АСТРОФИЗИКА

TOM 30

АПРЕЛЬ, 1989

ВЫПУСК 2

УДК: 524.522

ПРОИСХОЖДЕНИЕ И ДИНАМИКА ГИГАНТСКИХ РАСШИРЯЮЩИХСЯ ОБОЛОЧЕК НЕИТРАЛЬНОГО ВОДОРОДА

И. Г. КОЛЕСНИК, С. А. СИЛИЧ

Поступила 21 января 1988 Принята к печати 20 августа 1988

Предложена вволюционная модель образования гитантских расширяющихся оболочек нейтрального водорода в галактиках. Оболочки возникают в сверхоблаках на поздных этапах развития звездных комплексов. Для объяснения наблюдаемых динамических характеристих нанбольших оболочек необходимо учитывать, что они могут иницимровать звездообразование в холодных облачках, существующих в сверхоблаках за счет тепловой неустойчивости. Для удовлетворительного описания свойств сверхоболочек вффективность стимулированного звездообразования должна составлять менее 1%.

1. Введение. Проведенные в последнее десятилетие радиообзоры нашей [1-2] и ряда близких [3-7] галактик в линии 21 см существенно расширили представления о крупномасштабной структуре и физических процессах, определяющих динамическое и энергетическое состояние межзвездной среды. В распределении нейтрального водорода были обнаружены гигантские «дыры» [4-5] и тонковолокнистые структуры, связанные с расширяющимися оболочками [1-2]. Радиусы обнаруженных оболочек заключены в пределах $0.1 \div 1.0$ кпк, выметаемые массы достигают $10^6 \div$ $\div 10^7 M_{\odot}$. Подобные структуры наблюдаются также в распределении ионизированного водорода [8-10].

Интерпретация наблюдательных данных, связанных с наиболее крупными структурами, не всегда однозначна. В [11] было высказано мнение, что не все наблюдавшиеся в Галактике объекты являются реальными оболочками. В [12] показано, что протяженный рентгеновский источник в Лебеде [13], видимо, образуется в результате наложения множества расположенных вдоль луча зрения дискретных источников. В то же время вся совокупность накопленных наблюдательных данных свидетельствует о том, что расширяющиеся оболочки и «дыры» являются характерными структурными образованиями в крупномасштабном распределении нейтрального водорода во всех спиральных и иррегулярных галактиках, вндимых с достаточным расширением.

Оценки показывают, что для образования наибольших оболочек требуются энергии до 10⁵⁴ эрг. В качестве источников таких экстремальных энергий предлагались различные механизмы: каскады вспышек сверхновых и эвездные ветры в OB-ассоциациях [14—16], развитие зон H II и распространение ионизационных волн вокруг OB-ассоциаций [17], столкновение с диском галактики высокоскоростных облаков [18], лучевое давление звезд поля [19], волны звездообразования [20—22] и взрывы очень массивных звезд [23, 24].

Наблюдательные данные показывают, что хотя в Галактике лишь для небольшой доли оболочек прослеживается связь с OB-ассоциациями, оболочки и «дыры», обнаруженные в БМО, МЗ1 и др. близких галактиках, как правило, пространственно связаны с OB-ассоциациями и областями недавнего звездообразования [4, 5, 20, 25]. В большинстве случаев «дыры» малых размеров совпадают с областями Н II, для более крупных характерна связь с OB-ассоциациями, а вдоль границ наибольших оболочек располагаются очаги звездообразования [4, 5, 20, 25]. Все это свидетельствует о том, что массивные звезды, вспыхивающие в конце оволюции как сверхновые, являются основным источником, поставляющим энергию в сверхоболочки.

С другой стороны, синтез наблюдательных данных о распределении и собственном движении молодых звезд и скоплений показывает, что процессы звездообразования охватывают большие области пространства, приводя к формированию звездных комплексов с характерными размерами около 600 пк [26, 27]. Это наибольшие после спиральных рукавов структурные образования в галактиках. Эвездные комплексы, «дыры» и гигантские расширяющиеся оболочки обладают блиэкими характеристиками в различных галактиках. Это наводит на мысль о существовании в галактических системах фундаментального универсального масштаба неоднородности, с которым связано происхождение рассматриваемых крупномасштабных объектов.

Действительно, наблюдательные данные и теоретические исследования показывают [28—31], что в газовых дисках галактик могут образовываться неоднородности с массами $\sim 10^7 M_{\odot}$ и размерами порядка 1 кпк, получившие название сверхоблаков нейтрального водорода. В [31] показано, что именно в таких огромных гравитационно связанных сгущениях создаются условия, благоприятные для возникновения гигантских молекулярных облаков, дающих начало звездным комплексам и ассоциациям. Бливость характерных размеров и масс перечисленных образований позволяет считать, что сверхоблака, скопления гигантских молекулярных облаков, эвездные комплексы, «дыры» в распределении и сверхоболочки нейтрального водорода связаны с различными этапами развития единого эволюционного процесса, приводящего к образованию крупнейших гравитационно связанных структур в галактиках. В этом случае «дыры» в распределении Н I и гигантские расширяющиеся оболочки нейтрального водорода связаны с поздними стадиями эволюции, на которых коллективное воздействие образующихся в звездных комплексах сверхновых вызывает выметание газа и приводит к его концентрации на периферни сверхоблаков.

Настоящая работа посвящена исследованию заключительных стадий описанного эволюционного процесса — изучению коллективного взаимодействия сверхновых со сверхоблаками нейтрального водорода.

В разделе 2 дано описание предлагаемой модели, в 3 приведены основные уравнения, получены выражения для темпа поступления энергии в полость на разных эволюционных стадиях, раздел 4 посвящен обсуждению основных закономерностей движения оболочек с инициированным образованием сверхновых, в разделе 5 сформулированы основные выводы работы.

2. Описание модели. Исследование структуры и эволюции сверхоблаков содержится в работах [30, 31].

Исходное сверхоблако (рис. 1а) представляет собой двухфазную гравитационно связанную систему, состоящую из холодных плотных облачков с массами $m_c \sim 100~M_{\odot}$ и размерами 5—10 пк [42], погруженных в разреженный теплый межзвездный газ. В центральных. 1 5 100 пк, областях сверхоблака создаются условия [30-31] для образования гигантских молекулярных облаков и выделяются холодные ядра, в которых заключено всего несколько процентов массы сверхоблака. Плотные ядра сверхоблаков поддерживаются в равновесии турбулентным давлением [30—31], имеют довольно крутой градиент плотности $\rho \sim r^{-14}$ и погружены в протяженную изотермическую почти однородную сболочку. Именно в плотных турбулентных ядрах сверхоблаков начинается эзездообразование, приводящее к возникновению исходной ОВ-ассоциации. Взаимодействие звездного ветра и остатков вспыхивающих в ОВ-ассоциациях сверхновых с окружающим газом приводит к выметанию газа из ассоциации и образованию расширяющейся оболочки. Через ~ 5.10⁶ лет, образуя сверхновые, исчезают последние О-звезды — наиболее важный источник ионизирующего излучения и звездного ветра. Оболочка (рис. 1b) выходит за пределы турбулентного плотного ядра в почти однородную ко-

рону сверхоблака. Ее движение определяется в основном вспышками умеренно массивных, 10—30 M_{\odot} , звезд исходной ассоциации. Динамика таких оболочек исследовалась в [15, 16]. Зависимость скорости расширения оболочки от радиуса на данной стадии эволюции может быть представлена в виде:

$$u_{sb} = 5.7 \left(N E_{51} / n_0 \right)^{1/3} \left(R / 97 \right)^{-2/3} \, \text{km/c}, \tag{1}$$

где N — число массивных звезд, взрывающихся как сверхновые, E_{51} — выделяющаяся при взрыве каждой сверхновой энергия в единицах 10^{31} эрг, n_0 — плотность числа частиц в окружающем оболочку газе.

Рис. 1. Различные стадии зарождения и эволюции сверхоблочек. 1— Сверхоблако, 2— холодные облачка, 3— гигантское молекулярное облако, 4— ОВ-ассоциация, 5— SN первого поколения, 6— расширяющаяся оболочка, 7— сжатые облачка, 8 массивные звезды второго поколения, 9— SN второго поколения, 10— выметаемые облачка, 11— сверхоблачка, 12— маломассивные звезды.

В соответствии с (1) скорости расширения оболочек должны довольно быстро падать с увеличением их размеров, а для образования наиболее крупных из наблюдаемых объектов необходимы OB-ассоциации, состоящие более чем из 10³ членов [15, 32]. Между тем, типичная OB-ассоциация содержит не более 100 звезд, а наблюдения свидетельствуют о малом разбросе скоростей расширения оболочек при значительном изменении их линейных размеров (рис. 2) и даже об увеличении скоростей расширения с увеличением радиусов оболочек [4, 5]. Таким образом, исходной OB-аесоциации, расположенной в центре полости, оказывается недостаточно для поддержания наблюдаемых скоростей расширения оболочек в достаточно большом диапазоне изменения их линейных размеров. Создается впечатление, что в процессе эволюции оболочек возникают дополнительные распределенные по объему полости источники энергин. Они могут появиться в результате стимулирования свездообразования самими оболочками [20—22, 33]. Такое предположение согласуется с имеющимися данными о концентрации очагов звездообразования вдоль внутренних границ наибольших оболочек и указанием на существование в ряде случаев гоадментов возрастов эвезд от центра к краю полости [20, 25].

Рис. 2. Зависниость скорости расшарения от радиуса для наблюдаемых в Галактике оболочек по данным работы [1].

С доугой стороны, потенциальная возможность развития стимулированного звездообразования заложена в исходной модели сверхоблака [30]. Действительно, в [34] показано, что в стелкивающихся с умеренными скоростями газовых потоках возможно образование массивных (десятки солнечных масс) гравитационно связанных протосвезд. Поэтому столкновение образованной исходной ОВ-ассоциацией расширяющейся оболочки с хаотически разбросанными по сверхоблаку облачками может служить спусковым механизмом, приводящим к образованию распространяющейся от центра сверхоблака волны звездообразования. Относительно быстрая эволюция (за время ~ 10⁷ лет) образующихся массивных звезд второго поколения приводит к распространению вслед за оболочкой волны вспышек вторичных сверхновых (рис. 1с). Эти сверхновые и определяют динамику наиболее крупных оболочек. На заключительных стадиях эвомющин оболочка сгребает холодные облачка, что может привести к возникновению областей эвездообразования в пределах самой оболочки и частичному ее разрушению (рис. 1d).

Возникновение волны вспышек вторичных сверхновых ведет к перемещению основного источника энергии из центра на периферию полости. Возможные наблюдательные проявления такого перемещения источника энергии обсуждались в [22, 35]. На ранних стадиях эволюции распространение от центра полости вопыхивающих сверхновых должно приводить к изменению распределения рентгеновского излучения вдоль радиуса полости [35], а на поздних может вытягивать оболочку вдоль галактической плоскости [22]. Как показывают наблюдения, скорости расширения оболочек сосредоточены в узком интервале [1, 4, 5]. Это накладывает дополнительные ограничения на свободные параметры моделей. Сравнение полученных таким образом параметров с независимыми данными может служить одним из критериев справедливости развиваемой теории.

Ксличественный анализ показывает, что в рассматриваемой модели скорости расширения оболочек остаются заключенными в узком интервале в течение продолжительного промежутка времени только в том случае, когда эффективность стимулированного звездообразования близка к типичному для молекулярных облаков Галактики значению [27] и составляет менее 1%.

3. Основные уравнения. Рассмотрим динамику оболочек на расстояниях, больших по сравнению с размерами турбулентното молекулярного ядра сверхоблака. В настоящей работе расчеты проведены для сферически-симметричной модели. Учет неоднородности распределения газа по 2-координате существенен для внутренних областей галактики [32, 36, 37]. Динамика оболочек с инициированным звездообразованием в стратифицированных средах будет рассмотрена в следующей работе.

Толщина оболочек мала по сравнению с их раднусами, скорости расширения относительно невелики. Давление в полости поддерживается центральным источником и распространяющейся от центра к периферни сверхоблака волной вспышек сверхновых. Такие оболочки заведомо находятся на поздней раднационной стадии [38, 39] и их движение может бытьописано системой уравнений 1.5-мерной газодинамики [38—40]:

$$M(R) = M_0 (R/R_0)^3,$$
 (2)

$$\frac{d}{dt}(Mu) = 4\pi R^2 p - \frac{GM^2}{2R^2}, \qquad (3)$$

$$\frac{dE_{\tau}}{dt} = e_0(t) - 4\pi R^2 pu, \qquad (4)$$

$$E_{\tau} = \frac{4\pi R^3}{3(\tau - 1)} \bar{P},$$
 (5)

$$u = dR/dt, \tag{6}$$

$$M_0 = 4\pi \rho_0 R^3/3.$$
 (7)

Поскольку масса выметаемого газа велика и существенно превышает суммарную массу образующихся звезд, в (3) включен член, описывающий самогравитацию оболочек [41]. Приток энергии в полость описывается членом $\varepsilon_0(t)$, который определяется вначале центральным источником, а затем совместным действием вторичных сверхновых и сверхновых, вспыхивающих в исходной ассоциации. В качестве характерного пространственного масштаба выбирался начальный радиус оболочки R_0 , который в большинстве вариантов расчетов полагался равным 100 пк. Начальные данные .(скорости и ускорения оболочек при $R = R_0$) брались такими же, каж в модели Кафатоса—Мак Крея [15].

Исключая из (2)—(5) M(R), p, дифференцируя (5) по времени и приравнивая результат дифференцирования (4), сведем систему уравнений (2)—(5) к одному уравнению второго порядка относительно u:

$$\frac{d^{2}u}{dt^{2}} + (7+3\gamma)\frac{u}{R}\frac{du}{dt} + \frac{9\gamma u^{3}}{R^{2}} + \frac{2(2+3\gamma)\pi a\phi_{0}}{3} = \frac{9(\gamma-1)\varepsilon_{0}(t)}{4\pi\phi_{0}R^{4}}.$$
 (8)

В зависимости от преимущественного механизма притока энергии в полость в развитии сверхоболочек можно выделить три стадии.

1. Основной источних энергии вспышки сверхновых в исходной ОВассоциации. Динамика оболочки описывается моделью [15].

2. Основной источник энергии вспышки проэволюционировавших звезд второго поколения, образование которых инициировано самой оболочкой. Эта стадия начинается с момента вспышки первой SN второго поколения и оканчивается, когда внутри полости вспыхивает последняя массивная эвезда, образование которой инициировано расширяющейся оболочкой.

3. Внутри полости проэволюционировали все массивные звезды исходной OB-ассоциации и образовавшиеся в результате взаимодействия оболочки с плотными облачками. Поток энертии в полость в результате вспышек SN прекращается. Оболочка расширяется под действием оставшегося внутри горячего газа и накопленной кинетической энергия^{*}.

Определим темп поступления энергии от вспышек SN в полость, ограниченную оболочкой, на каждой из выделенных эволюционных стадий.

Частота вопышек SN и темп выделения энергии в исходной OB-ассоциации определяются распределением звезд ассоциации по массам и временем жизни звезды заданной массы на главной последовательности. Для явезд с массами 7 $M_{\odot} < M < 30 M_{\odot}$, поставляющих основную долю энергии в полость [15], время жизни на главной последовательности τ_0 равно $\tau_0 = \tau_L (M/10 M_{\odot})^{-1}$, где $\alpha \simeq 1.6$, $\tau_L \simeq 3 \cdot 10^7$ лет [15].

Принимая [15] степенное распределение звезд по массам:

$$dN/dm = Cm^{\delta} \tag{9}$$

^{*} Если взаимодействие оболочки с плотными облачками янициирует образование звезд более массивных, чем звезды исходной ОВ-ассоциации, то между второй и третьей стадиями может возникнуть интервал времени, когда основным источником энергии вновь станут испышки сверхновых в исходной ассоциации.

со спектральным индексом $\delta \simeq -2.6$, $C \simeq -(\delta + 1) Nm_1^{-(\delta+1)}$ (N — общее число массивных звезд в ассоциации, m_1 — минимальная масса взрывающейся звезды), получаем приблизительно постоянный темп выделения внергии в исходной ассоциации [15, 16]:

$$\varepsilon_{0}^{(1)}(t) = -E_{0} \frac{dN}{dt} = -\frac{(\delta+1) N E_{0} \varepsilon_{L}^{(\delta+1)/\alpha}}{\alpha (m_{1}/10 M_{\odot})^{3+1}} t^{-\frac{\delta+\alpha+1}{\alpha}} =$$
$$:= \frac{N E_{0} (m_{1}/10 M_{\odot})^{1.6}}{\tau_{L}}.$$
(10)

В (10) E₀ — средняя энергия, выделяющаяся при вспышке каждой сверхновой.

Спектр масс эвезд, образующихся в результате взаимодействия оболочки с плотными облачками, неизвестен. Поэтому будем в дальнейшем полагать, что все эвеэды второго поколения имеют одинаковую массу. Это упрощение не влияет на качественные выводы настоящей работы. Процесс инициированного эвездообразозания начинается с выходом оболочки из ядра сверхоблака и оканчивается, когда оболочка достигает его границы. Однако дополнительный приток энергии в полость за счет вспышек вторичных сверхновых прекращается раньше. Это происходит тогда, когда оболочки нагребают достаточно большую массу и начинают выметать из полости встречающиеся на их пути облачка. Взаимодействие облачков с оболочкой весьма сложно и сопровождается образованием вторичных ударных волн, уплощением облачков, интенсивным охлаждением образующегося при взаимодействии плотного слоя [34]. Для грубой оценки критического радиуса R_c, начиная с которого оболочка начинает эффективно захватывать облачка и образование вторичных звезд внутри полости прекращается, учтем лишь обмен импульсом сферического облачка постоянной массы с набегающим потоком газа. В системе отсчета, связанной с оболочкой, уравнение движения облачков имеет вид:

$$d(m_e v_c)/dt = \rho_{ab} S_e v_c^2, \qquad (11)$$

где m_{e^1} S_e , v_e — масса, площадь поперечного сечения и скорость облачка относительно оболочки, ρ_{sh} — плотность газа в оболочке. Переходя от дифференцирования по времени к производной d/dr, где r отсчитывается от внешней границы оболочки внутрь полости, получим:

$$\frac{1}{v}\frac{dv_e}{dr} = -\frac{\rho_{sh}S_e}{m}, \qquad (12)$$

$$v_{r} = v_{0} \exp{(-r/r_{0})},$$
 (13)

где $r_0 = \frac{3m_c\Delta r}{\rho_0 S_c R}$, Δr — толщина оболочки, R — ее радиус. Ясно, что-

облачка начинают существенно увлекаться оболочкой, когда выполняется условие $r_0 \approx \Delta r$, отсюда получаем оценку критического радиуса оболочки R_i :

$$R_e \simeq 3m_e/\rho_0 S_e. \tag{14}$$

Для типичных параметров облачков $m_c \simeq 100 \ M_{\odot}$, $z_c \simeq 5 \ {\rm nk}$ [42] и плотности числа частиц в короне сверхоблака $n_0 = 1 \ {\rm cm}^{-3}$ получаем $R_c \simeq 300 \ {\rm nk}$.

Время между столкновением облачка с оболочкой и вспышкой образовавшейся звезды как сверхновой приблизительно равно времени жизни эвезды на главной последовательности то. Поютому темп поступления энертии в полость от SN второго поколения в момент времени t определяется равмерами и окоростью оболочки в предыдущий момент t—то:

$$\varepsilon_0^{(2)}(t) = 4\pi R^2 (t - \tau_0) u (t - \tau_0) E_0 n_s, \qquad (15)$$

где n_s — плотность образующихся массивных звезд второго поколения. Аппроксимируя u(t) на первой (до вспышек SN второго поколения) фазе движения решением [15]

$$u(t) = \frac{3}{5} \left(\frac{250}{308\pi}\right)^{1/5} \left(\frac{\varepsilon_0^{(1)}}{\rho_0}\right)^{1/5} t^{-2/5} , \qquad (16)$$

для темпа поступления внергии в полость в результате вспышек SN второго поколения получаем выражение:

$$\varepsilon_0^{(2)}(t) = 2.4\pi E_0 n_s \left[\frac{2.5NE_0 (m_1/10 M_{\odot})^{1.6}}{3.08 \pi \tau_0 \rho_0} \right]^{3/5} (t - \tau_0)^{4/5}.$$
(17)

Введем эффективность вынужденного эвездообразования β , равную отношению массы образовавшихся внутри объема V сверхоблака массивных звезд к массе первоначально заключенного в өтом же объеме газа. Если массы образующихся эвезд равны m_2 , то их число будет равно $N^{(2)} = M_1/m_2 = \beta M_2/m_3$, а плотность

$$n_{s} = N^{(2)}/V = \beta \rho_{0}/m_{2}, \qquad (18)$$

где M_c , ρ_0 — масса и плотность короны сверхоблака. Подставляя (18) в (17), получим

$$e_0^{(2)}(t) = 2.4\pi\beta \left[\frac{2.5^3 N^3 E_0^3 \rho_0^2 (m_1/10 M_{\odot})^{4.5}}{(3.08\pi)^3 \tau_0^3 m_2^5} \right]^{1/5} (t - \tau_0)^{4/5}.$$
(19)

В момент вспышки первой сверхновой второго поколения скорость оболочки перестает описываться выражением (16), соответственно перестает быть справедливым и выражение (19) для темпа поступления энергии от вспышек SN второго поколения. Однако в большинстве случаев оболочки достигают критических размеров раньше, чем успевают проэволюционировать образовавшиеся внутри полости звезды второго поколения, и выражение (19) для темпа поступления энергии в полость от сверхнозых второго поколения, остается справедливым в течение всего времени эволюции.

На заключительной стадии, после того, как внутри оболочки вспыхивает последняя сверхновая, дополнительный приток энергии в полость прекращается и дальнейшее расширение определяется оставшимся внутри оболочки горячим газом и накопленной кинетической энергией, $\varepsilon_{n}^{(3)} = 0$.

4. Закономерности движения оболочек. Обсуждение результатов. Получить аналитическое решение уравнения (8) при принятых начальных данных и правых частях не удается, поэтому оно решалось численно. В качестве единиц измерения радиуса, скорости, времени и ускорения выбирались R_0 , u_0 , $\tau = R_0/u_0$, $z = u_0^2/R_0$. Уравнение (8) эквивалентно системе безразмерных уравнений первого порядка:

$$dR/dt = u, (20)$$

$$du/dt = z, \tag{21}$$

$$dz/dt = At^{m}/R^{4} - (7 + 3\gamma) uz/R - 9\gamma u^{3}/R^{2} - Bu$$
(22)

с коэффициентами А и В, равными

$$A = \frac{9(\gamma - 1)e_0}{4\pi\rho_0 R_0^{2-m} u_0^{3+m}}, \quad B = \frac{2(2+3\gamma)\pi a\rho_0 R_0^2}{3u_0^2}, \quad (23)$$

где $\varepsilon_0 = \varepsilon_0^{(1)}/t$, m = 1 для первой фазы, $\varepsilon_0 = \varepsilon_0^{(2)}/(t - \tau_0)^{4/5}$, $m = \frac{4}{5}$ для второй, $\varepsilon_0 = 0$, m = 0 для третьей. В качестве параметров задавались: число звезд в исходной OB-ассоциации, N; плотность частиц в короне

сверхоблака, n_0 ; эффективность вынужденного звездообразования, β ; минимальные массы звезд, взрывающихся как сверхновые, m_1 и массы звезд второго поколения, m_2 ; значение критического радиуса, R_c .

Пределы изменения N, n_0 довольно жестко ограничены. В большинстве расчетов полаталось N = 25, 100; $n_0 = 0.5 \div 1$ см⁻³. Для m_1 так же, как в [15], принималось $m_1 = 7 M_{\odot}$, m_2 полагалось равным 10 или 20 M_{\odot} , $R_c = 200 \div 400$ пк. Параметр β подбирался в процессе расчетов из условия, чтобы скорости расширения оболочек соответствовали наблюдательным данным [1, 5] и в процессе вволюции оставались заключенными в относительно узком интервале $10 \le u \le 25$ км/с.

Rsh (KRK)

Ржс. 3. Зависимость скорости расширения оболочки от раднуса при разном числе ввезя в исходной ОВ-ассоциации (1. N = 25; 2. N = 100) и плотности числа частиц газа в короне сверхоблака (сплошные линии — $n_0 = 0.5$ см⁻³, пунктирные — $n_0 = 1$ см⁻³). $\beta = 0.5 \, 0/0$, $M_1 = 7 \, M_{\odot}$; $M_2 = 10 \, M_{\odot}$, $R_c = 0.3$ кик.

Rsh(KRK)

Рис. 4. Зависимость скорости расширения оболочки от раднуса при разных массах ввезд второго поколения. 1. $M_2 = 20 \ M_{\odot}$; 2. $M_2 = 10 \ M_{\odot}$. Пунктиром показана зависимость u(R) при $M_2 = 10 \ M_{\odot}$ без учета самогравитации оболочки. $n_0 = 1.0 \ \text{см}^{-3}$, N = 100, $\beta = 0.5 \ 0/_0$, $R_c = 0.3 \ \text{кпк}$.

Результаты расчетов приведены на рис. 3—6. Как следует из рисунков, параметры исходной ассоциации слабо влияют на динамику оболочек и практически «забываются» на поздних этапах вволюции. Во всех случаях скорости расширения оболочек становятся наименьшими в области 0.3—0.6 кпк, после чего начинают довольно резко расти, достигают максимума и затем плавно убывают. Положение минимума определяется в основном массами звезд второго поколения и с увеличением последних сдвигается в область меньших раднусов (рис. 4).

В ускоряющихся оболочках создаются условия для развития рэлейтейлоровской неустойчивости [32]. Как следует из (8), ускорение оболочек не превышает величины

$$g_{\max} = \varepsilon_0^{(2)}(t)/8\pi u R^3 \rho_0. \tag{24}$$

Отсюда получаем, что характерное время развития релей-тейлоровской неустойчивости $\tau_{R-T} \simeq (\lambda/2 \ \pi g)^{1/2}$ всегда больше

$$\varepsilon_{\min} = (4) \, \mu R^3 \psi_0 / \varepsilon_0^{(2)})^{1/2}.$$
 (25)

Оценки показывают, что при характерных для фазы ускорения размерах оболочек $R \sim 0.5$ юпк, минимальное время раскачки крупномасштабных. мод $\lambda \gtrsim 0.1 R$ оказывается порядка длительности самой ускоренной фазы, если эффективность стимулированного звездного образования достаточно мала ($\beta < 10^{-2}$). Поэтому рэлей-тейлоровская неустойчивость не успевает разрушить оболочки, если β достаточно мало.

Ускорение крупных оболочек предсказывается также предложенным в [19] механизмом лучевого давления звезд поля. Однако, как показано в [43], учет самогравитации оболочек качественно изменяет полученный в [19] результат. Оболочки могут ускоряться лучевым давлением звезд поля только в том случае, когда плотность энергии излучения превышает критическое значение $U_c \approx 3.6 \cdot 10^{-12}$ врг/см³, которое больше среднего значения плотности внергии излучения звезд поля в Галактике $U_{cp} \approx 7 \cdot 10^{-13}$ врг/см³ [19]. Повтому для систем с параметрами, близкими к параметрам Галактики, этот механизм оказывается не эффективным.

В рассматриваемой модели самогравитация не сильно сказывается на динамике оболочек и проявляется лишь на заключительных этапах эволюции, когда скорости расширения становятся сравн: мыми со скоростями турбулентных движений в сверхоблаке (~ 10 км/с), а радиусы пресышают 1 клк (рис. 4).

Требование малого разброса скоростей расширения оболочек в течение всего времени их эволюции накладывает существенные ограничения на эффективность инициированного эвездообразования β . Чтобы скорости расширения оболочек оставались в узком интервале, соответствующем наблюдениям, параметр β должен быть меньше 10^{-2} (рис. 5), что находится в хорошем согласии с данными о низкой эффективности звездообразования в гигантских молекулярных облаках, порождающих OB-ассоциации [27]. С ростом β увеличивается количество энергии, поставляемой сверхновыми второго поколения, и оболочки разгоняются до больших скоростей. К такому же эффекту (рис. б) приводит увеличение размеров R_c объема полости, охваченного инициированным звездообразованием. При этом размеры оболочек, соответствующие максимальным скоростям расцирения, растут.

Рыс. 5. Зависимость окорости расширения оболочжи от радиута при разных значениях эффективности засэдообразова: ил. 1. $\beta = 1^{6} l_0$. 2. $\beta = 0.5 \ 0/_0$, 3. $\beta = 1.25 \ 0/_0$. $n_0 = 0.5 \ cm^{-3}$, N = 100, $M_1 = 7 \ M_{\odot}$, $M_2 = 10 \ M_{\odot}$, $R_c = 0.3 \ rms$.

Рис. 6. Зависимость скорости расширения оболочки от раднуса при разных значенивях критического раднуса R_c . 1. $R_c = 0.2$ кик 2. $R_c = 0.3$ кик, 3. $R_c = 0.4$ ких, $n_0 = 0.5$ см⁻³, N = 25, $M_1 = 7$ M_{\odot} , $M_2 = 10$ M_1 , S = 0.5 %

5. Основные выводы. 1. Предложена эволюционная модель образования гигантских расширяющихся оболочек нейтрального водорода в галактиках. Оболочки возникают в сверхоблаках на поздних этапах развития эвездных комплексов, когда за счет вспышек оверхновых нейтральный газ начинает выметаться из центральных областей сверхоблака. Для объяснения наблюдаемых характеристик наибольших оболочек Н I необходимо учитывать, что расширяющиеся оболочки могут инициировать звездообравование в холодных облачках с массой ~ 100 M_{\odot} . существующих в сверхоблаках за счет тепловой неустойчивости. В результате из таких облачков

образуются звезды с массами $\sim 10 \ M_{\odot}$. которые за время $\sim 10^7$ лет превращаются в сверхновые, обеспечивая дополнительный рассредоточенный по объему источних энергии для поддержания движения расширяющейся оболочки.

2. Получено уравнение, описывающее динамику сферически-симметричных оболочек с учетом эффектов стимулированного звездообразования.

3. Для получения в предложенной модели наблюдаемых скоростей расширения 10—25 км/с и радиусов ~ 1 кпк оболочек требуется, чтобы эффективность стимулированного звездообразования не превышала 1%, что находится в хорошем согласии с данными об эффективности звездообразования в гигантских молекулярных облаках, порождающих OB-ассоциации.

4. Рассмотренная модель предсказывает увеличение скоростей расширения оболочек в диапазоне радиусов 0.3—0.6 кпк. Такая же тенденция проявляется для наблюдавшихся в М 31 зболочек и, вероятно, наиболее крупных оболочек в LMC. Представляет интерес более полное изучение зависимости скоростей расширения оболочек от их размеров.

5. Процесс эвездообразования, начинающийся в центре сверхоблака, на протяжении $10^7 - 10^8$ лет охватывает области пространства в сотни парсек. Поскольку масса расширяющейся оболочки увеличивается, начиная с некоторого расстояния $R_c \approx 0.2 - 0.5$ кпк, она начинает увлекать холодные облачка. Поэтому в оболочках наибольших размеров области звездообразования должны быть сосредоточены у внутреннего края или в самой оболочке. Внутри охваченной оболочкой полости должен существовать градиент возрастов звездного населения. Более молодые звезды должны располагаться на периферии полости, что и наблюдается в наиболее крупных оболочках.

Главная астрономическая обсерватория АН УССР

ORIGIN AND DYNAMICS OF EXPANDING NEUTRAL HYDROGEN SUPERSHELLS

I. G. KOLESNIK, S. A. SILICH

The evolutionary model of expanding supershells regulated by induced star formation is proposed. It is suggested that giant expanding shells are formed in superclouds at a late evolutionary stage of star 6-155

complexes. To understand the dynamics of the most huge supershells it is necessary to take into account that the expanding shells can trigger star formation in cold dense pre-existing cloudlets. Efficiency of induced star formation must be less than one percent to fit observational properties of supershells.

ЛИТЕРАТУРА

- 1. C. Heiles, Astrophys. J., 229, 533, 1979.
- 2. C. Heiles, Astrophys. J. Suppl. Ser., 55, 585, 1984.
- 3. E. Braunsfurth, J. V. Feitzinger, Astron. and Astrophys., 127, 113, 1983.
- 4. E. Brinks, Astron. and Astrophys., 95, L1, 1981.
- 5. E. Brinks, E. Bajaja, Astron. and Astrophys., 169, 14, 1986.
- 6. C. Goudis, J. Meaburn, Astron. and Astrophys., 68, 189, 1978:
- 7. J. Meaburn, R. X. McGee, L. M. Newton, Mon. Notio. Roy. Astron. Soc., 206, 705, 1984.
- 8. Y. M. Georgelin, Y. P. Georgelin, A. Laval, G.Mounet, M. Rosado, Astron. and. Astrophys. Suppl. Ser., 54, 459, 1983.
- 9. J. A. Graham, D. A. Lawrie, Astrophys. J., 253, L73, 1982.
- 10. J. Meaburn, Highlights Astron. 6, 665, 1983.
- 11. И. В. Госачинский, Письма в Астрон. ж., 8, 214, 1982.
- 12. N. G. Bochkarev, T. A. Sitnik, Astrophys. and Spase Sci., 108, 237, 1985.
- W. Cash, P. Charles, S. Bowger, F. Walter, G. Garmire, G. Riegler, Astrophys. J., 238, L71, 1980.
- F. G. Bruhweiler, T. R. Gull, M. Kafatos, S. Softa, Astrophys. J., 238, L27, 1980.
- 15. R. McCray, M. Kafatos, Astrophys. J., 317, 190, 1987.
- 16. K. Tomisaka, A. Habe, S. Ikeuchi, Astrophys. and Spase Sci., 78, 273, 1981.
- 17. G. Tenorio-Tagle, Publ. Astron. Inst. Czech. Acad. Sci., 58, 168, 1983.
- 18.G. Tenorio-Tagle, P. Bodenheimer, M. Rozyczka, J. Franco, Astron. and Astrophys., 170, 107, 1986.
- 19. B. G. Elmegreen, W.-H. Chiang, Astrophys. J., 253, 666, 1982.
- 20. M. A. Dopita, D S. Mathewson, V. L. Ford, Astrophys. J., 297, 599, 1985.
- J. V. Feitzinger, A. E. Glassgold, H.Gerola, P. E. Seiden, Astron. and Astrophys., 98, 371, 1981.
- 22. С. А. Силич, Астрофизика, 22, 563, 1985.
- 23. С. И. Блинников, В. С. Имшенник, В. П. Утробин; Письма в Астрон. 28., 8, 671,. 1982.
- 24. V. P. Utrobin, Astrophys. and Space Sci., 98, 115, 1984.
- 25. A. Coulet, L. Deharveng, Y. M. Georgelin, Y. P. Georgelin, Astron. and Astrophys., 110, 185, 1982.
- 26. Ю. Н. Ефремов, Письма в Астрон. ж., 4, 125, 1978.
- 27. Ю. Н. Ефремов, Итоги науки и техн. ВИНИТИ, Астрон. 27, 102, 1985.
- 28. B. G. Elmegreen, D. M. Elmegreen, Mon. Notic. Roy. Astron. Soc., 203, 31, 1983.
- 29. B. G. Elmegreen, Protostars and Planets II. Univ. Arizona Press., 1985, p. 33.
- 30. И. Г. Колесник, Кинемат. и физ. небесн. тел, 2; No 5, 3, 1986.
- 31. И. Г. Колесник, Кинемат. и физ. небесн. тех, 3, № 6, 50, 1987.

- G. Tenorio-Tagle, P. Bodenheimer, H. Rozyczka, Astron. aud Astrophys., 182' 120, 1987.
- 33. Т. А. Лозинская, Сверхновые звезды в эвездный ветер. Взанмодействие с газом галактики, Наука, М., 1986.
- 34. J. H. Hunter, Astropys. J., 305, 309, 1986.
- 35. С. А. Силич, П. И. Фомин, Препр. ИТФ АН УССР, № 84-65Р, 1984.
- 36. K. Tomisaka, S. Ikeuchi, Publ. Astron. Soc. Jap., 38, 697, 1986.
- 37. M. .-M. Mac Low, R. McCray, Astrophys. J., 1985 (in press).
- 38. Г. С. Бисноватый-Коган, С. И. Блинников, Аспрон. ж., 59, 876, 1982.
- 39. В. П. Пасько, С. А. Силич, Кинемат. и физ. небесн. тел, 2, № 3, 115, 1986.
- B. I. Hnatyk, V. A. Krol⁴, Proc. Intern. Conf. Plasma Phys., Kiev, USSR, 1987, p. 249.
- 41. R. E. Williams, W. A. Christiansen, Astrophys. J., 291, 80, 1985.
- 42. Д. Клейтон, в кн. «Протозвезды и планеты», ч. 1, Мир, М., 1982, стр. 18.
- 43. В. П. Пасько, С. А. Силич, Кинемат. и физ. небес. тел. 4, № 2, 1988.