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Abstract. This paper discusses the location of zeros of polynomials in a polynomial sequence
{Pn(z)}∞n=1 generated by a three-term recurrence relation of the form Pn(z) + B(z)Pn−1(z)+

+A(z)Pn−k(z) = 0 with k > 2 and the standard initial conditions P0(z) = 1, P−1(z) = . . .

= P−k+1(z) = 0, where A(z) and B(z) are arbitrary coprime real polynomials. We show that
there always exist polynomials in {Pn(z)}∞n=1 with non-real zeros.
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1. Introduction

For decades, a popular topic of studies in mathematics is related to three-term

recurrence relations subject to natural restrictions on their coefficients. By Favard’s

theorem [1], such recurrences generate orthogonal polynomials and these are of great

interest since they are frequently used in many problems in the approximation

theory, mathematical and numerical analysis, and their applications (for example,

least square approximation of functions, difference and differential equations, Gaussian

quadrature processes, etc.), see [2].

In general, the zeros of polynomials Pn(z) generated by recurrences do not

exactly lie on a particular curve but are attracted to a curve (which in this paper

we shall call the limiting curve) as n → ∞. Such a limiting curve is explicitly

described in [3, 4]. Recently, K. Tran in [5, 6] has proved cases where the polynomials

Pn(z) generated by three-term recurrences have all their zeros (for all or sufficiently

large n) situated exactly on the said limiting curve. We begin with the following

conjecture.

Conjecture A ([5] ). For an arbitrary pair of polynomials A(z) and B(z), all zeros

of every polynomial in the sequence {Pn(z)}∞n=1 satisfying the three-term recurrence

relation of length k

(1.1) Pn(z) +B(z)Pn−1(z) +A(z)Pn−k(z) = 0
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with the standard initial conditions P0(z) = 1, P−1(z) = . . . = P−k+1(z) = 0 which

do satisfy A(z) 6= 0 lie on the algebraic curve Γ ⊂ C given by

(1.2) =
(
Bk(z)

A(z)

)
= 0 and 0 ≤ (−1)k<

(
Bk(z)

A(z)

)
≤ kk

(k − 1)k−1
.

Moreover, these roots become dense in Γ when n→∞.

In the same paper, the above conjecture was proven for k = 2, 3, 4. In [6], K. Tran

settled Conjecture A for polynomials Pn(z) with sufficiently large n. The problems

around this area of study have most recently received substantial interest and a

number of studies have been carried out, see for example the papers [6] - [11]. In

[8], the authors proved the following theorem.

Theorem 1.1 (see [8]). For an arbitrary pair of polynomials A(z) and B(z), all

the zeros of every polynomial in the sequence {Pn(z)}∞n=1 satisfying the three-term

recurrence relation of length k

Pn(z) +B(z)Pn−`(z) +A(z)Pn−k(z) = 0

where k and ` are coprime and with the standard initial conditions P0(z) = 1,

P−1(z) = . . . = P−k+1(z) = 0 which satisfy the condition A(z)B(z) 6= 0 lie on the

real algebraic curve C given by

(1.3) =
(
Bk(z)

A`(z)

)
= 0.

The above theorem completely settles the first part of Conjecture A. There has

been an initial attempt to obtain the exact portion of the curve C where the zeros

of the polynomials lie by providing in addition to (1.3), an inequality constraint

satisfied by the real part of the rational function Bk(z)
A`(z)

. This has been proven for

specific cases namely, (k, `) = (3, 2) and (4, 3) respectively and the details of the

proofs can be found in [10]. In the same paper based on numerical experiments,

a more general conjecture for the real part of Bk(z)
A`(z)

has been proposed for this

problem.

In the present paper, it is of interest to determine where in complex plane the

zeros of every polynomial in the sequence {Pn(z)}∞n=1 generated by (1.1) are located.

In a particular case of k = 2, the author in [7] characterizes real polynomials A(z)

and B(z) to ensure that all the generated polynomials Pn(z) are hyperbolic. This

paper is a sequel of [7] but for k > 2. We aim at proving whether or not it is possible

to generalize the former.

Problem 1. In the above notation, consider the recurrence relation

(1.4) Pn(z) +B(z)Pn−1(z) +A(z)Pn−k(z) = 0
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where k > 2 with the standard initial conditions,

(1.5) P0(z) = 1, P−1(z) = . . . = P−k+1(z) = 0,

where A(z) and B(z) are arbitrary real polynomials. Characterize A(z) and B(z)

(if possible) such that all the Pn(z) are hyperbolic.

To formulate our main result, we need to look at the curve defined by the first

condition in (1.2). We shall view CP 1 as C∪{∞}, the extended complex plane and

RP 1 as the extended real line.

Let f : CP 1 → CP 1 be the rational function defined by f(z) = Bk(z)
A(z) where A(z)

and B(z) are real polynomials. Denote by Γ̃ ⊂ CP 1 the curve given by =(f(z)) = 0,

that is Γ̃ = {z ∈ CP 1 : =(f(z)) = 0} = f−1(RP 1).

For real polynomials A(z) and B(z), define the curve Γ by the condition (1.2).

It is clear that Γ ⊂ Γ̃.

In the remaining part of this section, let us remind the reader of some basic

definitions and facts about rational functions. For further details, see [7].

For a non-constant rational function R(z) = P (z)
Q(z) , where P (z) and Q(z) are

polynomials with no common zeros, the degree of R(z) is defined as the maximum

of the degrees of P (z) and Q(z). A point z0 ∈ CP 1 is called a critical point of R(z),

(and R(z0) a critical value) if R(z) fails to be injective in any neighbourhood of z0,

that is, either R′(z0) = 0 or R′(z0) =∞ (i.e, at the zeros of Q(z)). The order of a

critical point z0 of R(z) is the order of zero of R′(z) at z0.

Given a pair (P (z), Q(z)) of polynomials, we define their Wronskian as the

polynomial W(P,Q) := P ′Q − Q′P where P ′ and Q′ are derivatives of P and

Q with respect to z respectively. If P and Q have no common zeros, then the zeros

of W(P,Q) are exactly the critical points of the rational map R(z). In fact if α is

a multiple zero of R, then α is a zero of the Wronskian.

We call a non-zero univariate polynomial with real coefficients hyperbolic if all its

zeros are real. In [12, §3.1], we find that the zeros of two hyperbolic polynomimals

P (z), Q(z) ∈ R[z] interlace if and only if |deg P - deg Q| ≤ 1 and W(P,Q) is either

nonnegative or nonpositive on the whole real axis. Notice that to say that the zeros

of P and Q interlace means that each zero of Q lies between two successive zeros of

P and there is at most one zero of Q between any two successive zeros of P , [13].

More information about the Wronskian can be found in [14].

Remark 1.1. For the rational function f(z) = Bk(z)
A(z) , we have

f ′(z) =
Bk−1(z)(kA(z)B′(z)−B(z)A′(z))

A2(z)
=
W(Bk(z), A(z))

A2(z)
.
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We observe that the critical points of f(z) are the zeros of the WronskianW(Bk(z), A(z))

or the poles of f(z). In particular, if A(z), B(z) ∈ R[z] are coprime polynomials

where B(z) is hyperbolic with distinct zeros, then all the zeros of B(z) are real

critical points of f(z) each with multiplicity k − 1.

Let P (x) be a univariate polynomial of degree n with zeros x1, . . . , xn and leading

coefficient an. The ordinary discriminant of P (x) denoted by Discx(P (x)) is defined

as

Discx(P (x)) = a2n−2n

∏
1≤i<j≤n

(xi − xj)2.

Generally, the discriminant of a polynomial connects with the ratio of its zeros

in the sense that the discriminant is zero if and only if the polynomial has multiple

zeros. In particular, the discriminant of a polynomial vanishes whenever there exist

at least a zero with multiplicity greater or equal to 2. For more details on the

ordinary discriminants, see [15].

Example 1.1. For coprime 1 ≤ ` < k, discriminant of a trinomial

P (x) = axk + bx` + c

is given by kkck−1ak−1 + (−1)k−1``(k − `)k−`c`−1bkak−`−1. In particular,

Discx(xk +Bx+A) = Ak−2
(
kkA+ (−1)k−1(k − 1)k−1Bk

)
.(1.6)

The expression (1.6) will be of interest later in this work.

The main result of this paper is as follows.

Theorem 1.2. In the above notation of Problem 1 for k > 2, there always exist

polynomials in the sequence {Pn(z)}∞n=1 with non-real zeros.

2. Proofs

Lemma 2.1. For k > 2, consider the recurrence relation

(2.1) Pn(z) +B(z)Pn−1(z) +A(z)Pn−k(z) = 0

with the standard initial conditions,

P0(z) = 1, P−1(z) = . . . = P−k+1(z) = 0,

where A(z) and B(z) are arbitrary polynomials. If f(z) = Bk(z)
A(z) , then the zeros of

P1(z) and P2(z) are critical points of f(z).

Proof. Substitution of the initial conditions in the recurrence relation

Pn(z) +B(z)Pn−1(z) +A(z)Pn−k(z) = 0
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for n = 1 gives P1(z) = −B(z). Similarly since k > 2, repeating the same process

gives P2(z) = B2(z). The zeros of P1(z) and P2(z) are the zerosB(z). The conclusion

that the zeros of P1(z) and P2(z) are critical points of f(z) follows from Remark

1.1. 2

Remark 2.1. For the recurrence (2.1) to generate a sequence of hyperbolic poly-

nomials, B(z) must be hyperbolic by Lemma 2.1.

Let us briefly discuss some facts about the limiting curve Γ. Let P (λ, z) =

λk + B(z)λ + A(z) be the characteristic polynomial of the recurrence (1.4) and

λ1(z), λ2(z), . . . , λk(z) be its distinct non-zero characteristic roots. For i 6= j, let

Γi,j := {α ∈ C : |λi(α)| = |λj(α)|} be the equimodular curve of P (λ, z) associated

to the characteristic functions λi(z) and λj(z). For a fixed α ∈ C with i 6= j, we

have |λi(α)| = |λj(α)| if and only if there exists an s ∈ C such that |s| = 1 and

λi(α) = sλj(α).

For each i 6= j, let w = w(z) := λi(z)/λj(z) and define

Pw(λ, z) = P (wλ, z) = wkλk +B(z)wλ+A(z).

Then it is clear that λj(z) is a common solution of both P (λ, z) = 0 and Pw(λ, z) =

0. A necessary and sufficient condition for Pw(λ, z) and P (λ, z) to have a non-

constant common factor is that their resultant ρ(w, z) vanishes as a function of

z. By Lemma 3 [16, §3], ρ(w, z) = A(z)(w − 1)k∆k(w, z) where ∆k(w, z) is a

reciprocal polynomial in w of degree k(k − 1). In addition, ∆k(1, z) is a multiple

of Discλ(P (λ, z)), the discriminant of P (λ, z). In the same paper, it is proved that

the reciprocal polynomial ∆k(w, z) can be written as

∆k(w, z) = wk(k−1)/2v(t, z)

where t = w + w−1 + 2. The equimodularity condition |w| = 1 corresponds to t

being in the real interval 0 ≤ t ≤ 4. In particular,

v(4, z) = ∆k(1, z) = ±Discλ(P (λ, z)).(2.2)

Lemma 2.2. Let A(z) and B(z) be as defined in (1.4) and R(t, z) = tk +B(z)t+

A(z). Further, let U := {z : Disct(R(t, z)) = 0} and Γ be the curve defined in (1.2).

A point z0 ∈ C is an endpoint of Γ if and only if z0 ∈ U and A(z0) 6= 0.

Proof. Let E = U \ {z ∈ C : A(z) = 0}. We observe that z0 ∈ E if and only if

Disct(R(t, z0)) = 0 and A(z0) 6= 0. This is equivalent to v(4, z0) = 0 and A(z0) 6= 0

by (2.2). But by the results proved in [16, §5], v(4, z0) = 0 and A(z0) 6= 0 if and

only if z0 is an endpoint of segments of Γ. The proof is complete. 2
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Remark 2.2. For the recurrence (2.1) to generate a sequence of hyperbolic polynomials,

it is a necessary condition that the z0 ∈ C mentioned in Lemma 2.2 is real.

We now state the following theorem about the behaviour of analytic functions

near a critical point. This will be used in the proof of the main result. For details

of the proof, see [17].

For δ > 0 and z0 ∈ C, we define Dδ(z0) := {z ∈ C : |z − z0| < δ}.

Theorem 2.1. Let g(z) be a non-constant analytic, function in a region, Ω ⊂ C.
Let z0 ∈ Ω, w0 = g(z0), and suppose that g(z)−w0 has a zero of order p ≥ 2 at z0.

The following hold;

(a) There are ε, δ > 0 such that for every w ∈ Dε(w0) \ {w0}, there are exactly p

distinct solutions of

g(z) = w(2.3)

with z ∈ Dδ(z0). Moreover, for these solutions, g(z)− w has a simple zero.

(b) There is an analytic function, h, on Dε1/p(0) with h(0) = 0, h′(0) 6= 0, so that

if w ∈ Dε(w0) and

w = w0 + τeiθ, 0 < τ < ε, 0 ≤ θ < 2π

then the p solutions of (2.3) are given by

z = z0 + h(τ1/pe(i(θ+2πj)/p)), j = 0, 1, . . . , p− 1.

(c) There is a power series,
∑∞
n=1 bnx

n, with radius of convergence at least ε, so

the solutions of (2.3) are given by

z = z0 +

∞∑
n=1

bn(w − w0)n/p

where (w −w0)1/p is interpreted as the pth roots of (w −w0) (same root taken

in all terms of the power series).

Let us finally settle the main result of this paper.

Proof of Theorem 1.2. Suppose that B(z) is hyperbolic, otherwise the theorem

follows from Lemma 2.1. Additionally, let z0 be a zero of B(z) with multiplicity

p > 0. Then z0 is a zero of both P1(z) and P2(z) by Lemma 2.1. By Remark 1.1,

z0 is a real critical point of f(z). Moreover, z0 ∈ Γ by (1.2). Theorem 2.1 implies

that in the neighbourhood of z0,

f(z) =
Bk(z)

A(z)
= (z − z0)pkq(z)
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where q(z) is analytic at z0 and q(z0) 6= 0. Pick a δ1 > 0 such that q(z) is non-

vanishing in Dδ1(z0). In this neighbourhood, there exists an analytic function q1(z)

such that q1(z) = pk
√
q(z). Take q1(z) as a branch of pk

√
q(z). Define u(z) :=

(z − z0)q1(z). Then we have

f(z) = u(z)pk, where u(z0) = 0, q1(z0) = u′(z0) 6= 0.

Thus for a small positive ε ∈ R, the equation f(z) = ±ε is equivalent to

(z − z0)pkq1(z)pk = ±ε.(2.4)

Let h(z) be the inverse function to u(z). Then by applying Theorem 2.1 to (2.4)

where the left side of this equation has a zero z = z0 with multiplicity pk, we obtain

solutions of the form

z = z0 + h(ε(1/pk)e(2πij/pk)) or z = z0 + h(ε(1/pk)e(iπ+2πij)/pk)),

where ε(1/pk) is the pk-th roots of ε. Using the fact that pk > 2 and h has a simple

zero at 0, we deduce that (2.4) has pk solutions z and these cannot be all real.

Denote by ρ = kk

(k−1)k−1 . Then, by Theorem 2 [7], the zeros of Pn(z) are contained

in Γ = f−1([0, ρ]) or Γ = f−1([−ρ, 0]) when k is even or odd respectively, and these

zeros are dense on Γ as n → ∞. Now for [0, ε] ⊂ [0, ρ] and [−ε, 0] ⊂ [−ρ, 0], it

follows that

f−1([0, ε]) ⊂ Γ or f−1([−ε, 0]) ⊂ Γ.

For all the polynomials Pn(z) to be hyperbolic, we require Γ to consist only of

intervals on the real line in C. From the solutions of (2.4), it is clear that neither

f−1([0, ε]) nor f−1([−ε, 0]) is a subset of only real intervals. Thus there will always

be at least one non-real curve through z0 on which non-real zeros of Pn(z) will be

located. The conclusion follows. �

3. Examples

In this section we present concrete examples using numerical experiments. In

these examples, we consider the sequence of polynomials {Pn(z)}∞n=0 generated by

the rational function

(3.1)
∞∑
n=0

Pn(z)tn =
1

1 +B(z)t+A(z)tk
,

where A(z) and B(z) are coprime real polynomials. We plot a graph showing

(i) a portion (black curves) of the curve Γ̃ given by =
(
Bk(z)
A(z)

)
= 0;

(ii) the zeros (circles) of one of the polynomials Pn(z) in (3.1) (of our choice)

described by specifying k,A(z), B(z) and a positive integer n. These are

located on Γ;
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(iii) the points z∗ ∈ C which are endpoints of the curve Γ (indicated by black

dots). Such points are the elements of the set E defined in Lemma 2.2.

Example 3.1. For n = 71, k = 3, A(z) = z3 − z2 − 5z + 7 and B(z) = z2 − z − 6,

we obtain Fig. 1.

Рис. 1. The rational function is given by f(z) = 1/(1 + (z2− z−
6)t+ (z3 − z2 − 5z + 7)t3).

Example 3.2. For n = 150, k = 5, A(z) = z2 + z − 4 and B(z) = z2 + z − 2, we

obtain Fig. 2.

Рис. 2. The rational function is given by f(z) = 1/(1 + (z2 + z−
2)t+ (z2 + z − 4)t5).
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4. Final remarks

Problem 1 has been settled in the negative in the sense that it is not possible to

generate a sequence of hyperbolic polynomials using the recurrence (1.4) with the

given initial conditions (1.5).
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