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Abstract. In this paper, we consider the entire solutions of nonlinear difference equation
f3 + q(z)∆f = p1eα1z + p2eα2z , where q is a polynomial, and p1, p2, α1, α2 are nonzero constants
with α1 6= α2. It is showed that if f is a non-constant entire solution of ρ2(f) < 1 to the above
equation, then f(z) = e1e

α1z
3 + e2e

α2z
3 , where e1 and e2 are two constants. Meanwhile, we give

an affirmative answer to the conjecture posed by Zhang et al in [18].
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1. Introduction and main results

In this paper, by meromorphic functions we will always mean meromorphic

functions in the complex plane. In order to prove the main results, we will employ

Nevanlinna theory. Before to proceed, we spare the reader for a moment and assume

his/her familiarity with the basics of Nevanlinna’s theory of meromorphic functions

in C such as the first and second fundamental theorems, and the usual notations

such as the characteristic function T (r, f), the proximity function m(r, f) and

the counting function N(r, f). S(r, f) denotes any quantity satisfying S(r, f) =

o (T (r, f)) as r → ∞, except possibly on a set of finite logarithmic measure(see

e.g., [16, 17]). We also need the following definition.

Definition 1. The order ρ(f), hyper-order ρ2(f) of the meromorphic function f(z)

are defined as follows:

ρ(f) = lim sup
r→∞

log T (r, f)

log r
, ρ2(f) = lim sup

r→∞

log log T (r, f)

log r
.

Characterizing complex analytic solutions of differential equations has a topic

of a long history (see e.g., the monograph [7]). It seems to us that Yang firstly
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started to study the the existence and uniqueness of finite order entire solutions of

nonlinear differential equation of the form

L(f)(z)− p(z)fn(z) = h(z), n ≥ 3,

where L(f) is a linear differential polynomial in f with polynomial coefficients, p

is a non-vanishing polynomial and h is an entire function. Recently, the difference

analogues to Nevanlinna theory was established by Halburd and Korhonen [3, 4],

Chiang and Feng [2], independently. With the help of this tool, many scholars have

studied the solvability and existence of meromorphic solutions of some non-linear

difference equations (see e.g., [1, 5, 6], [8] – [15]).

In 2010, Yang and Laine [15] considered the following difference equation.

Theorem A. A non-linear difference equation

f3(z) + q(z)f(z + 1) = c sin bz = c
ebiz − e−biz

2i
,

where q(z) is a non-constant polynomial and b, c ∈ C are nonzero constants, does

not admit entire solutions of finite order. If q(z) = q is a nonzero constant, then

the above equation possesses three distinct entire solutions of finite order, provided

that b = 3nπ and q3 = (−1)n+1c227/4 for a nonzero integer n.

The follow-up research on this aspect was done by Liu and Lü et al. In [12], they

considered the following more general difference equation

(1.1) fn(z) + q(z)∆f(z) = p1e
α1z + p2e

α2z,

where n is a positive integer, ∆f(z) = f(z + 1) − f(z), q(z) is a polynomial, and

p1, p2, α1, α2 are nonzero constants with α1 6= α2. More specifically, Liu and Lü et

al. proved the following.

Theorem B. Let n ≥ 4 be an integer, q be a polynomial, and p1, p2, α1, α2 be

nonzero constants such that α1 6= α2. If there exists some entire solution f of finite

order to (1.1), then q(z) is a constant, and one of the following relations holds:

(1). f(z) = c1e
α1z
n , and c1(exp α1

n − 1)q = p2, α1 = nα2,

(2). f(z) = c2e
α2z
n , and c2(exp α2

n −1)q = p1, α2 = nα1, where c1, c2 are constants

satisfying c31 = p1, c
3
2 = p2.

The study for the case n = 3 was due to Zhang et al. [18], who obtained the

following result.

Theorem C. Let q be a polynomial, and p1, p2, α1, α2 be nonzero constants such

that α1 6= α2. If f is an entire solution of finite order to the following equation:

(1.2) f3 + q(z)∆f = p1e
α1z + p2e

α2z,

then q(z) is a constant, and one of the following relations holds:
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(1) T (r, f) = N1)(r,
1
f ) + S(r, f),

(2) f(z) = c1e
α1z
3 , and c1(exp α1

3 − 1)q = p2, α1 = 3α2,

(3) f(z) = c2e
α2z
3 , and c2(exp α2

3 − 1)q = p1, α2 = 3α1,

where N1)(r,
1
f ) denotes the counting function corresponding to simple zeros of f ,

and c1, c2 are constants satisfying c31 = p1, c
3
2 = p2.

Remark 1. For the cases (2) and (3) in Theorem C, it is easy to see that 0 is

a Picard value of f and N(r, 1/f) = 0. So T (r, f) 6= N1)(r,
1
f ) + S(r, f) = S(r, f).

It is natural to ask whether the case (1) occurs or not. The answer is positive. It is

showed by the following example, which can be found in [18].

Example 1. Consider f(z) = eπiz + e−πiz = 2i sin(πiz). Then f is a solution of

the following equation:

f3 +
3

2
∆f = e3πiz + e−3πiz.

Obviously, T (r, f) = N1)(r,
1
f ) + S(r, f). So, the case (1) occurs.

In Theorem C, it seems that the case (1) is unnatural. Meanwhile, Zhang et al.

observed that α1 + α2 = 3πi + (−3πi) = 0 in Example 1. This observation leaded

Zhang et al. to pose the following conjecture.

Conjecture. If α1 6= α2, α1 + α2 6= 0, then the conclusion (1) of Theorem

C is impossible. In fact, any entire solution f of (1.2) must have 0 as its Picard

exceptional value.

Remark 2. The conjecture has been studied by many researchers (see [1, 9]).

In 2017, Latreuch in [9] has gave an affirmative answer to the conjecture. However,

when α1 + α2 6= 0 does not hold, Latreuch did not give the specific form of the

meromorphic solution of (1.2). In Example 1, we further observe that f(z) = eπiz+

e−πiz = 2i sin(πiz). In [1], one can not get m(r, λ2f−n2f ′′
) = O(log r) in the proof

of Theorem 1.1 directly. This leads us to ask whether any entire solution of the

equation (1.2) always is this form when Case (1) occurs. In the present paper, we

focus on the problem and give an affirmative answer by the following theorem.

Theorem 1.1. Let q be a polynomial, and p1, p2, α1, α2 be nonzero constants such

that α1 6= α2. If f is an entire solution of ρ2(f) < 1 to the equation (1.2), then

q(z) is a constant, and one of the following relations holds:

(1) f(z) = e1e
α1z
3 +e2e

α2z
3 , where e1 and e2 are two nonzero constants satisfying

e31 = p1, e32 = p2 (or e31 = p2, e32 = p1), 3e1e2− 2q = 0, α1 +α2 = 0 and e
α1
3 = −1;

(2) f(z) = c1e
α1z
3 , and c1(exp α1

3 − 1)q = p2, α1 = 3α2;

(3) f(z) = c2e
α2z
3 , and c2(exp α2

3 − 1)q = p1, α2 = 3α1.
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Remark 3. Clearly, Example 1 satisfies Case (1) of Theorem 1.1, where α1 =

3πi, α2 = −3πi; e1 = e2 = 1, p1 = p2 = 1; q = 3/2. Next we give two examples to

show Cases (2) and (3) indeed occur in Theorem 1.1.

Example 2. Consider the function f(z) = eπiz, which is a nonconstant entire

solution of the following equation

f3(z)− 1

2
∆f(z) = e3πiz + eπiz,

where α1 = 3πi = 3α2, c1 = 1, q = −1/2, p2 = 1. Thus, the case (2) occurs.

Example 3. Consider the function f(z) = e3πiz, which satisfies the following

equation

f3(z)− 1

2
∆f(z) = e3πiz + e9πiz,

where α2 = 9πi = 3α1, c2 = 1, q = −1/2, p1 = 1. Therefore, the case (3) occurs.

By Theorem 1.1, we get an immediate conclusion as follows.

Corollary 1. Let q be a polynomial, and p1, p2, α1, α2 be nonzero constants such

that α1 6= α2. If f is a nonconstant entire solution of ρ2(f) < 1 to the equation

(1.2), then q(z) is a constant, and

f(z) = e1e
α1z
3 + e2e

α2z
3 ,

where e1 and e2 are two constants.

At the end, we turn attention to the question: What will happen if we replace

the function f3 by f2 in the equation (1.2). After studying this question, we derive

some similar results to Theorem C as follows.

Theorem 1.2. Let q be a polynomial, and p1, p2, α1, α2 be nonzero constants such

that α1 6= α2. If f is an entire solution of ρ2(f) < 1 to the following equation

(1.3) f2 + q(z)∆f = p1e
α1z + p2e

α2z,

and satisfying N(r, 1f ) = S(r, f), then q(z) is a constant, and one of the following

relations holds:

(1) f(z) = c1e
α1z
2 , and c1(exp α1

2 − 1)q = p2, α1 = 2α2,

(2) f(z) = c2e
α2z
2 , and c2(exp α2

2 − 1)q = p1, α2 = 2α1, where c1, c2 are

constants satisfying c21 = p1, c
2
2 = p2.

We below offer an example to show that the condition N(r, 1f ) = S(r, f) is

necessary in Theorem 1.2.

Example 4. Consider the function f(z) = −2−
√

2eπiz+
√

2e−πiz, which satisfies

the equation

f2(z)− 2∆f(z) = 2e2πiz + 2e−2πiz.
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A calculation yields that T (r, f) = 2r(1 + o(1)) and N(r, 1/f) = 2r(1 + o(1)).

Clearly, N(r, 1f ) 6= S(r, f) and f does not satisfy any conclusion of Theorem 1.2.

2. Some lemmas

Before to the proofs of main theorems, we firstly give the following result, whcih

is a version of the difference analogue of the logarithmic derivative lemma.

Lemma 2.1 ([4]). Let f(z) be a meormorphic function of ρ2(f) < 1, and let

c ∈ C\{0}. Then

m(r,
f(z + c)

f(z)
) = o(

T (r, f)

r1−ρ2(f)−ε
),

outside of an exceptional set of finite logarithmic measure.

In addition, by applying Lemma 2.1 and the same argument as in [8, Theorem

2.3], we get the following lemma, which is a version of the difference analogue of

the Clunie lemma. The details are omitted here.

Lemma 2.2. Let f be a transcendental meromorphic solution of ρ2(f) < 1 to the

difference equation

H(z, f)P (z, f) = Q(z, f),

where H(z, f), P (z, f), Q(z, f) are difference polynomials in f such that the total

degree of H(z, f) in f and its shifts is n, and that the corresponding total degree of

Q(z, f) is ≤ n. If H(z, f) contains just one term of maximal total degree, then for

any ε > 0,

m(r, P (z, f)) = S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

3. Proof of Theorem 1.1

Suppose that f is an entire solution of ρ2(f) < 1 to Eq (1.2). Obviously, f is a

transcendental function. By differentiating both sides of (1.2), one has

(3.1) 3f2f ′ + (q(z)∆f)′ = α1p1e
α1z + α2p2e

α2z.

Combining (1.2) and (3.1) yields

(3.2) α2f
3 + α2q∆f − 3f2f ′ − (q(z)∆f)′ = (α2 − α1)p1e

α1z.

By differentiating (3.2), we derive that

(3.3) 3α2f
2f ′ + α2(q∆f)′ − 6f(f ′)2 − 3f2f ′′ − (q(z)∆f)′′ = α1(α2 − α1)p1e

α1z.

It follows from (3.2) and (3.3) that

(3.4) fϕ = T (z, f),
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where

(3.5) ϕ = α1α2f
2 − 3(α1 + α2)ff ′ + 6(f ′)2 + 3ff ′′,

T (z, f) = −α1α2q∆f + (α1 + α2)(q∆f)′ − (q∆f)′′.

Note that T (z, f) is a differential-difference polynomial in f of degree 1. Then by

applying Lemma 2.2 to the equation (3.4), one has m(r, ϕ) = S(r, f). Further,

T (r, ϕ) = m(r, ϕ) = S(r, f), since ϕ is an entire function. It means that ϕ is a small

function of f .

Suppose that ϕ ≡ 0. Then α1α2f
2− 3(α1 +α2)ff ′+ 6(f ′)2 + 3ff ′′ ≡ 0. Rewrite

it as f ′′

f = ( f
′

f )′ + ( f
′

f )2, which yields a Riccati equation

t′ + 3t2 − (α1 + α2)t+ α1α2/3 = 0,

where t = f ′

f . Clearly, the equation has two constant solutions t1 = α1/3, t2 = α2/3.

We assume t 6≡ t1, t2. Then we have

1

t1 − t2
(

t′

t− t1
− t′

t− t2
) = −3.

Integrating the above equation yields

ln
t− t1
t− t2

= 3(t2 − t1)z + C,

where C is a constant. Therefore,
t− t1
t− t2

= e3(t2−t1)z+C .

This immediately yields

t = t2 +
t2 − t1

e3(t2−t1)z+C − 1
=
f ′

f
,

Note that the zeros of e3(t2−t1)z+C −1 are the zeros of f . If z0 is a zero of f with

the multiplicity k, then

k = Res[
f ′

f
, z0] = Res[t2 +

t2 − t1
e3(t2−t1)z+C − 1

, z0] =
1

3
,

which is a contradiction. Thus, either t ≡ t1 = α1/3 or t ≡ t2 = α2/3.

If t ≡ t1 = α1/3, then f(z) = c1e
α1
3 z. Substituting the form f(z) = c1e

α1
3 z into

the equation (1.2), we obtain

c31e
α1z + c1q(z)e

α1
3 z(e

α1
3 − 1) = p1e

α1z + p2e
α2z,

which implies that c31 = p1, c1q(e
α1
3 − 1) = p2 and α1 = 3α2.

Similarly as above, if t ≡ t2 = α2/3, then we can derive that f(z) = c2e
α2
3 z

satisfying c32 = p2, c2q(e
α2
3 − 1) = p1 and α2 = 3α1.
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In the following, based on the idea in [10, Theorem 1.1], we will consider the case

ϕ 6≡ 0. By Theorem C, one has

(3.6) T (r, f) = N1)(r,
1

f
) + S(r, f).

Differentiating (3.5) yields

(3.7) ϕ′ = α1α22ff ′ − 3(α1 + α2)(ff ′′ + (f ′)2) + 12f ′f ′′ + 3ff ′′′ + 3f ′f ′′.

From (3.5) and (3.7), we can obtain that

(3.8) f [A0f +A1f
′ +A2f

′′ +A3f
′′′] = f ′[B1f

′ +B2f
′′],

where
A0 = α1α2ϕ

′, A1 = −3ϕ′(α1 + α2)− 2ϕα1α2,

A2 = 3ϕ′ + 3ϕ(α1 + α2), A3 = −3ϕ,

B1 = −3ϕ(α1 + α2)− 6ϕ′, B2 = 15ϕ.

Obviously, all Ai (i = 0, 1, 2, 3), Bj (j = 1, 2) are small functions of f .

Suppose that z0 is a zero of f , not a zero of ϕ. It follows from (3.5) that

6(f ′)2(z0) = ϕ(z0) 6= 0, which implies that z0 is a simple zero of f . Then by

(3.8), we have

B1(z0)f ′(z0) +B2(z0)f ′′(z0) = 0.

Set

(3.9) A =
B1f

′ +B2f
′′

f
.

We claim that A is an entire function. Clearly, all the simple zeros of f are not

poles of f . Suppose that b0 is a multiple zero of f . By (3.5), we get b0 is also a

multiple zero of ϕ. So, b0 is a zero of B1 and a multiple zero of B2. Note that b0
is a pole of f

′

f and f ′′

f with multiplicity one and two, respectively. Thus, b0 is not

a pole of B1
f ′

f and B2
f ′′

f , which implies that b0 is not a pole of A. Thus, A is an

entire function. The claim is proved. Furthermore,

T (r,A) = m(r,
B1f

′ +B2f
′′

f
) = S(r, f).

Hence A is a small function of f . We consider two cases below.

Case 1. A = 0.

Then, B1f
′ +B2f

′′ = 0. Rewrite it as

f ′′

f ′
= −B1

B2
=

1

5
(α1 + α2) +

2

5

ϕ′

ϕ
.

By integrating the above equation, we have

f ′(z) = βe
1
5 (α1+α2)z,
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where β is a small function of f . Obviously, α1 + α2 6= 0. Otherwise, T (r, f ′) =

T (r, β) = S(r, f), a contradiction. We below consider two subcases.

Subcase 1.1. ϕ′ = 0.

The equation B1f
′ +B2f

′′ = 0 yields
f ′′

f ′
= −B1

B2
=

1

5
(α1 + α2).

By integrating the above equation, we derive that f ′(z) = H1e
1
5 (α1+α2)z, where H1

is a nonzero constant.

Integrating the function f ′ yields

f(z) = k1e
1
5 (α1+α2)z + k2,

where k1(6= 0), k2 are two constants. Obviously, k2 6= 0. Otherwise, f has no zeros,

which contradicts with (3.6). Substitute the form of f into the equation (1.2) yields

a3e
3
5 (α1+α2)z + a2e

2
5 (α1+α2)z

+ a1e
1
5 (α1+α2)z + k32 = p1e

α1z + p2e
α2z,

where a1, a2, a3 are small functions of f . Then, the above equation yields that

k2 = 0, a contradiction. Hence Subcase 1.1 can not occur.

Subcase 1.2. ϕ′ 6= 0.

By differentiating f ′ one and two times respectively, we have

f ′′ = H2e
1
5 (α1+α2)z, f ′′′ = H3e

1
5 (α1+α2)z,

where H2 and H3 are two small functions of f . The equation (3.8) implies that

A0f +A1f
′ +A2f

′′ +A3f
′′′ = 0.

Furthermore,

f = −A1f
′ +A2f

′′ +A3f
′′′

A0
= H0e

1
5 (α1+α2)z,

where H0 is a small function of f . So,

N(r,
1

f
) = N(r,

1

H0
) ≤ T (r,H0) = S(r, f),

which contradicts with (3.6). Thus, Subcase 1.2 can not occur.

Case 2. A 6= 0.

By (3.8) and (3.9), one has
A0f +A1f

′ +A2f
′′ +A3f

′′′

f ′
= A,

which yields that

(3.10) A0f + (A1 −A)f ′ +A2f
′′ +A3f

′′′ = 0.

Rewrite (3.9) as

Af −B1f
′ −B2f

′′ = 0.
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Differentiating the above equation as

(3.11) A′f + (A−B′1)f ′ − (B1 +B′2)f ′′ −B2f
′′′ = 0.

Combining (3.10) and (3.11) yields

(3.12) C0f + C1f
′ + C2f

′′ = 0,

where

C0 = A0B2 +A′A3, C1 = (A1 −A)B2 +A3(A−B′1), C2 = A2B2 −A3(B1 +B′2).

Obviously, Ci (i = 0, 1, 2) are small functions of f .

We consider two subcases again.

Subcase 2.1. C2 = 0.

It follows that C0 = C1 = 0. Otherwise, without loss of generality, suppose that

C0 6= 0. By (3.12), we have that C1 6= 0. Assume that ω0 is a simple zero of f . Then

ω0 is a zero of C1. Furthermore,

T (r, f) = N1)(r,
1

f
) + S(r, f) ≤ N(r,

1

C1
) + S(r, f) ≤ T (r, C1) + S(r, f) = S(r, f),

a contradiction. Thus, C0 = C1 = 0.

The fact C2 = 0 leads to

(3.13) 2ϕ′ + ϕ(α1 + α2) = 0.

If α1 + α2 6= 0, then ϕ = H4e
−α1+α2

2 z, where H4 is a nonzero constant. Therefore,

we have

m(r, ϕ) =
|α1+α2

2 |
π

r(1 + o(1)),

m(r, eα1z) =
|α1|
π
r(1 + o(1)),

m(r, eα2z) =
|α2|
π
r(1 + o(1)).

Note that ϕ is a small function of f . So eα1z, eα2z are also two small functions of

f . Rewrite (1.2) as

f3 = −q(z)∆f + p1e
α1z + p2e

α2z.

Therefore,

3T (r, f) = T (r, f3) = T (r,−q(z)∆f + p1e
α1z + p2e

α2z)

≤ T (r,∆f) + S(r, f) ≤ T (r, f) + S(r, f),

a contradiction.

Hence α1+α2 = 0. Then, (3.13) reduces to ϕ′ = 0. It implies that ϕ is a constant

and A0 = ϕ′α1α2 = 0. Together with C0 = 0, it is easy to deduce that A′ = 0 and A
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is also a constant. Therefore, B1 and B2 become two constants. Then the following

equation reduces to a constant coefficient homogeneous linear differential equation

Af −B1f
′ −B2f

′′ = 0.

Suppose that the characteristic equation B2λ
2 + B1λ − A = 0 has two distinct

roots λ1, λ2. Clearly, λ1, λ2 are nonzero constants. Then, by solving the above

equation, one derives

(3.14) f(z) = e1e
λ1z + e2e

λ2z.

Clearly, e1e2 6= 0. Otherwise f has no zeros, a contradiction. Substitute the form f

into (1.2), we have

(3.15)
e31e

3λ1z+e32e
3λ2z + 3e21e2e

(2λ1+λ2)z + 3e1e
2
2e

(λ1+2λ2)z

+ qe1(eλ1 − 1)eλ1z + qe2(eλ2 − 1)eλ2z = p1e
α1z + p2e

α2z.

Suppose that λ1 + λ2 6= 0. Observe that λ1 6= λ2. So 3λ1, 3λ2, 2λ1 + λ2, λ1 + 2λ2

are distinct from each other. Furthermore, by (3.15) and Borel’s Theorem, we easily

get the following two sets are identity

{3λ1, 3λ2, 2λ1 + λ2, λ1 + 2λ2} = {λ1, λ2, α1, α2},

which implies that 3λ2 = λ1 and 3λ1 = λ2. It is impossible. Thus, λ1 + λ2 = 0.

Rewrite (3.15) as

e31e
3λ1z + e32e

3λ2z + q1e
λ1z + q2e

λ2z = p1e
α1z + p2e

α2z,

where q1 = 3e21e2 + qe1(eλ1 − 1), q2 = 3e22e1 + qe2(eλ2 − 1) are two polynomials.

Then, it follows from the above equation that q1 = q2 = 0. Meanwhile, one has

3λ1 = α1, 3λ2 = α2

or

3λ1 = α2, 3λ2 = α1.

Furthermore, we obtain that e31 = p1 and e32 = p2 (or e31 = p2 and e32 = p1). Note

that

q1 = 3e21e2 + qe1(eλ1 − 1) = 0, q2 = 3e22e1 + qe2(eλ2 − 1) = 0.

By the above two equation, λ1 +λ2 = 0 and a calculation, we deduce that eλ1 = −1

and q reduces to a constant satisfying 3e1e2 − 2q = 0.

Now, we suppose that B2λ
2 + B1λ − A = 0 has a multiple root, say λ3. Then,

f(z) = (e3 + e4z)e
λ3z. Therefore, f just has one zero, a contradiction.

Subcase 2.2. C2 6= 0.

Combining (3.9) and (3.12) yields

(B2C0 +AC2)f + (C1B2 −B1C2)f ′ = 0.
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Suppose that C1B2 − B1C2 6= 0. It folllows B2C0 + AC2 6= 0. Assume that σ0 is a

simple zero of f . By the above equation, one has σ0 is also a zero of C1B2 −B1C2.

Then,

T (r, f) = N1)(r,
1

f
) + S(r, f) ≤ N(r,

1

C1B2 −B1C2
) + S(r, f)

≤ T (r, C1B2 −B1C2) + S(r, f) = S(r, f),

a contradiction. The above discussion forces that C1B2 − B1C2 = 0 and B2C0 +

AC2 = 0. By the definitions of C1, C2, B1, B2, a calculation leads to

(3.16) 8Aϕ′ − 5ϕA′ = −[4ϕA(α1 + α2) + 25α1α2ϕϕ
′]

and

(3.17) 15ϕA = [6(α1 + α2)2 − 25α1α2]ϕ2 − 21(α1 + α2)ϕϕ′ + 24(ϕ′)2 − 15ϕϕ′′.

Suppose that δ0 is a zero of ϕ with multiplicity s. The equation (3.17) implies s ≥ 2.

Furthermore, δ0 is a zero of ϕ2 and ϕϕ′ with multiplicity 2s and 2s−1, respectively.

Suppose that the Laurent expansions of ϕ at δ0 is as follows

ϕ(z) = µs(z − δ0)s + µs+1(z − δ0)s+1 + · · · ,

where µs(6= 0), µs+1 are constants. Then, a calculation yields

24(ϕ′)2−15ϕϕ′′ = [24(µs)
2s2−15(µs)

2s(s−1)](z−δ0)2s−2+θ2s−1(z−δ0)2s−1+· · · ,

where θ2s−1 is a constant. Obviously,

24µ2
ss

2 − 15µ2
ss(s− 1) = µ2

ss[9s+ 15] 6= 0,

which implies that δ0 is a zero of 24(ϕ′)2−15ϕϕ′′ with multiplicity 2s−2. Suppose

that δ0 is a zero of A with multiplicity l. Then, comparing the multiplicity of both

side of equation (3.17) at point δ0, we have s+ l = 2s− 2. So, s = l + 2.

Assume that l = 0. Then, s = 2 and A(δ0) 6= 0. Rewrite (3.16) as

(3.18) 8Aϕ′ = 5ϕA′ − [4ϕA(α1 + α2) + 25α1α2ϕϕ
′].

Clearly, δ0 is a simple zero of Aϕ′. However, δ0 is a multiple zero of 5ϕA′−[4ϕA(α1+

α2) + 25α1α2ϕϕ
′], a contradiction. Therefore, l ≥ 1.

Furthermore, δ0 is a zero of 4ϕA(α1 +α2) + 25α1α2ϕϕ
′ with multiplicity 2l+ 2.

Suppose that the Laurent expansions of A at δ0 is

A(z) = νl(z − δ0)l + νs+1(z − δ0)l+1 + · · · ,

Then,

8Aϕ′ − 5ϕA′ = νlµl+2[8(l + 2)− 5l](z − δ0)2l+1 + ξ2l+2(z − δ0)2l+2 + · · · ,

where ξ2l+2 is a constant. Then, δ0 is a zero of 8Aϕ′−5ϕA′ with multiplicity 2l+1,

since νlµl+2[8(l + 2) − 5l] 6= 0. So, the point δ0 is a zero of the left side function
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of (3.16) with multiplicity 2l + 1. On the other hand, δ0 is a zero of the right side

function of (3.16) with multiplicity at least 2l + 2, which is impossible. Therefore,

ϕ has no zeros.

If ϕ is not a constant, then, we can assume that ϕ = φeω(z), where φ is a

constant and ω( 6= 0) is an entire function. Then, the same argument as in Subcase

2.1 yields that eα1z and eα2z are two small functions of f . Furthermore, we can

derive a contradiction. Thus, ϕ is a constant. Plus (3.17), one has that A is also

a constant. Furthermore, it follows from (3.16) that α1 + α2 = 0. Similarly as the

above discussion, we can deduce the desired result.

Thus, we finish the proof of Theorem 1.1.

4. Proof of Theorem 1.2

Suppose that f is an entire solution of ρ2(f) < 1 to the equation (1.3). Obviously,

f is a transcendental function. By differentiating both sides of (1.3), one has

(4.1) 2ff ′ + (q(z)∆f)′ = α1p1e
α1z + α2p2e

α2z.

Combining (1.3) and (4.1) yields

(4.2) α2f
2 + α2q∆f − 2ff ′ − (q(z)∆f)′ = (α2 − α1)p1e

α1z.

By differentiating (4.2), we derive that

(4.3) 2α2ff
′ + α2(q∆f)′ − 2(f ′)2 − 2ff ′′ − (q(z)∆f)′′ = α1(α2 − α1)p1e

α1z.

It follows from (4.2) and (4.3) that

(4.4) ϕ1 = T1(z, f),

where

(4.5) ϕ1 = α1α2f
2 − 2(α1 + α2)ff ′ + 2ff ′′ + 2(f ′)2,

T1(z, f) = −α1α2q∆f + (α1 + α2)(q∆f)′ − (q∆f)′′.

If ϕ1 6≡ 0, then

1

f2
=

1

ϕ1
(α1α2 − 2(α1 + α2)

f ′

f
+ 2

f ′′

f
+ 2(

f ′

f
)2).

By (4.4)-(4.5), and Lemma 2.1, we have

(4.6) m(r,
ϕ1

f
) = m(r,

T1
f

) = S(r, f) and m(r,
ϕ1

f2
) = S(r, f).
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Combining N(r, 1f ) = S(r, f) and (4.6), we obtain

2T (r, f) = 2m(r,
1

f
) + S(r, f) = m(r,

ϕ1

f2
) + S(r, f)

≤ m(r,
ϕ1

f2
) +m(r,

1

ϕ1
) + S(r, f)

≤ T (r, ϕ1) + S(r, f) = m(r, ϕ1) + S(r, f)

= m(r,
ϕ1

f
) +m(r, f) + S(r, f) = T (r, f) + S(r, f),

which implies T (r, f) = S(r, f), a contradiction.

If ϕ1 ≡ 0, then by the similar reasoning as in Theorem 1.1 we can obtain

the conclusions (1) and (2). Below, we give the details. By ϕ1 ≡ 0, one has the

differential equation α1α2f
2 − 2(α1 + α2)ff ′ + 2ff ′′ + 2(f ′)2 = 0. Plus the fact

f ′′

f = ( f
′

f )′ + ( f
′

f )2, we can rewrite the above equation to a Riccati equation

t′ + 2t2 − (α1 + α2)t+ α1α2/2 = 0,

where t = f ′

f . Clearly, the equation has two constant solutions t1 = α1/2, t2 = α2/2.

Suppose the solution t 6≡ t1, t2. Then
1

t1 − t2
(

t′

t1 − t2
− t′

t1 − t2
) = −2.

Integrating the above equation yields

ln
t− t1
t− t2

= 2(t2 − t1)z + C,

where C is a constant. Therefore,
t− t1
t− t2

= e2(t2−t1)z+C .

This immediately yields

t = t2 +
t2 − t1

e2(t2−t1)z+C − 1
=
f ′

f
.

Note that the zeros of e2(t2−t1)z+C − 1 are the zeros of f . If z0 is the zero of f

with the multiplicity k, then

k = Res[
f ′

f
, z0] = Res[t2 +

t2 − t1
e2(t2−t1)z+C − 1

, z0] =
1

2
.

It is a contradiction. Thus, either t ≡ t1 = α1/2 or t ≡ t2 = α2/2.

If t ≡ t1 = α1/2, then f(z) = c1e
α1
2 z. Substituting f(z) = c1e

α1
2 z into (1.3), we

obtain

c21e
α1z + c1q(z)e

α1
2 z(e

α1
2 − 1) = p1e

α1z + p2e
α2z.

Moreover, we have c21 = p1, c1q(e
α1
2 − 1) = p2 and α1 = 2α2.

Similarly, if t ≡ t2 = α2/2, then we have f(z) = c2e
α2
2 z satisfying c22 = p2,

c2q(e
α2
2 − 1) = p1 and α2 = 2α1.

Thus, we finish the proof of Theorem 1.2.
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