АСТРОФИЗИКА

TOM 30

АПРЕЛЬ, 1989

ВЫПУСК 2

УДК: 524.8

ДИФФУЗИЯ РЕЗОНАНСНОГО ИЗЛУЧЕНИЯ В БЕСКОНЕЧНОЙ ОДНОРОДНО РАСШИРЯЮЩЕЙСЯ СРЕДЕ

С. И. ГРАЧЕВ

Поступила 15 февраля 1988 Принята к печати 25 марта 1988

Получено аналитическое решение задачи о переносе резонансного излучения в однородной изотропно расширяющейся среде с использованием диффузионного приближения в пространстве частот при соответствующем учете частичного перераспределения по частоте и отдачи. Первичные источники считаются распределенными равномерно по пространству и пропорционально коэффициенту поглощения — по частоте. Найдены профили спектральной линия, а также такие интегральные величины, как среднее число рассеяний фотона N и относительное число несбалансированных переходов из верхнего состояния атома в инжнее β_{12} . Выражение для последней величины, имеющей также смысл вероятности выхода фотона, отличается от получаемого в теории двяжущихся оболочек Соболева множителем, который обращается в 1, когда отдача становится пренебрежимой.

1. Введение. При решении многих астрофизических задач возникает проблема переноса резонансного излучения в расширяющихся средах. При этом в ряде случаев (оболочки сверхновых, расширяющаяся Вселенная) расширение можно считать однородным и изотропным (хаббловская кинематика), а среду — бесконечной. Однако в указанных случаях (см. [1]) уже нельзя принимать приближение полного перераспределения по частоте при рассеянии в сопутствующей системе координат, и при описании рассеяния следует использовать функции частичното перераспределения по частоте. В диффузионном приближении, соответствующем функции перераспределения $R_{I!}(x, x')$ в обозначениях Д. Хаммера [2], задача о переносе в бесконечной однородно расширяющейся среде была решена в [1, 3]. В настоящей работе мы обобщим результаты, полученные в [1] и [3], на случай неконсервативной среды с учетом отдачи при рассеяния. При втом будет использовано более реалистичное, чем в [1, 3], представление коэффициента поглощения.

2. Основные уравнения и соотношения. Для интенсивности излучения I(x) в изолированной спектральной линии, возникающей в бесконечной однородной изотропно расширяющейся среде с равномерно распределен-

С. И. ГРАЧЕВ

ными по пространству источниками мощностью $\sim S_0(x)$, основное уравнение имеет вид

$$-\gamma \frac{dI(x)}{dx} = -\alpha(x)I(x) + \lambda \int_{-\infty}^{+\infty} R(x, x')I(x') dx' + S_0(x) \qquad (1)$$

с граничным условием $l(+\infty) = 0$. Здесь $x = (v - v_0)/\Delta v_D$ — безразмерная частота, отсчитываемая от центра линии $(v = v_0)$ в доплеровских полуширинах $\Delta v_D = v_0 v_{th}/c$ $(v_{th} - средняя скорость теплового дви$ $жения атомов), <math>\alpha(x) = k_{12}(v)/k_{12}(v_0)$ — профиль коэффициента поглощения $k_{12}(v)$, λ — альбедо однократного рассеяния, R(x, x') — функция перераспределения по частоте при рассеянии в сопутствующей системе координат, причем

$$\int_{-\infty}^{+\infty} R(x, x') \, dx = \alpha(x'), \tag{2}$$

где x' и x — частоты потлощенного и излученного фотонов соответственно. Безразмерный градиент скорости у в (1) есть

$$\gamma = \frac{1}{n_1 k_{12}(v_0) v_{th}} \frac{dv_s}{ds} = \frac{8\pi v_0^3}{Ac^3} \frac{g_1}{g_2} \frac{1}{A_{21}} \frac{H}{n_1},$$
 (3)

где $dv_s/ds = H$ — градиент скорости, не зависящий ни от координат, ни от направления, A_{21} — өйнштейновский коэффициент вероятности спонтанных переходов, g_1 и g_2 — статистические веса верхнего и нижнего уровней перехода, n_1 — концентрация атомов на нижнем уровне. В (3) входит также нормировочная постоянная профиля коэффициента поглощения $A = +\infty$

$$=1/\int_{-\infty}^{\infty}\alpha(x)\,dx.$$

Важными характеристиками среды являются степень возбуждения атомов n₂/n₁, вместо которой мы вводим величину

$$S = \frac{2hr_0^3}{Ac^2} \frac{g_1}{g_2} \frac{n_2}{n_1}, \qquad (4)$$

а также число нескомпенсированных переходов из верхнего состояния в нижнее

$$R = n_2 A_{21} - n_1 J_{12} B_{12} \equiv \beta_{12} n_2 A_{21}.$$
 (5)

Здесь B₁₂ — әйнштейновский коэффициент вероятности перехода при поглощении фотона в линии. J₁₂ — средняя (по профилю коэффициента поглощения) интенсивность излучения в рассматриваемой линии. Вторым равенством в (5) вводится фактор β12, представляющий собой вероятность выхода фотона.

Величины S, R и β_{12} можно выразить через значение интенсивности $I(-\infty)$. По своему физическому смыслу S пропорциональна интегралу по всему интервалу частот от суммы двух последних слагаемых в правой части (1). Интегрирование обенх частей (1) по х от $-\infty$ до $+\infty$ дает с учетом граничного условия $I(+\infty) = 0$ и нормировки (2)

где

$$\gamma I(-\infty) = S_* - (1-\lambda) S, \qquad (6)$$

$$\tilde{S} = \int_{-\infty}^{+\infty} a(x) I(x) dx, \quad S_* = \int_{-\infty}^{+\infty} S_0(x) dx, \quad (7)$$

причем $S = \lambda S + S_*$. Исключая отсюда S при помощи (6), для величины $N = S/S_*$, имеющей смысл среднего числа рассеяний фотона, получаем

$$N = [1 - \lambda_{1}/(-\infty)/S_{*}]/(1 - \lambda).$$
(8)

Что же касается величины R, то она пропорциональна интетралу от правой части (1) по всем частотам. В итоге из (6) с учетом выражений (3) и (4) имеем

$$R = 4\pi H I(-\infty)/hc, \qquad (9)$$

а для вероятности выхода β_{12} , которая, как легко убедиться, равна $\beta_{12} = \gamma I(-\infty)/S$, лолучаем при помощи (8)

$$\beta_{12} = (1-\lambda)\gamma I(-\infty)/[S_* - \lambda\gamma I(-\infty)]. \tag{10}$$

Чтобы перейти к решению уравнения (1), нужно конкретизировать вид функции перераспределения R(x, x'). Будем считать, что рассеяние в системе покоя атома происходит без изменения частоты и профиль коэффициента потлощения в этой системе — лоренцевский, причем будем учитывать отдачу при рассеянии. Выражение для R(x, x') при этих условиях было получено в [4]. Там же было найдено в диффузионном приближении выражение для интеграла в правой части (1), описывающего рассеяние. Используя это выражение, получаем из (1) следующее диффузионное по частоте уравнение:

$$-\gamma \frac{dI(x)}{dx} = -(1-\lambda)\alpha(x)I(x) + \frac{\lambda a}{2\sqrt{\pi}} \frac{d}{dx} \left[\frac{1}{x^2} \frac{dI(x)}{dx} + 2\delta \frac{I(x)}{x^2} \right] + S_0(x), \quad (11)$$

где $a - \phi o$ йгтовский параметр, $\delta = h v_0 / m v_{,k} c$ – параметр, описываюций отдачу (m – масса атома). При $\lambda = 1$, $\delta = 0$ и $S_0(x) = \delta(x)$ (дельта-функция) это уравнение решено в [1], а в [3] найдено численное решение при $\lambda \neq 1$, $\delta = 0$, $S_0(x) = A \alpha(x) = \delta(x)$ с учетом поглощения в континууме.

Профиль козффициента поглощения $\alpha(x)$ в (11) — фойгтовский. В [1, 3] для него приближенно принималось $A\alpha(x) = \delta(x)$, что оправдано для не слишком далеких крыльев линии. В [5] предложено использовать представление

$$Aa(x) = o(x) + a/\pi x^2,$$
 (12)

которое правильно описывает поведение профиля в далеком крыле. Кажется, что (12) нарушает нормировку профиля. Однако можно заметить, что первообразная правой части (12) есть $F(x) = \vartheta(x) - a/\pi x$, где $\upsilon(x) - - \phi$ ункция единичного скачка. Поэтому интеграл по x от $-\infty$ до $+\infty$ можно понимать как разность $F(+\infty) - F(-\infty) = 1$, что дает точную нормировку профиля. В соответствии с таким пониманием интеграла от правой части (12) устранялась (аналитически) и расходимость части решения уравнения (11), соответствующей слагаемому $a/\pi x^2$ в (12) (см. ниже формулы (54) — (56)). В дальнейшем мы считаем параметр а малым, так что $A \sim 1/\sqrt{\pi}$. Кроме того, далее рассматривается наиболее интересный для приложений случай $S_0(x) = S_0 a(x)$. С учетом (12) уравнение (11) принимает следующий вид:

$$-\gamma \frac{dI(x)}{dx} = -(1-\lambda) \frac{a}{\sqrt{\pi} x^2} I(x) + \frac{\lambda a}{2\sqrt{\pi}} \frac{d}{dx} \left[\frac{1}{x^2} \frac{dI(x)}{dx} + 2\delta \frac{I(x)}{x^2} \right] +$$

$$+ \sqrt{\pi \delta} (x) [S_0 - (1 - \lambda) I(0)] + a S_0 / \sqrt{\pi} x^2.$$
 (13)

Введем характерные частоты

$$x_{\gamma} = (3a^{\lambda}/2\sqrt{\pi}\gamma)^{1/3}, \quad x_{\delta} = 1/2\delta, \quad x_{\lambda} = \sqrt{\lambda/2(1-\lambda)}, \quad (14)$$

смысл которых состоит в том, что когда решение определяется лишь каким-либо одним из параметров γ , δ или λ , то оне зависит от соответствующей масштабированной переменной x/x_c , где $c = \gamma$, δ или λ . Примем в качестве масштаба частоту x_{τ} , введя

$$z = x/x_{\gamma}, \quad \sigma = x_{\gamma}/x_{\lambda}, \quad \rho = x_{\gamma}/x_{\delta}. \tag{15}$$

Частоту x_{τ} естественно выбирать в качестве масштаба, если она наименьшая. Тогда параметры σ и ρ по величине меньше 1. Частота x_{τ} была введена Н. Н. Чугаем [1, 3]. 3. Решения уравнения диффузии. Решение уравнения (13), удовлетворяющее граничным условиям

$$I(+\infty) = 0, \quad I(-\infty) < +\infty, \tag{16}$$

легко представить в виде

$$I(x) = \frac{\sqrt{\pi}S_0[1 - \sigma^2 i_a(0)]}{\gamma + \sqrt{\pi}(1 - \lambda)i_b(0)} \cdot i_b(z) + \frac{S_0}{1 - \lambda}\sigma^2 i_a(z), \quad (17)$$

где функции $i_i(z)$ и $i_a(z)$ являются решениями уравнения

$$y''(z) + \left(\rho - \frac{2}{z} + 3z^{2}\right)y'(z) - \left(\frac{2\rho}{z} + \sigma^{2}\right)y(z) = \\ = \begin{cases} -3z^{2}\delta(z), \ y(z) = i_{\delta}(z) \\ -1, \ y(z) = i_{\alpha}(z), \end{cases}$$
(18)

с граничными условиями $y(+\infty) = 0$, $y(-\infty) < +\infty$. Эти функции зависят от двух параметров — ρ и σ , так что $i_{\delta}(z) = i_{\delta}(z, \rho, \sigma)$, $i_{\alpha}(z) = = i_{\alpha}(z, \rho, \sigma)$.

При $\sigma = 0$ уравнения (18) легко решаются (это видно непосредственно из (13), поскольку $\sigma = 0$ соответствует $\lambda = 1$). В итоге

$$i_{\delta}(z, \rho, 0) = 3e^{-\rho z - z^{3}} \int_{-\infty}^{\infty} e^{\rho y + y^{3}} y^{2} \vartheta(-y) dy,$$
 (19)

$$i_a(z, \rho, 0) = e^{-\rho z - z^3} \int_{-\infty}^{z} e^{\rho y + y^3} y dy,$$
 (20)

тде $\vartheta(y) = 1$ при y > 0 и $\vartheta(y) = 0$ при y < 0, и согласно (17)

$$I(x, \lambda = 1, \gamma, \delta) = (3) \sqrt{\pi} S_0/\gamma e^{-pz-z^2} \int_{-\infty}^{\infty} e^{py+y^2} y [y \vartheta(-y) + a/\pi x_{\gamma}] dy.$$
(21)

Заметим, что второе слагаемое в квадратных скобках под знаком интеграла обычно мало.

Построим теперь решения уравнения (18) в общем случае ($\sigma \neq 0$, $\rho \neq 0$). Для этого найдем сначала фундаментальную систему решений $\varphi_1(z), \varphi_2(z)$ соответствующего однородного уравнения, такую, что $\varphi_1(+\infty) = 0, \varphi_2(-\infty) < +\infty$ и $\varphi_1(0) \neq 0, \varphi_2(0) \neq 0$. Предварительно введем две пары линейно независимых функций $\upsilon_i(z)$ и $u_i(z)$ (i = 1 и .2), являющихся решениями уравнений, связанных с (18):

$$v'_{i}(z) + (\rho + 3z^{2} - 2/z) v'_{i}(z) - (2\rho\delta_{i1}/z + \sigma^{2}) v_{i}(z) = 0,$$
 (22)

С. И .ГРАЧЕВ

$$u_{i}^{*}(z) - (\rho + 3z^{2} + 2/z) u_{i}^{*}(z) - (\sigma^{2} - 2\rho\delta_{i2}/z) u_{i}(z) = 0; \qquad (23)^{2}$$

причем

$$v_i(z) = u_i(z) \exp(-\rho z - z^3).$$
 (24)

Здесь i = 1 и 2, δ_{ik} — символ Кронекера. Функции $v_i(z)$ мы выбираем. ограниченными на $+\infty$, а функции $u_i(z)$ — монотонно растущими при $z \to +\infty$, причем полагаем $v_i(0) = u_i(0) = 0$. Искомые решения уравнений (22) и (23) можно получить в виде сумм рядов

$$u_{i}(z) = z^{3} \sum_{n=0}^{\infty} a_{n}^{(i)} z^{n}, \quad v_{i}(z) = z^{3} \sum_{n=0}^{\infty} (-1)^{n} a_{n}^{(3-i)} z^{n}, \quad (25)$$

где ковффициенты а(1) удовлетворяют рекурревтному соотношению

$$a_n^{(l)} = p \frac{n+2\delta_{ll}}{n(n+3)} a_{n-1}^{(l)} + \frac{\sigma^2}{n(n+3)} a_{n-2}^{(l)} + \frac{3}{n+3} a_{n-3}^{(l)}, \quad a_0^{(l)} = 1.$$
 (26)

Сотласно (25)

$$v_1(z) = -u_2(-z), \quad v_2(z) = -u_1(-z).$$
 (27)

При $\rho = 0$, очевидно, $\upsilon_1(z) = \upsilon_2(z) \equiv \upsilon(z)$, $u_1(z) = u_2(z) \equiv u(z)$. Для функций $\upsilon_1(z)$ можно найти из (22) также и асимптотические разложения. С учетом (27) они имеют следующий вид:

$$v_1(z) = v_1(\infty) s_1(z) - e^{-\rho z - z^2} v_2(\infty) s_2(-z), \qquad (28)^2$$

$$v_2(z) = v_2(\infty) s_2(z) - e^{-\rho z - z^2} v_1(\infty) s_1(-z), \qquad (29)$$

где

$$s_i(z) \sim \sum_{n=0}^{\infty} b_n^{(i)} z^{-n}, \quad i = 1, 2,$$
 (30)

а коэффициенты $b_{a}^{(l)}$ определяются из рекуррентного соотношения

$$b_{n}^{(i)} = -\frac{\sigma^{2}}{3n} b_{n-1}^{(i)} - \frac{n-2\delta_{i2}}{3n} \rho b_{n-2}^{(i)} + \frac{n-3}{3} b_{n-3}^{(i)}, \ b_{0}^{(i)} = 1.$$
(31)

Эначения U₁ (∞), входящие в (28) и (29), вычислялись как пределы

$$v_i(\infty) = \lim_{z \to \infty} [e^{-pz - z^*} u_i(z) / s_i(z)],$$
(32)

причем $u_i(z)$ и $s_i(z)$ вычислялись по разложениям (25) и (30) соответственно. Заметим, что ряд для $u_i(z)$ является знакопостоянным, что исключает потери точности при больших z. В табл. 1 приведены значения $v_i(\infty)$ (верхнее — $v_1(\infty)$, нижнее — $v_2(\infty)$) при разных значениях. р и d.

диффузия резонансного излучения

	1. 1			
~	0	0.2	0.4	
0	1	1	1	
	1	0.83820 - 00	0.70551+00	
0.5	0.11189+01	0.11163+01	0.11138+01	
		0.93727+-00	0.78838+00	
1	0.15587+01	0.15448+01	0.15318+01	
		0.13033+01	0.10942+01	
2	0.54807+01	0.53188-+01	0.51683+01	
		0.45540+01	0.37984+01	
3	0.37482+02	0.35502+02	0.33690+02	
		0.30890+02	0.25546÷02	
4	0.43849+03	0.40579+03	0.37634+03	
	1.3.	0.35812+03	0.29344+03	
5	0.80284+04	0.72744+04	0.66060+04	
		0.64965+04	0.52727+04	
6	0.21660+06	0.19255+06	0.17156+06	
		0.17365+06	0.13961+06	

ЗНАЧЕНИЯ №,(∞)

Видно, что $v_i(\infty)$ быстро растет с ростом σ . Расчеты показывают, что при $\sigma \ge 6$ приближенная формула

$$v(\infty) \approx \sigma^{-3/2} \exp(\sigma^{3/2} + \sigma/8 - \sqrt{\sigma}/2 + 3/4)$$
 (33)

дает $v(\infty)$ с ошибкой менее $6^0/_0$.

Зная функции $v_i(z)$, можно теперь построить искомую фундаментальную систему решений $\phi_i(z)$ однородного уравнения (18):

$$\varphi_{l}(z) = 3e^{(\rho z + z^{2})\delta_{l^{2}}} \upsilon_{l}(z) \int_{z} [t/\upsilon_{l}(t)]^{2} e^{-\rho t - t^{2}} dt, \quad z \ge 0.$$
(34)

Отсюда следует, что при $z \rightarrow \infty$

$$\psi_1(z) \sim e^{-\rho z - z^2} / v_1(\infty), \quad \psi_2(\infty) = 1 / v_2(\infty)$$
 (35)

и $\varphi_1(0) = \varphi_2(0) = 1$. Выражением (34) можно пользоваться, очевидно, лишь при $z \ge 0$. Однако интегрированием по частям можно привести интеграл в (34) к виду, допускающему аналитическое продолжение на всю комплексную плоскость. В результате получаем для главных значений

$$\varphi_2(-z) = \varphi_1(z) + \frac{\Lambda}{3} v_1(z),$$
 (36)

Таблица 1

С. И. ГРАЧЕВ

$$\phi_1(-z) = \phi_2(z) + \frac{\Lambda}{3} u_2(z),$$
 (37)

FAR $\Lambda = \Lambda_+ + \Lambda_-$,

$$\frac{1}{3}\Lambda_{\pm} = \frac{\delta_{\pm}}{\upsilon_2(\infty)} - \int_0^{\infty} \left[G(\mp t) + \frac{1}{2} \frac{\sigma^2}{t^2} \mp \rho \sigma^2 \frac{\vartheta(1-t)}{t} \right] dt, \quad (38)$$

причем в выражении для Λ_{\pm} берутся либо все верхние, либо все нижние знаки, а δ_{+} =0, δ_{-} =1. Под знаком интеграла в (38) содержится функция

$$G(t) = [3t^2 e^{-pt-t^3} - v_2(t)]/v_2^2(t), \qquad (39)$$

которую можно также представить в виде

$$G(t) = -\sigma^{2} [t^{2} / v_{2}(t)]^{2} e^{-\rho t - t^{2}} g_{2}(t) = -\sigma^{2} Q(t), \qquad (40)$$

где

$$g_2(z) = \sum_{n=0}^{\infty} \frac{a^{(2)}}{n+2} z^n = z^{-2} \int_0^{\infty} u_2(t) t^{-2} dt.$$
 (41)

Значения $\Lambda_{\pm}/3$ при разных р и \circ приведены в табл. 2 (верхнее — $\Lambda_{+}/3$, нижнее — $\Lambda_{-}/3$).

Таблица 2

эпачения <u>л±/</u> э					
o e	0	0.2	0.4		
0	0	0 .	0		
	1	1.1930	1.4174		
0.5	-0.11863	-0.12104	-0.12083		
		1.0721	1.2952		
	0.54034	-0.54362	0.53730 [.]		
1		0.63936	0.85466		
1.000	-3.0533	-2.9918	-2.9008		
2		-1.9645	-1.8288		
	-9.4557	-9.1461			
3	100111-16	-8.6278			
1 2 1	-21.813	-21.003	-20.122		
4		-21.487			
0.7	-42.156	-40.551			
5		-42.619	43.984		
	-72.494	-69.769			
6	In a carro	-74.065	-76.521		

SHAUEHUS AL

При с = 0 из (38) и (40) имеем

$$\Lambda_{+}=0, \quad \Lambda_{-}=3/v_{2}(\infty), \quad (42)$$

а в другом предельном случае (5>>1)

$$\Lambda_{\perp} \sim \Lambda_{\perp} \sim -\sigma^{3}, \quad \rho = \text{const}, \quad (43)$$

$$\Lambda \sim -\sigma^{3} \frac{\cos(k\pi)}{4} \Gamma(2+k) \Gamma(2-k) (\zeta/k)^{3}, \quad \rho/\sigma = \zeta = \text{const}, \quad (44)$$

где $k = \zeta/\sqrt{\zeta^2 + 4}$. Асимптотика (44) получается из сравнения с аналитическими результатами при $\gamma = 0$. В этом случае решения выражаются через изнестные специальные (вырожденные гипергеометрические) функции. Заметим еще, что $\Lambda_{-} = 3 \div A_{+}$ при $\rho = 0$.

При помощи (36) легко найти вронскиан уравнения (18) для системы фундаментальных решений $\varphi_1(z)$ и $\varphi_2(-z)$:

$$W = -\Lambda z^{2} \exp\left(-\rho z - z^{3}\right). \tag{45}$$

Итак, мы можем вычислять фундаментальные решения $\varphi_i(z)$ поформулам (34), (36) и (37). Однако для них можно получить и разложения в степенные ряды. При этом вместо $\varphi_1(z)$ удобнее иметь дело с $\psi_+(z)$:

$$\varphi_{1,2}(z) = e^{\mp (\rho z + z^{0})} \psi_{\pm}(z), \qquad (46)$$

так как $\psi_+(z)$ гораздо медленнее убывает при $z \to \infty$, чем $\varphi_1(z)$. Функция $\psi_+(z)$ удовлетворяет тому же уравнению, что и $u_1(z)$, а $\varphi_2(z)$ — что и $u_2(z)$. При поиске решений этих уравнений (для $\psi_+(z)$ и $\varphi_2(z)$) в виде степенных рядов коэффициенты при z^3 оказываются неопределенными. Поэтому их нужно найти предварительно из (34). В результате получаем, что

$$\psi_{+}(z) = 1 - \frac{1}{2}\sigma^{2}z^{2} + z^{3}\sum_{n=0}^{\infty}\alpha_{n}^{(1)}z^{n} - \frac{1}{3}\rho\sigma^{2}u_{1}(z)\ln z, \qquad (47)^{2}$$

$$\varphi_{2}(z) = 1 + \rho z + \frac{1}{2} \left(\rho^{2} - \sigma^{2}\right) z^{2} + z^{3} \sum_{n=0}^{n} \alpha_{n}^{(2)} z^{n} + \frac{1}{3} \rho \sigma^{2} u_{2}(z) \ln z, \quad (48)$$

где коэффициенты a⁽ⁱ⁾ определяются из рекуррентного соотношения

$$a_{n}^{(l)} = \rho \frac{n+2\delta_{l1}}{n(n+3)} a_{n-1}^{(l)} + \frac{\sigma^{2}}{n(n+3)} a_{n-2}^{(l)} + \frac{3}{n+3} a_{n-3}^{(l)} - (-1)^{l} \frac{1}{3n(n+3)} \rho \sigma^{2} \times [(2n+3) a_{n}^{(l)} - \rho a_{n-1}^{(l)} - 3a_{n-3}^{(l)}], \qquad (49)$$

причем $a_n^{(\prime)}$ находятся из (26), а начальные значения

$$\alpha_{0}^{(1)} = -\frac{3}{8}\rho\sigma^{2} - \frac{1}{3}\Lambda_{+}, \ \alpha_{-1}^{(1)} = -\frac{1}{2}\sigma^{2}, \ \alpha_{-2}^{(1)} = 0, \ \alpha_{-3}^{(1)} = 1,$$
 (50)

$$\alpha_{0}^{(2)} = 1 + \frac{1}{6}\rho^{3} - \frac{1}{8}\rho\sigma^{2} - \frac{1}{3}\Lambda_{-}, \ \alpha_{-1}^{(2)} = \frac{1}{2}(\rho^{2} - \sigma^{2}), \ \alpha_{-2}^{(2)} = \rho, \ \alpha_{-3}^{(2)} = 1.$$
(51)

Что касается асимптотических разложений, то легко найти, что при $z \gg 1$

$$\psi_{+}(z) \sim s_{2}(-z)/v_{1}(\infty), \quad \varphi_{2}(z) \sim s_{1}(-z)/v_{2}(\infty).$$
 (52)

Итак, мы построили фундаментальную систему решений $\varphi_1(z)$ и $\varphi_2(-z)$ уравнения вида (18) и можем теперь получить обычным образом решения неоднородного уравнения для $i_8(z)$ и $i_a(z)$:

$$i_{b}(z) = \frac{3}{\Lambda} \cdot \begin{cases} \varphi_{1}(z), \ z > 0, \\ \varphi_{2}(-z), \ z < 0, \end{cases}$$
(53)

$$i_{a}(z) = \varphi_{1}(z) \left[i_{a}(0) + \frac{1}{3} \int_{0}^{z} u_{1}(t) \frac{dt}{t^{2}} \right] + \frac{1}{3} v_{1}(z) \int_{0}^{z} \psi_{+}(t) \frac{dt}{t^{2}}, \quad (54)$$

$$i_{a}(-z) = \varphi_{2}(z) \left[i_{a}(0) + \frac{1}{3} \int_{0}^{z} v_{2}(t) \frac{dt}{t^{2}} \right] + \frac{1}{3} u_{2}(z) \int_{z}^{z} \psi_{-}(t) \frac{dt}{t^{2}}, z > 0, (55)$$

где

$$i_{a}(0) = \frac{1}{\Lambda} \int_{0}^{\infty} [\psi_{-}(t) + \psi_{+}(t) - 2] \frac{dt}{t^{2}}.$$
 (56)

Подстановка формул (53)—(55) в (17) дает

$$I(\mathbf{x}) = \frac{S_0}{1 - \lambda + \Lambda \gamma / 3 \sqrt{\pi}} \left[i(\mathbf{z}) + \frac{a\Lambda}{\pi x_{\gamma}} \quad i_a(\mathbf{z}) \right]$$
 (57)

тде

$$i(z) = \varphi_1(z) \left[1 + \frac{\sigma^2}{3} \int_0^z u_1(t) \frac{dt}{t^2} \right] + \frac{\sigma^2}{3} v_1(z) \int_z^z \psi_+(t) \frac{dt}{t^2},$$

$$i(-z) = \varphi_2(z) \left[1 + \frac{\sigma^2}{3} \int_0^z v_2(t) \frac{dt}{t^2} \right] + \frac{\sigma^2}{3} v_2(z) \int_z^\infty \psi_-(t) \frac{dt}{t^2}.$$
 (58)

ДИФФУЗИЯ РЕЗОНАНСНОГО ИЗЛУЧЕНИЯ

Для функции i (±2) можно получить и другое представление:

$$i(z) = 1 - \frac{v_1(z)}{v_1(\infty)} - \frac{2}{3} \rho \varphi_1(z) \int_0^z u_1(t) \frac{dt}{t^3} - \frac{2}{3} \rho v_1(z) \int_0^z \psi_+(t) \frac{dt}{t^3},$$

$$i(-z) = 1 + \frac{2}{3} \rho \varphi_2(z) \int_0^z v_2(t) \frac{dt}{t^3} + \frac{2}{3} \rho u_2(z) \int_0^z \psi_-(t) \frac{dt}{t^3}.$$
 (59)

Что касается асимптотики при $z \gg 1$, то для $i_a(z)$ она получается непосредственно из уравнения (18), а для i(z) — затем из связи $i_a(z)$ с i(z). В итоге

$$i(z) \sim \sigma^2 i_{\alpha}(z) \sim \sigma^2 s(z), \quad z \gg 1, \tag{60}$$

$$i_a(z) \sim i_a(-\infty) s_1(z) + s(z), \quad -z \gg 1,$$
 (61)

$$i(z) \sim i(-\infty) s_1(z) + \sigma^2 s(z), -z \gg 1,$$
 (62)

где

$$s(z) = \sum_{n=0}^{\infty} c_n z^{-n},$$
 (63)

а коэффициенты C_n определяются из того же рекуррентного соотношения, что и $b_n^{(1)}$ (см. формулу (31)), но с другим начальным условием: $C_0 = 0$, $C_1 = 1/3$. Величины $i(-\infty)$ и $i_a(-\infty)$ определены ниже (см. формулы (64) и (66)). Профили $i(\pm z)$, рассчитанные по формуле (59), приведены на рис. 1 для $\rho = 0$, 0.2 и 0.4 (значения σ указаны у кривых).

Рис. 1. Профили спектральной линии (z) при разных р и с (см. формулы (57)-(59) в тексте). Числа у дривых — значения с.

4. Интегральные характеристики. Выражения (8)—(10) для интегральных величин содержат $I(-\infty)$, которая определяется согласно (57) через $i(-\infty)$ и $i_{\alpha}(-\infty)$. Из (58) и (59) имеем

$$i(-\infty) = 1/v_2(\infty) + \sigma^2 l_1 = 1 + 2\rho l_2, \tag{64}$$

'9-155

где обозначено

$$l_{i} = [1/3v_{2}(\infty)] \int_{0}^{\infty} v_{2}(t) t^{-i-1} dt, \quad i = 1 \le 2.$$
 (65)

а нв (55) следует, что

$$i_{\alpha}(-\infty) = l_1 + [1/\Lambda v_2(\infty)] \int_0^{\infty} [\psi_-(t) + \psi_+(t) - 2] t^{-2} dt.$$
 (66)

При помощи (34) можно переписать (66) в виде

$$i_a(-\infty) = \Omega \sigma^2 / \Lambda,$$
 (67)

где

$$= -3l_{2} + [1/v_{2}(\infty)] \int_{0}^{\infty} \{v_{2}(y) [q(y) + p(y)] - u_{1}(y) p(y)\} y^{-2} dy.$$
 (68)

Под знаком интеграла в (68) содержатся функции

$$q(y) = \int_{0}^{t} [Q(t) + Q(-t) - t^{-2}] dt, \quad p(y) = \int_{y}^{t} Q(-t) dt, \quad (69)$$

а Q (t) определяется из (40) и (41). Заметим, что согласно (38), (40), (41) и (69)

$$\Lambda = 3/v_2(\infty) + 3\sigma^2 q(\infty). \tag{70}$$

Подстановка (57) при $x = -\infty$ в (8) и (10) дает

$$N = r/[1 - \lambda + \Lambda \gamma/3 \sqrt{\pi}], \qquad (71)$$

$$\beta_{12} = \gamma \left[i \left(-\infty \right) + \left(a \sigma^2 / \pi x_{\gamma} \right) \Omega \right] / \sqrt{\pi} r, \qquad (72)$$

причем для г при помощи (64), (67) и (70) получается выражение

$$r = 1 + \gamma / \sqrt{\pi} v_2(\infty) - \varepsilon [\lambda l_1 - q(\infty)] - \lambda \varepsilon^2 \Omega / 3, \qquad (73)$$

содержащее (малый) параметр $e = 3a/\pi x_{\tau}$.

Оденим величины, входящие в (71) — (73), для двух крайних случаев: $\sigma = 0$ ($\lambda = 1$) и $\sigma \gg 1$. При $\sigma \rightarrow 0$ величины l_1 , l_2 , $q(\infty)$ и Ω имеют конечные пределы порядка 1. Например, при $\rho = 0$ они выражаются через значения гамма-функции:

$$l_1 = -q(\infty) = \Gamma(2/3)/3, \quad l_2 = \Gamma(1/3)/6, \quad \Omega = -\Gamma^2(2/3).$$
 (74)

С другой стороны, при σ ≫1

$$l_1 \sim 3/\sigma^4$$
, $l_1 \sim [1 - 1/v_2(\infty)]/\sigma^2$, $q(\infty) \sim -2\sigma/3$, $\Omega \sim -2/\sigma$. (75)

Первая из этих асимптотик получается по результатам численного расчета l_2 по формуле (65), а вторая — из связи l_2 с l_1 (формула (64)). Асимптотики Ω и $q(\infty)$ получаются из (67) и (70) соответственно по известной асимптотике $\Lambda \sim -2\sigma^3$ (формула (43)) и асимптотике $i_a(-\infty) \sim \sigma^{-2}$, которая следует непосредственно из уравнения (18).

Исходя из оценок (74) и (75), можно переписать (71) и (72) приближенно в виде

$$N \approx [1 + \gamma/\sqrt{\pi} v_2(\infty)] / [1 - \lambda + \gamma/\sqrt{\pi} v_2(\infty)], \qquad (76)$$

$$\beta_{12} \approx (\gamma/\sqrt{\pi}) i (-\infty) / [1 + \gamma/\sqrt{\pi} v_2(\infty)], \qquad (77)$$

Таблица З

с относительной ошибкой при $\gamma < a(x_{\gamma} > 1)$ меньше (по модулю) 2 $a/\min \{x_{\gamma}, x_{\lambda}\} \ll 1$, а при $\gamma \gg 1$ —порядка max $\{(a/\gamma)^{2/3}, (a^4/\gamma)^{1/3}\} \ll 1$. Заметим, что при малых γ формула (77) отличается от обычно используемого выражения наличием множителя $i(-\infty)$, которым учитывается частичность перераспределения по частоте и отдача при рассеянии. Если отдачу не учитывать ($\rho = 0$), то из (64) имеем $i(-\infty) = 1$. Значения $i(-\infty) - 1$ при разных ρ и σ , рассчитанные по формуле (64), приведены в табл. З.

2	0.2	0.4		
0	0.1930	0.4174		
0.5	0.1765	0.3814		
1	0.1360	0.2933		
1.5	0.9031-01	0,1941		
2	0.5354-01	0.1144		
2.5	0.2955-01	0.6256-01		
3	0.1591-01	0.3330-01		
3.5	0.8714-02	0.1802-01		
4	0.5007-02	0.1024-01		
4.5	0.3053-02	0.6194-02		
5	0.1969-02	0.3974-02		
5.5	0.1331-02	0.2678-02		
6	0.9345-03	0.1876-02		

ЗНАЧЕНИЯ $t(-\infty) - 1$

Используя асимптотику /2 (формула (75)), из (64) имеем

$$i(-\infty) - 1 \sim 6\rho/\sigma^4, \quad \sigma \gg 1.$$
 (78)

При $\sigma = 4$ точность этой асимптотики около 6%, а при $\sigma = 6$ —около 1%. Результаты, приведенные в табл. 3, можно аппроксимировать формулой

$$i(-\infty) - 1 \approx \rho / [1 + \sigma^2 (4 - \sigma^2) / 3 (2 + \sigma^3) + \sigma^4 / 6]$$
(79)

с ошибкой менее 5%.

5. Заключение. В настоящей работе показано, как построить, используя диффузионное по частоте приближение, профиль резонансной спектоальной линии, возникающей в бесконечной однородной изотропно расширяющейся среде при рассеянии с частичным перераспределением по частоте с учетом отдачи. Хотя роль отдачи в единичном акте рассеяния и невелика, но все же суммарный эффект может быть заметным. Отдача приводит (как это видно из формулы (59) и рисунков) к дополнительному (наряду с красным смещением из-за расширения) перераспределению фотонов из «фиолетового» крыла линии в «красное». Помимо профиля линии найдены и важные интегральные величины, такие, как среднее число рассеяний N (формула (76)) фотона в линии и вероятность выхода фотона β₁₂ (формула (77)), входящая в уравнение статистического равновесия. Выражение для \$12 отличается от широко используемого приближения Coболева. При малых градиентах скорости это отличие — на некоторый поправочный множитель. При неучете отдачи (роль которой, вообще говоря, невелика — см. табл. 3) этот множитель равен 1. Что касается непосредственных приложений полученных результатов, то ввиду использования бесконечной среды с хаббловской кинематикой, они возможны в рамках модели расширяющейся Вселенной в эпоху рекомбинации.

Ленинградский государственный университет

DIFFUSION OF RESONANCE RADIATION IN AN INFINITE UNIFORMLY EXPANDING MEDIUM

S. I. GRACHEV

Analytical solution of the problem of resonance radiation transfer in an infinite uniform isotropically expanding medium is obtained using a diffusion approximation in a frequency space with a proper account of a partial frequency redistribution and a recoil. Primary sources are taken to be uniformly distributed through space and to be proportional to the absorption coefficient through a frequency space. Spectral line

диффузия резонансного излучения

profiles are found as well as such integral quantities as the mean number of photon scatterings N and a net radiative bracket β_{12} . An equation for the last quantity having also the sense of a photon escape probability differs from that of the Sobolev theory of moving envelopes by the factor which tends to unity when a recoil is neglected.

ЛИТЕРАТУРА

and a little in the second sec

- 1. Н. Н. Чузай, Письма в Астрон. ж., 6, 166, 1980.
- 2. D. G. Hummer, Mon. Notic. Roy. Astron. Soc., 125, 21, 1962.
- 3. Н. Н. Чугай, Астрофизика, 26, 89, 1987.
- 4. М. М. Баско, Препр. ИТЭФ-152, 1979.
- 5. С. И. Грачев, Астрофизника, 28, 205, 1988.