АСТРОФИЗИКА

TOM 30

ИЮНЬ, 1989

выпуск 3

УДК 524.6

АНАЛИЗ ПОДСЧЕТОВ ЗВЕЗД АО-А2 ПО КАТАЛОГУ SAO

Р. Б. ШАЦОВА, Г. Б. АНИСИМОВА, И. А. ЗЕНИНА

Поступила 3 мая 1988 Принята к печати 5 июня 1988

Распределение ввезд A0-A2 ярче $V=\overline{9}^m$ из каталога SAO в первых приближениях подтверждает известные концентрации к плоскости Галактики, к локальному спиральному рукаву и к его ответвлению. В следующих приближениях обнаруживается микроструктура, связанная с деталями Местной системы: поясами Долидве, Гулда и известными по радионаблюдениям петлями.

1. Распределение звезд в первых приближениях. Подсчеты звезд, подразделенных по разным признакам, служили и продолжают служить для изучения структуры Галактики. Анализ подсчетов ярких звезд ограничивает область исследования окрестностями Солнца. Здесь должны проявляться как общие черты структуры Галактики, которые давно изучаются, так и локальные вокруг нас, интерес к которым возрос в последнее время. Есть необходимость в разделении глобальных и локальных эффектов.

В данной статье дается анализ подсчетов звезд классов A0-A2 с $V \leq 9^m$, проведенных Анисимовой [1] по каталогу SAO [2]. Их общая численность — 18113 звезд. Согласно [3], уровень полноты каталога меняется в зависимости от звездной величины и зоны по склонению. Севернее $\delta = -40^\circ$ каталог охватывает около 97% звезд ярче 9^m , южнее — менее полно. Около южного полюса мира ($\delta < -64^\circ$) охват снижается до 56%. Мы полагаем, что представленность А-звезд не хуже. Несмотря на втот и другие недостатки, каталог SAO может быть использован для статистического изучения распределения звезд по небу.

В [1] даны $n(l_3,b_3)$ — числа звезд в площадках со еторонами $\Delta l = 3^0, \Delta b = 3^0$. По ним находились $n(l_4,b_3)$ — средние в интервалах $\Delta l = 45^0, \Delta b = 3^0$, а также числа звезд на 1 кв. град: $n(l_3,b_3)/9\cos b$ и соответствующие средние. Рис.1 изображает их долготные зависимости для фиксированных b. Рис.2 дает широтные зависимости средних в восьми интервалах по долготе. Отношение $\frac{n(b=0^0)}{n(b=90^0)}$ по рис. 2 варьируется между 7 и 20, то есть значительно больше, чем для ярких звезд без учета спектра (3-4, nobah-Paйну и Сирсу, [4]). Учет поглощения света мало увеличивает вто

отношение для ярких ввезд, так как на г≤100-150 пк вокруг Солица обнаружена область, практически свободная от пыли [5].

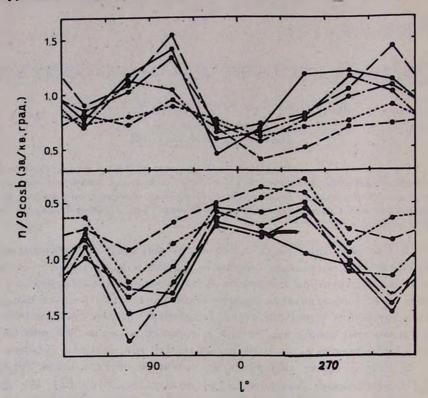


Рис. 1. Зависимость средней плотности звезд $\bar{n}(l_{45},b_3)/9\cos b$ от галактической долготы l. Кривые для b>0 проведены выше оси абсцисс, для b<0 — ниже оси абсцисс. —— $0-3^\circ$; ——— $3-6^\circ$; ——— $6-9^\circ$; ——— $9-12^\circ$; ———— $12-15^\circ$; ———— $15-18^\circ$.

Концентрация к малым широтам обязана тому, что А-звезды входят в плоскую подсистему Галактики и в Местную систему (МС), внутри которых пространственная плотность нарастает к плоскостям симметрии.

Максимумы кривых на рис. 1 связаны с тем, что в втих направлениях мы смотрим вдоль спирального рукава (если он здесь проходит) и вдоль вытянутости МС. Минимум у кривых около $l=300^{\circ}$ и b<0 на рис. 1 и большая асимметрия в блоке $l(270^{\circ}-315^{\circ})$ на рис. 2 связаны с неполнотой каталога в воне южного полюса мира (З.Ю.П.), соответствующей $b(0^{\circ}-53^{\circ})$.

Средние $n(l_{45},b_3)/9\cos b$, по которым составлены рис. 1 и 2, автоматически комбинируют перечисленные глобальные эффекты, включая даже поглощение света, притом именно для совокупности A0-A2 ввезд ярче 9^m

из каталога SAO.

Специальная проверка показала, что немонотонность кривых на рис. 1 и 2, используемых ниже, мало влияет на результаты.

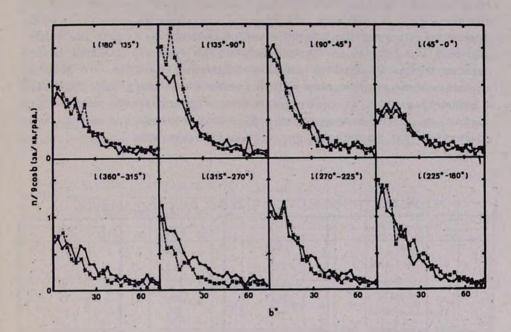


Рис.2. Зависимость средней плотности ввезд $\bar{n}(l_{45},b_{5})/9\cos b$ от галактической широты b в каждом из интервалов по l. Сплошные линии относятся k b>0, пунктирные — k b<0.

2.Корреляция между распределениями ввезд и протяженных источников радиоэмиссии. Распределение звезд A0-A2 мы сопоставили с распределением яркостной температуры T_a непрерывного радиоизлучения на частоте 820 МГц по данным Беркхьюзен [6]. Оба они являются интегральными в отношении охвата расстояний: А-звезды от ярчайших до $V=9^m$ находятся, в основном, ближе 400 пк от Солнца; радиоизлучение исходит как с этих же расстояний, так и с больших. Карты Беркхьюзен покрывают область неба со склонениями от -7^0 до $+85^0$. По ним определены средние T_a в каждой площадке $(\Delta l, \Delta b) = (3^0, 3^0)$. T_a , пропорциональные интенсивности излучения, сопоставлены с соответствующими числами звезд A0-A2 $-n(l_3,b_3)$. Всего рассмотрено 2538 площадок или пар значений (n,T_a) . По ним получены средние: $\bar{n} = 2.04, T_a = 6.31$ К и стандартные отклонения: $\sigma_n = \pm 3.07$, $\sigma_T = \pm 1.59$ К. Ковффициент корреляции оказался равным $r = 0.53 \pm 0.02$. Надежность втого значения определяется порогом вероятност

ти безошибочного прогноза b>0.999, поскольку $t=r/\varepsilon_r=26.5$, что значительно превышает вначение критерия Стьюдента $t_{st}=3.3$ для столь большого числа сравниваемых пар [7]. Коэффициент r для A-звезд оказался лишь немного меньше, чем по всем звездам до 9^m каталога SAO, по подсчетам [8], для которых $r=0.59\pm0.02$. Аналогичная корреляция обнаружена и для других частот непрерывного радиоспектра на больших площадях неба, По полученным значениям r можно судить о большом вкладе радиоивлучения из области, занимаемой данными звездами, и о сходстве в расположении протяженных радиоисточников и A-звезд, выражающемся в концентрациях к плоскости Галактики и к спиральной ветви. Если имеются и другие концентрации, то в силу корреляции, они должны проявляться как по звездам, так и по радиоизлучению.

 $T_{a6 \wedge n_{2}a}$ 1 ВЕРОЯТНОСТИ $P(n \geqslant n_{1})$ В СЛУЧАЙНЫХ РАСПРЕДЕЛЕНИЯХ

Распределение	Ni	N ₂	N ₃
Гаусса	15.87	2.28	0.14
Пуассона 1—2.5	23.0	6.2	1.1
λ—3	23.5	5.9	1.0
λ=16	18.78	3.61	0.41
Модельное л=16	16.7	2.4	0.17
Случайное распределение л=17	17.3	1.9	0.0

3. Отклонения от средних распределений. Локальные отклонения от крупномасштабной структуры в радиусе сотен парсеков вокруг Солнца можно, в принципе, получить из разностей: $\Delta n(l_3,b_3)=n(l_3,b_3)-n(l_{45},b_3)$. Поскольку плотность А-ввезд невелика, существенны случайные флуктуации. Чтобы установить, имеются ли на их фоне локальные закономерности, рассмотрим те площадки, где $\Delta n_k(l_3,b_3)$ превышают k-кратную среднюю квадратичную флуктуацию:

$$\Delta n_k(l_3,b_3) = n_k(l_3,b_3) - n(l_{45},b_3) \geqslant k\sqrt{n} = k\sqrt{n(l_{45},b_3)}. \tag{1}$$

Надо выяснить: 1) имеются ли отклонения в распределении этих площадок от случайных законов? 2) Нет ли особенностей в их размещении по небу? 3) Нет ли связи с локальной структурой Галактики?

I. Рассмотрим случаи k=1, 2, 3. Очевидно, что в n_1 входит n_2 , а в n_2 входит n_3 . Числа площадок с такими n_k обозначим через N_k . Подсчеты по всему небу, т.е. по 7200 его площадкам, обнаружили:

$$N_1 = 1179$$
 (HAH 16.38%), $N_2 = 425(5.90\%)$, $N_3 = 118(1.64\%)$. (2)

Для сравнения в табл. 1 приведены аналогичные процентные данные для законов Гаусса, Пуассона (при трех значениях λ)[9] и модельного случайного распределения (для двух значений \bar{n}) [10], иначе говоря, приведены вероятности $P_k(n \geqslant n_k).N_1$ оказалось близким к табличным значениям по Гауссу и модельному при $\bar{n}=16$, а N_2 и N_3 существенно превышают их. Соответственно $N(\bar{n}\leqslant \bar{n}+\sqrt{\bar{n}})$ на несколько процентов меньше случайного, что, вероятно, трудно будет увидеть при больших N, близких к \bar{N} . Избыток N_2 составляет примерно 250 площадок неба. Распределение Пуассона дает N_1 больше наблюдаемых при любом λ . Превышения в N_1 , как и значения N_2 и N_3 зависят от λ . Подбор малых λ , при которых N_2 или N_3 близки к наблюдаемым, ведет к неприемлемо большим N_1 и \bar{N} . Следовательно, наблюдаемое распределение отличается от функций Пуассона.

 $T_{a6 \wedge nuya} \ 2$ ЧИСЛА ПЛОЩАДОК $N_1(n_1)$, $N_2(n_2)$, $N_3(n_3)$ В УЧАСТКАХ

b 1	180	150	120	90	60	30	0	330	300	270	240	210	N _A (b)
N ₁	21*	19*	13	16	14	8	12	6	12	17	18	19*	14.6
N ₂	2	1	1	4	3	3	1	2	5*	5*	6*	_	2.8
N ₃	2*	_	- 1	1	2	3*	1		2*	1	-		1.0
	18	16	19	15	23*	19	26*	13	19	12	15	17	17.7
6	5	7	9	7	12*	5	11*	4	3	10	8	11*	7.7
	2	4*	1	2	2	3*	1	2			-	3*	1.7
4 4 9	27*	12	26*	24	34*		6	21	13	23	19	24	10
- /-	10*	1	9	11*	18*	3	10*	1	8	2	9	3	7.1
61113	3	-	4*	2	8*	-	2		3	1	2		2.1
77. 79	14	29**	18	16	22	16	24*	4	31*	14	21	24*	19.4
r	5	10*	8	7	4	7	6	2	15*	15	4	4	11*
	2	4*	1	-	1	3	4*	-	8*	_	1	4*	2.3
	19	12	19	21*	15	7	17	15	11	15	20*	19	15.8
A	15**	7	12*	11*	9	1 1	4	9	8	7	10	8	8.4
-	3	-	2	3	2	-	1	2	4*	1	4*	2	2.0
	11	13	7	11	15*	12	11	10	10	7	13	10	10.8
e	4	3	1	6*	2	3	6*	_	2	1	2	1	2.6
	2*	3**	1	1	_	_	1	_	-	1	-	-	0.8
No	12	11	10	9-	8	7	6	15	4	3	2	1	

В отдельных участках неба N_1, N_2, N_3 еще сильнее отклоняются от табл. 1. Это видно из табл. 2, относящейся к 72 участкам неба в интервалах

 $(\Delta l, \Delta b) = (30^{\circ}, 30^{\circ})$. Каждый участок содержит 100 площадок $(\Delta l, \Delta b) = (3^{\circ}, 3^{\circ})$. В последнем столбце даны N_k по каждой широтной воне.

Таким образом, большинство А-ввезд неба ($N < N_1$) имеют распределение, близкое к нормальному, но в области больших отклонений от средних \bar{n} распределение явно превышает случайное. Таков первый признак, в общем, неслучайного распределения части А-ввезд.

II. Значения $N_k(l,b) \ge N_k(b) + k\sqrt{N_k(b)}$ отмечены в табл. 2 k звездочками (k=1, 2, 3). Статистика по небу втях участков приведена в табл. 3.

 $T_{a6 \land uya} \ 3$ ЧИСЛА И ПРОЦЕНТЫ УЧАСТКОВ N_{b}^{*} , N_{b}^{*} **, N_{b}^{***} ПО НЕБУ

>*		>**	>***	>*	>**	>***
N ₁	15	4	1	20.8%	5.6%	1.4%
N ₂	18	6	2	25.0	8.3	2.8
N ₃	16	4	2	22.2	5.6	2.8

Частоты N_k и N_k^* при всех k меньше отличаются от пуассоновских (по сравнению с частотами площадок), но они существенно выше, чем в двух других случайных распределениях по табл. 1. N_1^* гораздо выше всех N_3 в табл. 1.

Отмеченные участки крайне неравномерно размещены по небу. По табл. 2 можно выделить несколько связных полеи востоящих из многих плотных участков. Точно также имеются большие связные поля средней и ниже средней плотности. В этом смысле левая половина табл. 2 заметно отличается от правой. Вероятность случайной сегрегации оценим, если разделим небо на не менее крупные области. Например, на 9 областей, т.е. по 8 участков в каждой или по 800 площадок (3^0 , 3^0). На одну область, в среднем, приходится 3 участка с N_2 или N_3 , отмеченными звездочками. Вероятность того, что в некоторой области 8 участков отмечены, т.е. принадлежат одному полю, равна $P(N_2=8) \approx P(\bar{\nu}+3\sqrt{\bar{\nu}})=P(\nu_3)$, что по табл. 1 (последний столбец) и по (2) заключено между 0 и 1.6%. В итоге вероятность случайной концентрации звезд к этим полям (P) есть произведение малых вероятностей трех независимых событий: концентрации участков в площадке, концентрации площадок в участке и концентрации участков в поле

$$P = P(n \geqslant n_2) P(N_2 \geqslant N_2^*) P(\nu \geqslant \nu_3). \tag{3}$$

Подставляя вначения для распределений нормального и наблюдаемого (по

(2)), находим соответственно $P_k = 0.023 \cdot 0.16 \cdot 0.0014 = 5.1 \cdot 10^{-6}$ и $P_k = 0.059 \cdot 0.16 \cdot 0.016 = 1.5 \cdot 10^{-4}$

4. Связь концентрации с локальной структурой. Коль скоро обнаруженные концентрации относятся к ярким звездам, есть основание связать их с околосолнечной локальной структурой. Воспользуемся ее описанием. данным Долидзе [11,12].

Она считает, что здесь имеются две основные структуры: 1) Ответвление локальной спиральной ветви, наблюдаемое, главным образом, в направлениях $l = 180^{0} - 240^{0}$ и 2) Местная система (М.С.), представленная Поясом Гулда и вновь открытым Поясом Долидзе, а также связанными с ними другими деталями-облаками, кольцами и оболочками.

С таким описанием вполне согласуются данные табл. 2. Ответвлению спиральной ветви на $l(180^0-240^0)$ соответствует непь участков <2а, 16, 2в. 1г, 2д >. В участке (2в) $N-N_1*=-0.3$ звезды. Большой диапазон их широт не означает большие z- координаты, он связан с близостью к Солнцу. Главные пояса МС почти симметричны галактической плоскости и наклонены к ней примерно на 17^0 . Но наиболее близкие к нам детали втих поясов достигают в максимуме синусоиды больших широт (до $b \approx 50^0$). Пояс Долидзе в северном полушарии проходит по долготам $l \approx 30^0-210^0$, а Пояс Гулда в южном — на $l \approx 60^0-240^0$. Вдоль пояса Долидзе расположе ны следующие участки, отмеченные звездочками и близкие к ним по численности: ниже экватора — 1г, 2г, 4г, 6г, 7г, выше экватора — 8в, 9в. 10в, 116, 12в. Участок (5г) находится в ЭЮП и потому имеет неполную статистику. На $l(180^0-240^0)$ Пояс Долидзе пересекает в проекции указан ное выше спиральное ответвление.

Слабее выражена конџентраџия к Поясу Гулда. На него попадают: очень плотный участок (11г) с ассоџиаџией сорег, участок (6в) с ассоџиаџи ей Sco-Cen, а также (1г, 12в), находящиеся на пересечении поясов. и чекоторые другие.

Однако даже расширение зоны поясов до $|b| \lesssim 50^{\circ}$ вблизи максимумов синусоид не может охватить все участки, отмеченные звездочками. В рамках описанной Долидве структуры МС остается еще одна воэможность: соотнести концентрации звезд с концентрациями газа, обнаруженными по радио и рентгеновским наблюдениям. Такое право дает нам и установлен ная выше корреляция между распределениями A0-A2 звезд и интенсивности непрерывной радиоэмиссии. Известно, что на неоптических частотах ярко проявляются детали галактической структуры, названные шпурами или петлями. По оценкам Беркхьюзен [13], Петли I — IV находятся не дальше 400 пк, т.е. в пределах МС. Елва ли коэффициенты корреляции были бы столь большими, если бы значительные части совокупностей звезд

не повторяли узоров радиопетель. Об этом говорит и тот факт, что в областях неба, где находятся отдельные петли, коэффициент корреляции ближе к 1, чем найденный выше. Например, по данным Зениной [14], на $l(80^{\circ}-110^{\circ})$ и $b(0^{\circ}-40^{\circ})$, где проходит Петля III, $r=0.85\pm0.05$ (по звездам A0-A2 и частоте 820 МГ $\underline{\nu}$).

Таким обравом, возникло предположение о звездной составляющей радиопетель [15,16] — образований радиусом порядка 100 пк. На рис.3 схематично изображены четыре радиопетли (I-IV) по Ландекеру и Вилебинскому [17], полученные на частоте 150 МГц. Там же видны границы наших участков. Сопоставляя рис.3 с табл.2, видим, что левой части таблицы, пестрящей звездочками, соответствует область карты, где сближаются и даже пересекаются радиопетли. И во второй половине неба самый населенный участок (4г) тоже попадает на Петлю 1.

Прослеживаются и более детальные связи: вдоль каждой из четырех петель расположены цепи участков, густо населенных А-звездами, по крайней мере, с $N_k(l,b) \geqslant N_k(b)$. Перечислим их:

I. 4a, 36, 4в, 4г, 8в, 86, 7а.

II. 9в, 10в, 11г, 12д, 12е, 11е, 9е, 8д(или 9д), 8г(или 9г).

III. 10B, 106, 116, 12B, 11r, 10r.

IV. 46, 66.

Реальные радиопетли отличаются от схематичных на рис.3 переменностью толщины и интенсивности вдоль петли, рядом ответвлений. Судя по табл.2, это повторяется и по эвездам.

Как отмечает Долидзе [12], с каждым поясом связаны свои объекты, входящие в МС, в том числе и петли. Если плоскость, связанная с Поясом Гулда, проходит через центры Петель I и II, а Пояс Долидзе огибает их, то для Петли III наоборот: через центр проходит Пояс Долидзе, а Пояс Гулда огибает ее. Еще один интересный факт: наиболее плотные участки на каждой петле почти диаметрально противоположны. Таковы I(4r и 8в), III (12в и среднее из 9в+10в), IV (46 и 66). Сильная растянутость проекции на карте южного края Петли II мешает четко увидеть, что противостоит (IIг). Возможно, это среднее из (8е, 8д, 9е, 9д). Эти геометрические обстоятельства-своеобразные доводы в пользу как принадлежности петель к МС, так и связи между звездами и петлями. Петли определяют протяженность МС по z-координате. И не удивительно, что имеются участки, которые одновременно показывают концентрацию звезд и к поясам, и к петлям. Но свести все к двум поясам не удается.

5. Детализация связи. Вернемся от больших участков к исходным площадкам (3^0 , 3^0). На рис.3 нанесены те из них, в которых $n \ge n_1, n_2, n_3$. Неравномерность в распределении этих площадок видна и теперь, но нет

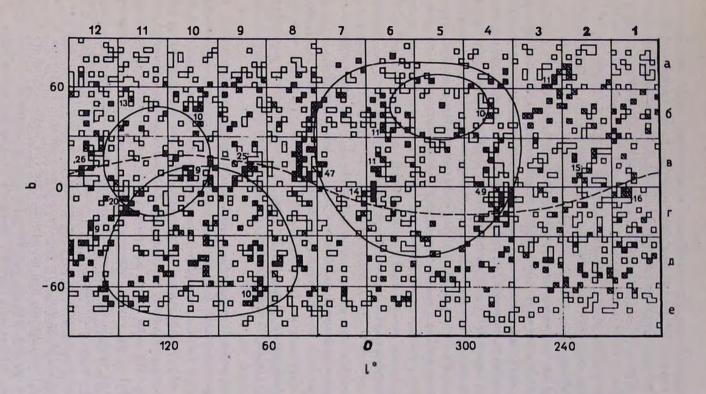


Рис.3. Расположение на небе полщадок, чесло ввезд A0 - A2 в которых превосходит средние $\bar{n}(l_{45},b_3)$ больше, чем на величину k-кратной средней квадратичной флуктуации $k\sqrt{\bar{n}}$ (k=1— \square , k=2— \square , k=3— \square). Малые круги — радиопетли I— IV на частоте 150Мгц. Пунктирная линия — Пояс Долидзе.

таких больших сплошных полей, как по участкам. Они распались на меньшие, хотя и достаточно крупные группы. В 17 группах $m \geqslant 9$, в 8 группах m>13. Среди них есть m=25,26,47 и 49. Распределение чисел площадок в группах (т) не удается представить ни одним случайным законом. Так, в модельном случайном разбросе 16% клеток на площади 120×60 , во всех просчитанных 11 вариантах найдены группы с m=13. В некоторых вариантах встречаются и большие т, в одном варианте $m_{max}=22$. Общее число групп с m>13 в каждом варианте от 0 до 3, а на рис. 3 их 8. Отклонение наблюдаемого распределения от модельного случайного, как и от гауссовского и пуассоновского, значимо по критерию χ^2 . Нетрудно установить конкретное соответствие между большими группами плотных площадок, поясами МС и связанными с ними четырьмя петлями. Все группы на $l \approx 200^{\circ} - 250^{\circ}$ можно связать с ответвлением спирального рукава, с его внутренней структурой, на которой мы здесь не останавливаемся. 8 групп с т=26,9,25,47,14,49,15,16 попадают на Пояс Долидзе. Одновременно большинство из них, как отроги Пояса, вытянуты в широтном направлении и повторяют очертания радиопетель. В частности, две самые большие группы (m=47 и 49) простираются по широте на 66° и 57° вдоль противоположных сторон Петли І. Первая совпадает с Северным полярным шпуром (СПШ). Между этими двумя отрогами выделяется еще один, представленный цепью групп с m=14, 11, 11 и ряда меньших, и. вероятно, расположенный на оболочке Петли I за ее центром.

Нам видится, что противостоящие друг другу группы с m=25 и 26 вместе с рядом других (m=20, 13, 10) составляют, по[18], внешнюю оболочку раздвоенной Петли III (на рис. 3 показана только внутренняя, по [17]). В Петле IV противостоят друг другу группы площадок (с $n \ge n_1$ или n_2) числом m=10 и 11.

Иллюстрацию совпадений можно продолжить практически на все группы, отмеченные на рис. 3. Правда, с одной стороны, это реальные распределения звезд, с другой — схематичные по радиоданным. Поэтому напомним, что установленная выше корреляция, как и найденные в [14] и [15], этим недостатком не страдают. Уязвимым местом можно считать конкретные очертания групп, выделение которых основывалось на принятии $n(l_{45},b_3)$ с их немонотонностью (рис.1 и 2). Однако проверка по средним п со смещенными интервалами координат показала, что влияние этого фактора не решающее, хотя и создает некоторые вариации [10]. Таким образом, практически все кластеры с $m \geqslant 9$ удается соотнести с локальными структурами, что вероятности по (3) надо домножить еще на один очень малый фактор случайности всех совпадений с локальными структурами. В реальных группах звезды, по-видимому, имеют общее про-

исхождение. Естественно каждую группу-считать кластером, коль скоро ей присущи общие характерные черты: спектр A0-A2, эвездная величина $V < 9^m$, контакт многих площадок с $n \ge n_1$, собственная структура, концентрация к известному элементу локальной структуры Галактики.

6. Области дефицита звезд. Противоположная крайность в распределении звезд-в площадках особо ниэкой плотности. Очевидно, что из-за усечения n=0 распределение по обе стороны от \bar{n} не симметрично. Известно, что в радиопетлях имеются целые области низкой интенсивности излучения, что нашло теоретическое обоснование (ссылки в [19]). Судя по достаточно высокой корреляции между радиоданными и распределением звезд, можно ожидать в тех же областях дефицита звезд. И это подтвердилось в тех областях Петель I и III, для которых проводилось детальное сопоставление [14,20]. Используя данные по всему небу, можно убедиться в общности и этих результатов. В трех больших петлях можно выделить обширные поля или полости, состоящие из контактирующих между собой площадок с $0 \leqslant n < n - \sqrt{n}$. На рис. 3 они приходятся на белые пятна, где $n < n_1$, хотя и меньше их. В петлях I и II каждое поле объединяет более 50 площадок, в Петле III — 38 площадок. Малая Петля IV оставлена без внимания.

Области особо низкой плотности внутри петель обычно примыкают к наиболее компактным группам в оболочках. Это видно даже по парам участков в табл.2: (7в, 8в) и (4г, 5г). Контраст плотности в них не меньше $n_{ob}/n_{non} \ge (n+\sqrt{n})/(n-\sqrt{n}) = (\sqrt{n}+1)/(\sqrt{n}-1)$, что близко к 4 для n между 2,5 и 4. Число 4 приводится и для отношения интенсивностей 21-см излучения в СПШ, и в соседней полости Петли 1 (Хейлес и Дженкинс [21]).

В трактовке дефицита звезд обычно привлекается поглощение света. Известно, что внутри Петли I имеется большой комплекс темных облаков Oph. Однако специальное рассмотрение Анисимовой [16] показало, что он не может объяснить весь дефицит звезд, например, в полосе $l=10^0-20^0$ и b>0, где пространство очень прозрачно, по крайней мере до 200 пк. По обе стороны от полосы, т. е., в ядре Петли ($l\approx-45^0,+10^0$) и на оболочке СПШ ($b\approx20^0-40^0$) поглощение $A_o=3E_{B-V}$ в несколько раз выше: $0^m.2-0^m.4$. Между тем, в этих участках наблюдаются большие избытки плотности звезд. Стало быть, поглощение света может лишь немного занизить эти избытки, а не увеличить контраст. Аналогичное заключение получено Зениной [14] по Петле III. Так проявляется пылевая составляющая петель. Таким образом показана еще одна сторона сходства распределений звезд (и пыли) с радиопетлями: реальность полостей.

7. Заключение . Анализ распределений A0-A2 звезд с $V \leqslant 9^m$ по небу подтвердил известные концентрации к плоскости Галактики, к локальному спиральному рукаву и к его ответвлению, а также обнаружил локальные концентрации к деталям Местной Системы. Заметим, что они подтвержде ны и для более ярких А-звезд ($V \leqslant 8^m.5$ и $V \leqslant 7^m.5$). Однако найденные корреляции пока основываются на проекциях на небесную сферу. Проверка аналогичных корреляций по лучу зрения встречается с трудностями. С одной стороны, это остающаяся неопределенность в расстояниях деталей МС. Так, согласно [13], расстояния и размеры петель имеют ошибки в пределах ± (40÷135) пк. С другой стороны-отсутствие определений клас сов светимостей большинства северных А-звезд и неоднозначность сущест вующих калибровок (S,, M,), в которых различия подчас близки к 1^m, что соответствует $\Delta r = \pm 0.58r$. В рамках таких больших неопределенностей имеются варианты совпадения расстояний звездных кластеров и радноволокон, то есть совпадения и третьей координаты. Например, припишем СПШ и звездному кластеру с т=47 хорошо определенное расстояние ассоциации $S_{co}-C_{en}(r=170$ пк или $V-A_{n}-M_{n}=6^{m}.2)$, поскольку эта ассоциация яв ляется ядром Петли I, [22].

С абсолютными величинами M_v из калибровки [23] при поглощении $A_v = 0^m.4$ звезды кластера всевозможных классов светимости должны иметь: V между $6^m.7$ и $8^m.2$. Интервал V можно расширить до предельного в работе $V = 9^m$ за счет протяженности кластера по лучу зрения, а также за счет неопределенности калибровки и ошибок в V.

Снижение ошибок в r, конечно, желательно, но едва ли это изменит вывод о неслучайности концентраций звезд к деталям МС, имеющий по рассмотренным в статье фактором очень большую вероятность. Во всяком случае, неизвестны альтернативные детали локальной структуры, с которыми можно связать все аспекты распределения А-звезд так же хорошо, как с поясами и петлями.

Звездная форма материи превалирует как в Галактике в џелом, так и в ее части — МС. Повтому допущение о звездной составляющей таких крупных деталей, как петли, не должно казаться удивительным, если их возраст не сильно отличается от возраста МС. Уивер [22] полагает, что Петля I имеет возраст породившей ее ассоџиаџии $Sco-Cen(1\div 3\cdot 10^7 \text{лет})$. А если звездная составляющая Петли I порождена не втой ассоџиаџией, а какой-то из ее предшественниџ, возникших рядом, в том же гигантском молекулярном облаке (ГМО), то ее возраст еще больше ($\geqslant 10^8 \text{лет}$). Пусть наблюдаемое внутри Петли I ГМО имеет массу, близкую к средней для облаков втого класса ($10^6-10^7 M_{\odot}$), тогда приливной радиус системы, контролируемой им, не меньше наблюдаемого радиуса петли ($R \approx 115 \text{пк}[13]$). В таком случае ГМО обеспечит динамическую замкну-

тость системы Петли I, противостоящую ее разрушению [10]. Сходная ситуация (по Уиверу) [22] имеется в системе ассопиации α Рег и Петель II и III.

Исследования динамики и кинематики этих систем помогут понять взаимосвязи между ГМО, ассопиациями, петлями и МС и создать непроти воречивую картину локальной структуры.

Ростовский педагогический институт

THE ANALYSIS OF THE A0-A2 STELLAR COUNTS FROM THE SAO CATALOGUE

R.B.SHATSOVA, G.B.ANISIMOVA, I.A.ZENINA

The overall distribution of A0-A2 stars brighter than $V=9^m$ taken from the SAO catalogue confirms the known concentrations to the Galactic plane, the local spiral arm and its branch. A closer treatment of that background reveals a microstructure connected with such details of the local system as the Dolidze and Gould belts and the loops known from radio observations.

ЛИТЕРАТУРА

- 1. Г.Б.Анисимова, в Деп. ВИНИТИ, № 3058-83, 112стр., 1983.
- 2. Smithsonian Astrophysical Observatory Catalogue of 258997 stars with astrophysical data, Washington, 1980. (магнитная лента ЦАД Астросовета АН СССР).
- 3. F.Ochsenbein, Bull. Inform. CDS, 19, 74, 1980.
- 4. П.Г.Куликовский, Звездная астрономия, Наука. М., 1985.
- 5. T.N.G. Westin, Astron. and Astrophys. Suppl. Ser., 60, 99, 1985.
- 6. E.M.Berkhuijsen, Astron. and Astrophys. Suppl. Ser., 5, 263, 1972.
- 7. Н.А.Плохинский, Биометрия, изд. МГУ, М., 1970.
- 8. Г.Б.Анисимова, Деп. в ВИНИТИ, № 3059-83, 112стр., 1983.
- 9. Я.Янко, Математико-статистические таблицы, Госстатиздат, М., 1961.
- Р.Б.Шауова, Г.Б.Анисимова, Сб. Астрон-Геод. исслед. Статистические методы, УрГУ, Свердловск, 1987, стр.37.
- 11. М.В. Долидзе, Письма в Астрон.ж., 6, 92, 1980.
- 12. М.В. Долидзе. Письма в Астрон.ж., 6, 745, 1980.
- 13. E.M.Berkhuijsen, Astron. and Astrophys., 24, 143, 1973.
- 14. И.А.Зенина, Деп. в ВИНИТИ № 952-84, 37стр., 1984.
- 15. Г.Б.Анисимова, Астрон.ж., 61, 1226, 1984.
- 16. Г.Б.Аниеимова, Сб. Вопр. астрофиз., Саранск, 1984, стр. 25.
- 17. T.L.Landecker, R.Wielebinski, Austr.J.Phys., Suppl. Ser., 16, 1, 1970.
- 18. E.M.Berkhuijsen, Astron. and Astrophys., 14, 359, 1971.
- Т.А. Лозинская, Сверхновые звезды и звездный ветер. Взаимодействие с газом Галактики. Наука, М., 1986.

- 20. Р.Б.Шанова, Г.Б.Анисимова, Сб.Звевдн. скопления, УрГУ, Свердловск, 1987, стр. 207.
- 21. C.Heiles, E.B.Jenkins, Astron. and Astrophys., 46, 333, 1976.
- 22. H. Weaver, The Large-Scale characteristics of the Galaxy, E.A. Dordrecht, IAU 1979, 295.
- 23. W.A.Deutschman, R.J.Davis, R.E.Schild, Astrophys. J. Suppl. Ser., 30, 91, 1976.