1}{\pi} \int_{L} R_{1}(x-s)\Omega_{-}(s)ds - \frac{1}{\pi G_{+}} \int_{c_{1}}^{d_{1}} \frac{\tau_{1}(s)ds}{s-x} + \frac{1}{\pi G_{+}} \int_{c_{1}}^{d_{1}} M_{1}(x-s)\tau_{1}(s)ds - \frac{1}{\pi} \int_{c_{2}}^{d_{2}} M_{2}(x-s)\tau_{2}(s)ds; (x \in R)$$
(9)

$$\frac{du_{z}^{-}(x,-h_{-})}{dx} = -\frac{1}{\pi} \int_{L} R_{2}(x-s) \Omega_{-}(s) ds + \frac{1}{\pi} \int_{c_{1}}^{d_{1}} M_{2}(x-s) \tau_{1}(s) ds + \frac{1}{\pi G_{+}} \int_{c_{1}}^{d_{1}} \frac{\tau_{1}(s) ds}{s-x} + (10) ds + \frac{1}{\pi G_{-}} \int_{c_{2}}^{d_{2}} M_{3}(x-s) \tau_{2}(s) ds. \quad (x \in R)$$

$$R_{1}(x) = \int_{0}^{\infty} \frac{1}{ch(\lambda h_{+}) \left[G_{+}th(\lambda h_{+}) + G_{-}th(\lambda h_{-})\right]} \sin(\lambda x) d\lambda;$$

$$R_{2}(x) = \int_{0}^{\infty} \frac{1}{ch(\lambda h_{-}) \left[G_{+}th(\lambda h_{+}) + G_{-}th(\lambda h_{-})\right]} \sin(\lambda x) d\lambda;$$

$$\begin{split} M_1(x) &= \int_0^\infty \frac{\left(1 - th(\lambda h_+)\right)\left(G_+ - G_- th(\lambda h_-)\right)}{G_+ th(\lambda h_+) + G_- th(\lambda h_-)} \sin\left(\lambda x\right) d\lambda; \\ M_3(x) &= \int_0^\infty \frac{\left(1 - th(\lambda h_-)\right)\left(G_+ th(\lambda h_+) - G_-\right)}{G_+ th(\lambda h_+) + G_- th(\lambda h_-)} \sin\left(\lambda x\right) d\lambda; \\ M_2(x) &= \int_0^\infty \frac{1}{\cosh\left(\lambda h_+\right) \cosh\left(\lambda h_-\right)\left[G_+ th(\lambda h_+) + G_- th(\lambda h_-)\right]} \sin\left(\lambda x\right) d\lambda. \end{split}$$

Приняв во внимание (1) для верхних и нижних стрингеров, воспользуемся дифференциальным уравнением деформирования стрингера по модели Мелана при антиплоской деформации [6]

$$h_{1}G_{1}\frac{d^{2}w_{1}}{dx^{2}} = \tau_{1}(x) - T_{1}(x) \left(c_{1} < x < d_{1}\right);$$

$$h_{2}G_{2}\frac{d^{2}w_{2}}{dx^{2}} = -\tau_{2}(x) + T_{2}(x) \left(c_{2} < x < d_{2}\right),$$
(11)

где $w_1 = w_1(x)$ и $w_2 = w_2(x)$ – компоненты смещений точек стрингеров в направлении оси Oz. При этом условия равновесия этих стрингеров имеют вил

$$\int_{c_1}^{d_1} \tau_1(x) dx = F_2 - F_1 + \int_{c_1}^{d_1} T_1(x) dx; \quad \int_{c_2}^{d_2} \tau_2(x) dx = Q_2 - Q_1 + \int_{c_2}^{d_2} T_2(x) dx.$$
(12)

Интегрированием (11) легко находим

$$h_{1}G_{1}\frac{dw_{1}}{dx} = \frac{1}{2}(F_{1} + F_{2}) + \frac{1}{2}\int_{c_{1}}^{d_{1}} \operatorname{sign}(x - s) \left[\tau_{1}(s) - T_{1}(s)\right] ds;$$

$$h_{2}G_{2}\frac{dw_{2}}{dx} = -\frac{1}{2}(Q_{1} + Q_{2}) - \frac{1}{2}\int_{c_{2}}^{d_{2}} \operatorname{sign}(x - s) \left[\tau_{2}(s) - T_{2}(s)\right] ds.$$
(13)

В условие контакта упругих полос и стрингеров

$$\begin{split} &u_z^+\left(x,h_{_{\! +}}\right) = w_{_{\! 1}}\!\left(x\right) \text{ или } \frac{du_z^+\left(x,h_{_{\! +}}\right)}{dx} = \frac{dw_{_{\! 1}}\!\left(x\right)}{dx} \quad \left(c_1 < x < d_1\right); \\ &u_z^-\!\left(x,-h_{_{\! -}}\right) = w_2\!\left(x\right) \text{ или } \frac{du_z^-\!\left(x,-h_{_{\! -}}\right)}{dx} = \frac{dw_2\!\left(x\right)}{dx} \quad \left(c_2 < x < d_2\right) \end{split}$$

подставим выражения из (9), (10) и (13). После простых преобразований относительно неизвестных контактных напряжений придем к интегральным уравнениям:

$$\frac{1}{\pi} \int_{c_{2}}^{d_{2}} R_{1}(x-s) \Omega_{-}(s) ds - \frac{1}{\pi G_{+}} \int_{c_{1}}^{d_{1}} \frac{\tau_{1}(s) ds}{s-x} + \frac{1}{\pi G_{+}} \int_{c_{1}}^{d_{1}} M_{1}(x-s) \tau_{1}(s) ds
- \frac{1}{2h_{1}G_{1}} \int_{c_{1}}^{d_{1}} \operatorname{sign}(x-s) \tau_{1}(s) ds - \frac{1}{\pi} \int_{c_{2}}^{d_{2}} M_{2}(x-s) \tau_{2}(s) ds =
= \frac{1}{2h_{1}G_{1}} [F_{1} + F_{2}] - \frac{1}{2h_{1}G_{1}} \int_{c_{1}}^{d_{1}} \operatorname{sign}(x-s) T_{1}(s) ds; \quad (x \in (c_{1}, d_{1}))$$
(14)

$$-\frac{1}{\pi} \int_{c_{2}}^{d_{2}} R_{2}(x-s) \Omega_{-}(s) ds - \frac{1}{\pi} \int_{c_{1}}^{d_{1}} M_{2}(x-s) \tau_{1}(s) ds - \frac{1}{\pi G_{-}} \int_{c_{2}}^{d_{2}} \frac{\tau_{2}(s) ds}{s-x} - \frac{1}{\pi G_{-}} \int_{c_{2}}^{d_{2}} M_{3}(x-s) \tau_{2}(s) ds - \frac{1}{2h_{2}G_{2}} \int_{c_{2}}^{d_{2}} \operatorname{sign}(x-s) \tau_{2}(s) ds =$$

$$= \frac{1}{2h_{2}G_{2}} [Q_{1} + Q_{2}] - \frac{1}{2h_{2}G_{2}} \int_{c_{2}}^{d_{2}} \operatorname{sign}(x-s) T_{2}(s) ds. \qquad (x \in (c_{2}, d_{2}))$$

Рассматривая уравнение (8) на L, а также уравнения (14) и (15), придем к определяющей системе СИУ поставленной задачи

$$\left\{ \frac{1}{\pi(G_{+} + G_{-})} \int_{L}^{\Psi(s)ds} \frac{1}{s - x} - \frac{2}{\pi(G_{+} + G_{-})} \int_{L}^{L} K(s - x) \psi(s) ds + \frac{1}{\pi} \int_{c_{1}}^{d_{1}} Q_{10}(s - x) \tau_{1}(s) ds - \frac{1}{\pi} \int_{c_{2}}^{d_{2}} Q_{20}(s - x) \tau_{2}(s) ds = 0; \qquad (x \in L) \right. \tag{16}$$

$$\frac{1}{\pi} \int_{L}^{R_{1}} R_{1}(x - s) \psi(s) ds - \frac{1}{\pi} \int_{c_{1}}^{d_{1}} \frac{\tau_{1}(s) ds}{s - x} + \frac{1}{\pi} \int_{c_{1}}^{d_{1}} M_{1}(x - s) \tau_{1}(s) ds - \frac{1}{2h_{1}G_{1}} \int_{c_{1}}^{d_{1}} sign(x - s) \tau_{1}(s) ds - \frac{1}{2h_{1}G_{1}} \int_{c_{1}}^{d_{1}} sign(x - s) \tau_{1}(s) ds; \qquad (x \in (c_{1}, d_{1}))$$

$$-\frac{1}{\pi} \int_{c_{2}}^{R_{2}} M_{1}(x - s) \tau_{2}(s) ds = \frac{1}{2h_{1}G_{1}} \left[P_{1} + P_{2} \right] - \frac{1}{2h_{1}G_{1}} \int_{c_{1}}^{d_{1}} sign(x - s) T_{1}(s) ds; \qquad (x \in (c_{1}, d_{1}))$$

$$-\frac{1}{\pi} \int_{L}^{R_{2}} R_{2}(x - s) \psi(s) ds - \frac{1}{\pi} \int_{c_{1}}^{d_{1}} M_{2}(x - s) \tau_{1}(s) ds - \frac{1}{\pi} \int_{c_{2}}^{d_{2}} \frac{\tau_{2}(s) ds}{s - x} - \frac{1}{\pi} \int_{c_{2}}^{d_{2}} M_{3}(x - s) \tau_{2}(s) ds$$

$$-\frac{1}{2h_{2}G_{2}} \int_{c_{1}}^{d_{1}} sign(x - s) \tau_{2}(s) ds = \frac{1}{2h_{2}G_{2}} \left[Q_{1} + Q_{2} \right] - \frac{1}{2h_{2}G_{2}} \int_{c_{1}}^{d_{2}} sign(x - s) T_{2}(s) ds; \quad (x \in (c_{2}, d_{2}))$$

Первое уравнение системы (16) должно рассматриваться при условиях

$$\int_{a_k}^{b_k} \psi(x) dx = P_k, \quad (k = \overline{1, N}),$$
(17)

выражающих условия равновесия k -го включения, а второе и третье уравнения должны рассматриваться при условиях равновесия стрингеров (12).

Рассматривая же уравнение системы (7) на линии спая полос вне включений, имеем:

$$\tau(x) = \frac{2G_{+}G_{-}}{\pi(G_{+} + G_{-})} \int_{L} R(x - s) \psi(s) ds + \frac{G_{-}}{\pi} \int_{G_{-}}^{d_{1}} Q_{1}(x - s) \tau_{1}(s) ds + \frac{G_{+}}{\pi} \int_{G_{-}}^{d_{2}} Q_{2}(x - s) \tau_{2}(s) ds. \quad (x \in L')$$
(18)

Таким образом, поставленная задача о напряженном состоянии упругой полосы с трещинами и стрингерами сводится к решению системы (16) при условиях (17). После решения (16), (17) напряжение на линии спая вне включения определяется формулой (18).

Решение определяющей СИУ. Для решения определяющей СИУ (16), (17) сначала введем безразмерные координаты и величины:

$$\begin{split} \xi &= \frac{x}{|a_{1}|}, \ \eta = \frac{s}{|a_{1}|}; \ \overline{h}_{+} = \frac{h_{+}}{|a_{1}|}, \ \overline{h}_{-} = \frac{h_{-}}{|a_{1}|}; \ \overline{h}_{1} = \frac{h_{1}}{|a_{1}|}, \ \overline{h}_{2} = \frac{h_{2}}{|a_{1}|}; \ \alpha_{k} = \frac{a_{k}}{|a_{1}|}, \ \beta_{k} = \frac{b_{k}}{|a_{1}|}; \ (k = \overline{1, N}) \end{split}$$

$$\gamma_{k} &= \frac{c_{k}}{|a_{1}|}, \ \delta_{k} = \frac{c_{k}}{|a_{1}|}; \ (k = \overline{1, 2}), \ \mu = G_{+}/G_{-}; \ \mu_{1} = G_{1}/G_{+}; \ \mu_{2} = G_{2}/G_{-}; \ L_{0} = \bigcup_{k=1}^{N} (\alpha_{k}; \beta_{k}); \end{split}$$

$$\psi_{0}(\xi) &= \frac{\psi(|a_{1}|\xi)}{G_{+}+G_{-}}; \ \tau_{1}^{(0)}(\xi) = \frac{\tau_{1}(|a_{1}|\xi)}{G_{1}}; \ \tau_{2}^{(0)}(\xi) = \frac{\tau_{2}(|a_{1}|\xi)}{G_{2}}; \ P_{1}^{(0)} = \frac{P_{1}}{|a_{1}|G_{1}}; P_{2}^{(0)} = \frac{P_{2}}{|a_{1}|G_{2}}; \end{split}$$

$$Q_{1}^{(0)} &= \frac{Q_{1}}{|a_{1}|G_{1}}; \ Q_{2}^{(0)} = \frac{Q_{2}}{|a_{1}|G_{2}}; \ T_{1}^{(0)}(\xi) = \frac{T_{1}(|a_{1}|\xi)}{G_{1}}; T_{2}^{(0)}(\xi) = \frac{T_{2}(|a_{1}|\xi)}{G_{2}}; \end{split}$$

после чего (16) преобразуется в СИУ

$$\begin{cases} \frac{2}{\pi} \int_{t_0}^{\psi_0(\eta)} \frac{d\eta}{\eta - \xi} + \frac{2}{\pi} \int_{t_0}^{K_0} (\eta - \xi) \psi_0(\eta) d\eta + \frac{1}{\pi} \int_{\gamma_1}^{\delta_1} \overline{Q}_{10}(\eta - \xi) \tau_1^{(0)}(\eta) d\eta - \\ -\frac{1}{\pi} \int_{\gamma_2}^{\delta_2} \overline{Q}_{20}(\eta - \xi) \tau_2^{(0)}(\eta) d\eta = 0; \qquad (\xi \in L_0) \end{cases}$$

$$\frac{4(\mu + 1)}{\pi} \int_{t_0}^{K_0} (\eta - \xi) \psi_0(\eta) d\eta - \frac{\mu_1}{\pi} \int_{\gamma_1}^{\delta_2} \frac{\tau_1^{(0)}(\eta) d\eta}{\eta - \xi} - \frac{1}{\pi} \int_{\gamma_1}^{\delta_2} \left[\mu_1 M_{10} (\eta - \xi) - \frac{\pi}{2h_1} \operatorname{sign}(\eta - \xi) \right] \tau_1^{(0)}(\eta) d\eta$$

$$+ \frac{\mu_1}{\pi} \int_{\gamma_2}^{\delta_2} M_{20}(\eta - \xi) \tau_2^{(0)}(\eta) d\eta = F_1(\xi), \qquad (\xi \in (\gamma_1, \delta_1))$$

$$-\frac{4(\mu + 1)}{\pi} \int_{t_0} R_{20} (\eta - \xi) \psi_0(\eta) d\eta + \frac{\mu\mu_1}{\pi} \int_{\gamma_1}^{\delta_1} M_{20}(\eta - \xi) \tau_1^{(0)}(\eta) d\eta - \frac{\mu_2}{\pi} \int_{\gamma_2}^{\delta_2} \frac{\tau_2^{(0)}(\eta) d\eta}{\eta - \xi}$$

$$+ \frac{1}{\pi} \int_{\gamma_2}^{\delta_2} \left[\mu_2 M_{30} (\eta - \xi) + \frac{\pi}{2h_2} \operatorname{sign}(\eta - \xi) \right] \tau_2^{(0)}(\eta) d\eta = F_2(\xi), \qquad (\xi \in (\gamma_2, \delta_2))$$

$$K_0(\xi) = -\int_0^{\infty} \frac{\mu[th(\lambda h_+) - 1] + 1 - th(\lambda h_-)}{\mu th(\lambda h_+) + th(\lambda h_-)} \sin(\lambda \xi) d\lambda; \qquad R_0(\xi) = \int_0^{\infty} \frac{th(\lambda h_+) - th(\lambda h_-)}{\mu th(\lambda h_+) + th(\lambda h_-)} \cos(\lambda \xi) d\lambda;$$

$$R_{10}(\xi) = \int_0^{\infty} \frac{1}{ch(\lambda h_+) \left[\frac{1}{\mu th(\lambda h_+) + th(\lambda h_-)} \right]} \sin(\lambda \xi) d\lambda; \qquad R_{20}(\xi) = \int_0^{\infty} \frac{1}{ch(\lambda h_-) \left[\frac{1}{\mu th(\lambda h_+) + th(\lambda h_-)} \right]} \sin(\lambda \xi) d\lambda;$$

$$M_{10}(\xi) = -\int_0^{\infty} \frac{(1 - th(\lambda h_+)) \left(\mu - th(\lambda h_-)}{\mu th(\lambda h_+) + th(\lambda h_-)} \sin(\lambda \xi) d\lambda; \qquad M_{30}(\xi) = -\int_0^{\infty} \frac{(1 - th(\lambda h_-)) \left(\mu th(\lambda h_-) - 1 \right)}{\mu th(\lambda h_+) + th(\lambda h_-)} \sin(\lambda \xi) d\lambda;$$

$$M_{20}(\xi) = \int_{0}^{\infty} \frac{1}{ch(\lambda \overline{h}_{+})ch(\lambda \overline{h}_{-} \left[\mu th(\lambda \overline{h}_{+}) + th(\lambda \overline{h}_{-})\right]} \sin(\lambda \xi) d\lambda;$$

$$\overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{20}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_-) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_-) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_+) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_+) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_+) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_+) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_+) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_+) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_+) \Big]} \sin(\lambda\xi) d\lambda; \\ \overline{Q}_{10}(\xi) = \int\limits_0^\infty \frac{\mu + 1}{ch(\lambda\overline{h}_+) \Big[\mu t h(\lambda\overline{h}_+) + th(\lambda\overline{h}_+) \Big$$

$$F_{1}(\xi) = \frac{1}{2\overline{h}_{1}} \left[P_{1}^{(0)} + \frac{\mu_{2}}{\mu\mu_{1}} P_{2}^{(0)} \right] + \frac{1}{2\overline{h}_{1}} \int_{\gamma_{1}}^{\delta_{1}} \operatorname{sign}(\eta - \xi) T_{1}^{(0)}(\eta) d\eta; \quad (\xi \in (\gamma_{1}, \delta_{1}))$$

$$F_{2}\left(\xi\right) = \frac{1}{2\overline{h}_{2}} \left[\frac{\mu\mu_{1}}{\mu_{2}} Q_{1}^{(0)} + Q_{2}^{(0)} \right] + \frac{1}{2\overline{h}_{2}} \int_{\gamma}^{\delta_{1}} \operatorname{sign}\left(\eta - \xi\right) T_{2}^{(0)}\left(\eta\right) d\eta; \quad \left(\xi \in \left(\gamma_{2}, \delta_{2}\right)\right)$$

а условия (17) – в условия

$$\int_{a_{i}}^{\beta_{k}} \psi_{0}(\xi) d\xi = \frac{P_{k}}{|a_{1}|(G_{+} + G_{-})}; (k = \overline{1, N}).$$
 (20)

Каждый интервал (α_k, β_k) , (γ_k, δ_k) системы СИУ (19) преобразуем в интервал (-1,1), полагая

$$\xi = \frac{\beta_{k} - \alpha_{k}}{2} t + \frac{\beta_{k} + \alpha_{k}}{2}, \ \eta = \frac{\beta_{k} - \alpha_{k}}{2} u + \frac{\beta_{k} + \alpha_{k}}{2} \ (k = \overline{1, N}), \ (-1 < t, u < 1),$$

$$\xi = \frac{\delta_{k} - \gamma_{k}}{2} t + \frac{\delta_{k} + \gamma_{k}}{2}, \ \eta = \frac{\delta_{k} - \gamma_{k}}{2} u + \frac{\delta_{k} + \gamma_{k}}{2} \ (k = \overline{1, 2}), \ (-1 < t, u < 1)$$

в результате СИУ (18) преобразуется в систему интегральных уравнений относительно функций

$$\psi_k(t) = \psi_0 \left(\frac{\beta_k - \alpha_k}{2} t + \frac{\beta_k + \alpha_k}{2} \right); \quad (-1 < t < 1; \quad k = \overline{1, N})$$

$$\overline{\tau}_k(t) = \tau_k^{(0)} \left(\frac{\delta_k - \gamma_k}{2} t + \frac{\delta_k + \gamma_k}{2} \right) \quad (-1 < t < 1; \quad k = \overline{1, 2})$$

на интервале (-1,1).

Затем определяющую СИУ преобразуем в систему интегральных уравнений относительно неизвестных функций, заданных на (-1,1). Решение системы (19)–(20) строится числено-аналитическим методом [8–10], как в [7], с привлечением математического аппарата ортогональных многочленов Чебышева.

Заключение. Задача о взаимодействии стрингеров и тонкостенных абсолютно жестких включений с упругим кусочно-однородным слоем при

антиплоской деформации рассмотрена в общей постановке. Все характеристики задачи можно выразить аналитическими формулами простых структур. Результаты статьи могут быть использованы в расчетах строительных, в частности железобетонных, конструкций.

Институт механики НАН РА,

Национальный университет архитектуры и строительства Армении e-mail: muscheg-mkrtchyan@rambler.ru

М. С. Мкртчян, М. М. Мкртчян

О напряженном состоянии кусочно-однородного слоя с абсолютно жесткими включениями при антиплоской деформации

Рассматривается задача об определении основных характеристик напряженного состояния композита в виде кусочно-однородного упругого слоя, усиленного по своим крайним граням стрингерами конечных длин и содержащего на линии стыка разнородных материалов коллинеарную систему из произвольного конечного числа абсолютно жестких включений.

Մ. Ս. Մկրտչյան, Մ. Մ. Մկրտչյան

Հակահարթ դեֆորմացիայի ժամանակ բացարձակ կոշտ ներդրակներով կտոր առ կտոր համասեռ շերտի լարվածային վիձակի մասին

Դիտարկվում է կտոր առ կտոր համասեռ առաձգական շերտի տեսքով կոմպոզիտի լարվածային վիճակի հիմնական բնութագրիչների որոշման խնդիրը, երբ կոմպոզիտն իր եզրային նիստերում ուժեղացված է վերջավոր երկարությամբ ստրինգերներով, իսկ տարասեռ նյութերի միացման գծի վրա կան կամայական վերջավոր թվով բացարձակ կոշտ բարակապատ ներդրակներ։

M. S. Mkrtchyan, M. M. Mkrtchyan

On the Stressed State of a Piecewise Homogeneous Layer with Absolutely Rigid Inclusions under Antiplane Deformation

In this paper, we consider the problem of determining the main characteristics of the stress state of a composite in the form of a piecewise homogeneous elastic layer of heterogeneous materials. The layer is reinforced along its extreme faces by stringers of finite lengths and contains a collinear system of an arbitrary finite number of absolutely rigid inclusions at the junction line of heterogeneous materials.

Литература

- 1. Черепанов Г. П. Механика хрупкого разрушения. М. Наука. 1974. 640 с.
- 2. *Попов Г. Я.* Концентрация упругих напряжений возле штампов, разрезов, тонких включений и подключений. М. Наука. 1982. 344 с.
- 3. *Ворович И. И., Александров В. М., Бабешко В. А.* Неклассические смешанные задачи теории упругости. М. Наука. 1974. 456 с.
- 4. *Александров В. М., Мхитарян С. М.* Контактные задачи для тел с тонкими покрытиями и прослойками. М. Наука. 1983. 488 с.
- 5. *Melan E.* Ingr. Arch. 1932. Bd. 3. № 2. S. 123-129.
- 6. *Мхитарян С. М.* В сб.: Механика деформируемого твердого тела. Ереван. Изд-во НАН Армении. 1993. С. 129-143.
- 7. *Манукян* Э. А., *Мкртчян М.* С. Изв. НАН РА. Механика. 2010. Т. 63. № 2. С. 21-33.
- 8. *Панасюк В. В., Саврук М. П., Дацышин А. П.* Распределение напряжений около трещин в пластинах и оболочках. Киев. Наукова думка. 1976. 443 с.
- 9. *Erdogan F.*, *Gupta G. D.*, *Cook T. S.* In: Mechanics of Fractures. V. 1. Methods of analy and solutions of crack problemssis. Leyden. Noordhoff Intern. Publ. 1973. P. 368-425.
- 10. *Theocaric P. S., Iokamidis N. I.* Quart. Appl. Math. 1977. V. 35. № 1. P. 173-185.