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Abstract. In this paper, we consider the entire solutions of nonlinear difference equation
2+ q(2)Af = p1e®1% + pae®2?, where q is a polynomial, and p1,p2, a1, s are nonzero constants
with a1 # ag. It is showed that if f is a non-constant entire solution of p2(f) < 1 to the above
equation, then f(z) = eleale + 626%, where e and ez are two constants. Meanwhile, we give

an affirmative answer to the conjecture posed by Zhang et al in [18].
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1. INTRODUCTION AND MAIN RESULTS

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. In order to prove the main results, we will employ
Nevanlinna theory. Before to proceed, we spare the reader for a moment and assume
his/her familiarity with the basics of Nevanlinna’s theory of meromorphic functions
in C such as the first and second fundamental theorems, and the usual notations
such as the characteristic function T(r, f), the prozimity function m(r,f) and
the counting function N(r,f). S(r, f) denotes any quantity satisfying S(r, f) =
o(T(r,f)) as 7 — o0, except possibly on a set of finite logarithmic measure(see
e.g., [16, [I'7]). We also need the following definition.

Definition 1. The order p(f), hyper-order ps(f) of the meromorphic function f(z)
are defined as follows:
p(f) = limsup 7log1T(r, f), p2(f) = limsup loglog T'(r, f) .
r—00 ogr r—00 logr
Characterizing complex analytic solutions of differential equations has a topic

of a long history (see e.g., the monograph [7]). It seems to us that Yang firstly
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started to study the the existence and uniqueness of finite order entire solutions of

nonlinear differential equation of the form

L(f)(2) = p(2)["(2) = h(z), n = 3,

where L(f) is a linear differential polynomial in f with polynomial coefficients, p
is a non-vanishing polynomial and A is an entire function. Recently, the difference
analogues to Nevanlinna theory was established by Halburd and Korhonen [3] [4],
Chiang and Feng [2], independently. With the help of this tool, many scholars have
studied the solvability and existence of meromorphic solutions of some non-linear
difference equations (see e.g., [1, [, [], [8] — [15]).
In 2010, Yang and Laine [15] considered the following difference equation.
Theorem A. A non-linear difference equation
obiz _ p—biz
R

where q(z) is a non-constant polynomial and b,c € C are nonzero constants, does

fs(z) +q(2)f(z+1) =csinbz =¢

not admit entire solutions of finite order. If q(z) = q is a nonzero constant, then
the above equation possesses three distinct entire solutions of finite order, provided
that b = 3nm and ¢® = (—1)"T1c227/4 for a nonzero integer n.

The follow-up research on this aspect was done by Liu and Lii et al. In [I2], they

considered the following more general difference equation
(1.1) f"(2) + q(2)Af(z) = p1e®'” + p2e™??,

where n is a positive integer, Af(z) = f(z+ 1) — f(2), ¢(z) is a polynomial, and
p1, P2, 1, Qo are nonzero constants with ay # ay. More specifically, Liu and Lii et
al. proved the following.

Theorem B. Let n > 4 be an integer, q be a polynomial, and p1,ps, a1, s be
nonzero constants such that ay # as. If there exists some entire solution f of finite
order to , then q(z) is a constant, and one of the following relations holds:
(D). f(z) = cre v, and ci(exp 5+ — 1)q = p2, a1 = nag,

(2). f(z) = coe v, and ca(exp 22 —1)q = p1, o = nay, where c1, ¢y are constants
satisfying c¢; = p1, 3 = pa.

The study for the case n = 3 was due to Zhang et al. [I8], who obtained the
following result.

Theorem C. Let g be a polynomial, and p1,ps2, a1, s be nonzero constants such

that aq # a. If [ is an entire solution of finite order to the following equation:
(1.2) 24 q(2)Af = pre®® 4 pye®?*,

then q(z) is a constant, and one of the following relations holds:
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(1) T(r.f) = No(r, §) + 5(r.1),

(2) f(2) =

(3) f(z) = cae’ %, and ca(exp 2 — 1)g = p1, as = 3oy,
where Nyy(r,

=cie 5, and ci(exp G — 1)g = p2, a1 = 3ay,

) denotes the counting function corresponding to simple zeros of f |
and c1, co are constants satisfying c; = p1, 3 = pa.

Remark 1. For the cases (2) and (3) in Theorem C, it is easy to see that 0 is
a Picard value of f and N(r,1/f) = 0. So T'(r, f) # Ny(r, %) +S(r, f) = S(r, f).
It is natural to ask whether the case (1) occurs or not. The answer is positive. It is
showed by the following example, which can be found in [I8].

Example 1. Consider f(z) = e™* + e~ ™ = 2isin(miz). Then f is a solution of

the following equation:
3 3miz —3miz
) + *A ’ =e + e .

Obviously, T'(r, f) = Nyy(r, %) + S(r, f). So, the case (1) occurs.

In Theorem C, it seems that the case (1) is unnatural. Meanwhile, Zhang et al.
observed that oy + o = 3mi + (—37i) = 0 in Example 1. This observation leaded
Zhang et al. to pose the following conjecture.

Conjecture. If oy # ag, a1 + as # 0, then the conclusion (1) of Theorem
C' is impossible. In fact, any entire solution f of must have 0 as its Picard
exceptional value.

Remark 2. The conjecture has been studied by many researchers (see [I} 9]).
In 2017, Latreuch in [9] has gave an affirmative answer to the conjecture. However,
when a3 + a2 # 0 does not hold, Latreuch did not give the specific form of the
meromorphic solution of . In Example 1, we further observe that f(z) = e™* +
e~ ™% = 2jsin(miz). In [I], one can not get m(r, \2f —n2f") = O(logr) in the proof
of Theorem 1.1 directly. This leads us to ask whether any entire solution of the
equation always is this form when Case (1) occurs. In the present paper, we

focus on the problem and give an affirmative answer by the following theorem.

Theorem 1.1. Let q be a polynomial, and p1, p2, a1, as be nonzero constants such
that an # ag. If f is an entire solution of pa(f) < 1 to the equation , then
q(2) is a constant, and one of the following relations holds:

(1) f(z) = e1e 3 +ege 5, where e and ey are two nonzero constants satisfying
e3 =p1, €3 =py (orel =pa, €3 =p1), 3e1ea—2¢ =0, a; +as =0 and e = —1;

(2) f(2) = c1e™ 5, and ¢y (exp & G —1)g = p2, a1 = 3ay;

(3) f(2) = c2e” %, and cyexp ¢ —1)g=p1, a2 =3a1.
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Remark 3. Clearly, Example 1 satisfies Case (1) of Theorem 1.1, where oy =
3mi,ap = —3mi; e = e = 1,p1 = po = 1; ¢ = 3/2. Next we give two examples to
show Cases (2) and (3) indeed occur in Theorem 1.1

Example 2. Consider the function f(z) = €™, which is a nonconstant entire

solution of the following equation
1 _ .
fB(Z) _ §Af(z) — 6371'12 4 ewzz’
where ay = 3mi = 3an, ¢c1 = 1,¢ = —1/2,ps = 1. Thus, the case (2) occurs.
Example 3. Consider the function f(z) = 3™  which satisfies the following
equation
1 ) )
fS(Z) _ iAf(z) — eS‘n'zz + egmz)
where ag = 9mi = 3ay, ca = 1,qg = —1/2,p; = 1. Therefore, the case (3) occurs.

By Theorem we get an immediate conclusion as follows.

Corollary 1. Let q be a polynomial, and p1,p2, a1, s be nonzero constants such

that an # ao. If f is a nonconstant entire solution of pa(f) < 1 to the equation
, then q(z) is a constant, and
gz

f(z) = ele% +ege 5,

where e1 and ey are two constants.

At the end, we turn attention to the question: What will happen if we replace
the function f3 by f? in the equation (1.2). After studying this question, we derive

some similar results to Theorem C as follows.

Theorem 1.2. Let q be a polynomial, and p1,p2, a1, s be nonzero constants such

that a; # ag. If [ is an entire solution of pa(f) < 1 to the following equation
(1.3) 2+ a(2)Af = pre®® + pe™®?,

and satisfying N (r, %) = S(r, f), then q(z) is a constant, and one of the following
relations holds:

(1) f(2) = c1e” %, and ¢ (exp G —1)g = p2, a1 = 2ay,

(2) f(2) = e 3, and ca(exp G — 1)qg = p1, az = 21, where ¢y, cy are

constants satisfying ¢? = p1, c3 = pa.

We below offer an example to show that the condition N(r, %) = S(r, f) is
necessary in Theorem
Example 4. Consider the function f(z) = —2—+/2e™*4+/2e~™%* which satisfies
the equation
2(2) — 2Af(2) = 2€2™% 4 2e7 272,
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A calculation yields that T'(r, f) = 2r(1 4 o(1)) and N(r,1/f) = 2r(1 + o(1)).
Clearly, N(r, %) # S(r, f) and f does not satisfy any conclusion of Theorem

2. SOME LEMMAS

Before to the proofs of main theorems, we firstly give the following result, whcih

is a version of the difference analogue of the logarithmic derivative lemma.

Lemma 2.1 ([]). Let f(z) be a meormorphic function of p2(f) < 1, and let

c € C\{0}. Then
f(Z+C))_0( T(Taf) )
f(z) - frlfpz(f)*f ’

outside of an exceptional set of finite logarithmic measure.

m(r,

In addition, by applying Lemma 2.1 and the same argument as in [8, Theorem
2.3], we get the following lemma, which is a version of the difference analogue of

the Clunie lemma. The details are omitted here.

Lemma 2.2. Let f be a transcendental meromorphic solution of pa(f) < 1 to the
difference equation

H(z, [)P(z f) = Q(z, f),
where H(z, f), P(z, f), Q(z, f) are difference polynomials in f such that the total
degree of H(z, f) in f and its shifts is n, and that the corresponding total degree of
Q(z, f) is <n. If H(z, f) contains just one term of maximal total degree, then for
any € >0,

m(r, P(z, f)) = S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

3. PROOF oF THEOREM [L.1]

Suppose that f is an entire solution of pa(f) < 1 to Eq (1.2). Obviously, f is a
transcendental function. By differentiating both sides of (1.2)), one has

(3.1) 32+ (q(2)Af) = crp1e™® + aopre®??.
Combining and (3.1)) yields
(3.2) oo f? + agqAf = 3f%f = (¢(2)Af) = (ag — a1)p1e™*.

By differentiating (3.2)), we derive that
(3:3) Baaf’f' + as(gAf) = 6f(f")* = 312" — (¢(2)Af)" = ar (g — a1)pre™*.
It follows from (3.2)) and (3.3) that

(3.4) fe=T(z[),
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(3.5) ¢ =ajazf?—3(ar +a2)ff +6(f) +3ff",

T(z, f) = —a102gAf + (a1 + a2)(qAf) — (qAf)".
Note that T'(z, f) is a differential-difference polynomial in f of degree 1. Then by
applying Lemma to the equation , one has m(r,¢) = S(r, f). Further,
T(r,0) = m(r,) = S(r, f), since ¢ is an entire function. It means that ¢ is a small
function of f.
Suppose that ¢ = 0. Then ajasf? —3(ay +ao)ff/ +6(f")%+3ff" = 0. Rewrite

it as fTH = (fT,)’ + (fT/)?, which yields a Riccati equation

t/ + 3t2 — (Oél + Oég)t + 041042/3 = O,

where t = fT/ Clearly, the equation has two constant solutions t; = «1/3, ts = as/3.
We assume t # t1,t5. Then we have
1 t/ t/
t1—t2 t—11 t—1to

Integrating the above equation yields

)= 3.

=3(t2 —t1)z + C,

where C' is a constant. Therefore,
=t _ aa—t)ste,
t—to

This immediately yields

lo —t _r

t: t2 + 63(t27t1)z+c — 1 - f )

Note that the zeros of e3(*2=11)2+C _ 1 are the zeros of f. If zy is a zero of f with
the multiplicity &, then
!
k= Res[fT,zo] = Res[ta + %,zo] = %,
which is a contradiction. Thus, either t =t; = a1 /3 or t = t2 = a2/3.
If t =t = a1 /3, then f(z) = c1e3 %, Substituting the form f(z) = ¢ * into
the equation , we obtain

@ aqg

Be® feyg(z)e® F(ed — 1) = pre™® + pye??,

which implies that ¢§ = py, clq(e%1 —1) = ps and a3 = 3as.

az

Similarly as above, if t = t2 = a9/3, then we can derive that f(z) = cqe=

satisfying ¢3 = pa, 02q(e%‘2 —1) =p; and a3 = 3a;.
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In the following, based on the idea in [I0, Theorem 1.1], we will consider the case
@ # 0. By Theorem C, one has

(3.6) T(r, f) = Ny (r, %) +5(r ).

Differentiating yields

(3.7) ¢ =a@an2ff =31 + ) (ff"+ (f))+12f [+ 3f " +3ff".
From and (3.7), we can obtain that

(3.8) flAof + Auf + Ao f" + As f"] = f'[BLf + Baf"],

where
Ag = ajany’, Ay = =3¢ (a1 + a3) — 2paias,
Ay =3¢ +3p(a1 + az), Az = =3¢,
By = —3p(a1 +az) — 6¢', By = 15¢.
Obviously, all A; (i =0,1,2,3), B; (j = 1,2) are small functions of f.

Suppose that zg is a zero of f, not a zero of ¢. It follows from that
6(f)%(z0) = ¢(20) # 0, which implies that z is a simple zero of f. Then by
, we have

Bi(20)f'(20) + B2(20) f"(20) = 0.
Set
_ Bif' + Baf”
7 .

We claim that A is an entire function. Clearly, all the simple zeros of f are not
poles of f. Suppose that by is a multiple zero of f. By (3.5), we get by is also a

multiple zero of ¢. So, by is a zero of B; and a multiple zero of By. Note that by

(3.9) A

is a pole of fTI and fTH with multiplicity one and two, respectively. Thus, by is not
a pole of BlfT/ and BngH, which implies that by is not a pole of A. Thus, A is an

entire function. The claim is proved. Furthermore,

7(r,4) = m(r, 2LEEL) 50 ),

Hence A is a small function of f. We consider two cases below.
Case 1. A=0.
Then, By f' + Baf” = 0. Rewrite it as
f/l B Bl B 1 2 S0/
F B, Mt
By integrating the above equation, we have
() = pediertear,
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where 8 is a small function of f. Obviously, a; + as # 0. Otherwise, T'(r, f')

T(r,B) = S(r, f), a contradiction. We below consider two subcases.

Subcase 1.1. ¢’ = 0.
The equation By f' + Bof” = 0 yields
" B _1

A

By integrating the above equation, we derive that f'(z) = Hies(@1ta2)z where H;

is a nonzero constant.

Integrating the function f’ yields

F(2) = kyeblertons 4 gy,

where k1(# 0), ko are two constants. Obviously, k2 # 0. Otherwise, f has no zeros,
which contradicts with (3.6)). Substitute the form of f into the equation (|1.2)) yields

age%(a1+az)z 1 gges(artaz)z

1
+ ales(oq-‘raz)z + k;’ _ plealz +p2€azz,

where a1, a0,a3 are small functions of f. Then, the above equation yields that

ke = 0, a contradiction. Hence Subcase 1.1 can not occur.
Subcase 1.2. ¢’ # 0.

By differentiating f’ one and two times respectively, we have

1 1
f// _ ]{265(041+o¢2)z7 f/l/ — ngs(aﬁ»ag)z,

where Hy and Hj are two small functions of f. The equation (3.8) implies that

Aof + Arf + Ao f" + Asf" = 0.

Furthermore,
f _ 7A1f' + AQfN + A3f/” _ Hoe%(alJraQ)z
Ap ’
where Hy is a small function of f. So,
1 1
N(T, ) = N(Ta 7) < T(rvHO) = S(T,f),

f Hy
which contradicts with . Thus, Subcase 1.2 can not occur.
Case 2. A #0.
By and , one has
Aof + A f' + Ao f" + Asf” A
7 )

which yields that
(3.10) Aof + (A1 — A)f + Ao f”" + Az f" = 0.

Rewrite (3.9) as
Af = Bif' = Baf" = 0.
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Differentiating the above equation as

(3.11) A'f+ (A= BY)f — (By + By "~ Bof" =0.
Combining and yields

(3.12) Cof +Cif + Caf” =0,

where

Co=AoBas + A'A3, C1=(A; —A)By+ A3(A— B}), Cy= AsBy — A3(B1 + Bj).

Obviously, C; (i = 0,1,2) are small functions of f.

We consider two subcases again.

Subcase 2.1. C5 = 0.

It follows that Cy = C7 = 0. Otherwise, without loss of generality, suppose that
Cy # 0. By , we have that C; # 0. Assume that wy is a simple zero of f. Then

wp is a zero of Cy. Furthermore,

T(r, f) = Nyy(r, }) 4 S(r. f) < N(r. C%) 1+ S(r f) < T(r,C1) + S(r. f) = S(r. f),

a contradiction. Thus, Cy = C; = 0.
The fact Cy = 0 leads to

(3.13) 20" + p(ag + az) = 0.

If a; + ag # 0, then ¢ = H46*01J2rm2 # where Hy is a nonzero constant. Therefore,

we have
| ajtag |

m(r,p) = —2—r(1+o(1)),

m(r,e*?) = %r(l +0(1)),

m(r,e*??) = @r(l + 0(1)).

Note that ¢ is a small function of f. So e*1#, e*2# are also two small functions of
f- Rewrite as
£ = —a(2)Af +pre®™® + ppe®.
Therefore,
3T(r, f) = T(r, f?) = T(r, —q(2) Af + pre®* + pae®2*)
<T(r,Af)+S(r, f) <T(r, )+ S(r, f),

a contradiction.

Hence a; +a9 = 0. Then, reduces to ¢’ = 0. It implies that ¢ is a constant

and Ag = ¢’ ajas = 0. Together with Cy = 0, it is easy to deduce that A’ = 0 and A
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is also a constant. Therefore, By and By become two constants. Then the following

equation reduces to a constant coefficient homogeneous linear differential equation
Af — B1f — Bof’ = 0.

Suppose that the characteristic equation BoA? + BiA — A = 0 has two distinct
roots A1, Ag. Clearly, Ay, Ao are nonzero constants. Then, by solving the above

equation, one derives
(3.14) f(2) = e1eM* + ege??.

Clearly, ejes # 0. Otherwise f has no zeros, a contradiction. Substitute the form f

into (1.2)), we have
(3.15) e3e3MF pededher 36%626(2)\1+)\2)Z + 3616%6(A1+2)\2)z
3.15
+ ger(eM — 1)eM? + gea(e? — 1)er2* = pre®? 4 pye2?,

Suppose that A1 + Ay # 0. Observe that A\; # Ao, So 3A1, 32, 2X1 + A2, A1+ 2X2
are distinct from each other. Furthermore, by (3.15)) and Borel’s Theorem, we easily

get the following two sets are identity
{3A1, 3A2, 2A1 + A2, A1+ 2X2} = {1, A2, a1, az}),

which implies that 3As = A and 3A\; = Ag. It is impossible. Thus, A1 + Ay = 0.
Rewrite (3.15)) as

6‘:1363)\12 + 6%63)\22 4 qle)\lz 4 q26)\2z — plealz —l—erO‘QZ,

where ¢ = 3e2ey + gei(eM — 1), qo = 3ede; + gea(e?? — 1) are two polynomials.

Then, it follows from the above equation that ¢; = go = 0. Meanwhile, one has
3)\1 = Qq, 3>\2 = Q2

or
3)\1 = (9, 3)\2 = Q1.
Furthermore, we obtain that ef = p; and e3 = py (or €3 = py and €3 = p;). Note
that
_ 2 Al _ — 2 >\2 —_—
q1 = 3ejes +qer(e™ —1) =0, g2 = 3eser + gea(e™? — 1) = 0.

By the above two equation, A\; + Ay = 0 and a calculation, we deduce that e’ = —1
and ¢ reduces to a constant satisfying 3eje; — 2¢g = 0.

Now, we suppose that ByA? + ByA — A = 0 has a multiple root, say As3. Then,

f(2) = (e3 + eqz)e***. Therefore, f just has one zero, a contradiction.
Subcase 2.2. Cy # 0.

Combining (3.9) and (3.12)) yields

(BQCO -+ ACQ)f -+ (ClBQ — Blcg)fl =0.
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Suppose that Cy By — B1Cy # 0. It folllows BoCy + ACs # 0. Assume that og is a
simple zero of f. By the above equation, one has oy is also a zero of C1 By — B1Cs.
Then,

1 1
T(r, f) = Nyy(r, ?) +8(r, f) < N(r, CiBy — BiCs

<T(r,CiBy — B1C) + S(r, f) = S(r, f),
a contradiction. The above discussion forces that C1 By — B1Cy = 0 and ByCy +
AC5 = 0. By the definitions of Cy, Cy, By, Bs, a calculation leads to

)+5(r, f)

(3.16) 8AY' — b A’ = —[4pA(a1 + a2) + 25a1a2p¢]
and
(3.17) 150A = [6(a1 + a2)? — 25a100]0? — 21 (0 + o)y’ + 24(¢")? — 150"
Suppose that §y is a zero of ¢ with multiplicity s. The equation implies s > 2.
Furthermore, &y is a zero of ¢? and oy’ with multiplicity 2s and 2s — 1, respectively.
Suppose that the Laurent expansions of ¢ at dg is as follows

0(2) = ps(z = 00)° + prsra(z — G0)* ' 4+,
where ps(#£ 0), ps41 are constants. Then, a calculation yields
24(¢")? — 159" = [24(11s)*s* —15(ps5)*s(s = 1) (2= 00)** ™+ 051 (2 =80)** " 4+ -,
where 6551 is a constant. Obviously,

24p2s% — 15p2s(s — 1) = p?s[9s + 15] # 0,

which implies that dy is a zero of 24(¢’)? — 15¢¢"” with multiplicity 2s — 2. Suppose
that dg is a zero of A with multiplicity {. Then, comparing the multiplicity of both
side of equation at point dg, we have s +1=2s —2. So, s =1 + 2.

Assume that [ = 0. Then, s =2 and A(dy) # 0. Rewrite (3.16) as

(3.18) 8Ap' = bpA' — [4pA(ay + ag) + 25a1azpy’].

Clearly, dy is a simple zero of Ayp’. However, d is a multiple zero of 50 A’ —[4p Aoy +
ag) + 2501 az¢9¢’], a contradiction. Therefore, [ > 1.
Furthermore, dg is a zero of 4pA(ay + ag) + 251 aapp’ with multiplicity 21 4 2.

Suppose that the Laurent expansions of A at Jg is
A(2) = vz — 60) + vep1(z — 6o) 4
Then,
8AY — 5 A" = v o[8(1 4+ 2) — 5] (2 — 60)* ! + Eorpa(z — 6) 22+,

where ;15 is a constant. Then, d is a zero of 8Ayp’ —5p A’ with multiplicity 2741,
since vy 42[8(1 + 2) — 5l # 0. So, the point g is a zero of the left side function
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of with multiplicity 2/ + 1. On the other hand, dq is a zero of the right side
function of with multiplicity at least 2] + 2, which is impossible. Therefore,
© has no zeros.

If ¢ is not a constant, then, we can assume that ¢ = ¢e“(*), where ¢ is a
constant and w(# 0) is an entire function. Then, the same argument as in Subcase
2.1 yields that e“** and e*?* are two small functions of f. Furthermore, we can
derive a contradiction. Thus, ¢ is a constant. Plus , one has that A is also
a constant. Furthermore, it follows from that a1 + ag = 0. Similarly as the
above discussion, we can deduce the desired result.

Thus, we finish the proof of Theorem

4. PROOF OF THEOREM

Suppose that f is an entire solution of p2(f) < 1 to the equation (1.3)). Obviously,
f is a transcendental function. By differentiating both sides of (1.3)), one has

(4.1) 2"+ (a(2)Af) = a1p1e™* + agpre™?*
Combining (1.3]) and (4.1]) yields
(4.2) azf? + aaqAf = 2f ' — (q(2)Af) = (az — a1)p1e®**

By differentiating (4.2]), we derive that
(4.3)  2a9ff' +a2(qAf) = 2(f) = 2f " — (q(2)Af)" = ar(aa — an)pre™
It follows from and ( . ) that

(44) Y1 = Tl (Zv f)7
where
(4.5) o1 =onaof? —2(o1 + o) ff + 2 +2(f)?,

Ti(z, ) = —naeqAf + (1 + a2)(qAf) — (gAf)".

If 1 # 0, then

1 1 f/ f/l fl
F = S01(041&2—2(0&1'1-062)'](, +27+2(f) )
By -, and Lemma 2.1, we have
46 mE)=mr ) =500 f) and mlr, 2 = S ).

f f e

55



F. LU, C. LI AND J. XU
Combining N(r, $) = S(r, f) and (4.6), we obtain

2T(r, f) = 2m(r, l) + S(r, f) = m(r, ﬂ) + S(r, f)

f f?
< m(r,%) + m(r, é) +S(r, f)
< T(rye1) + S(r, f) =m(r, 1) + S(r, f)

m(r, %) +m(r, f) + S(r, f) = T(r, f) + S(r, f),

which implies T'(r, f) = S(r, f), a contradiction.

If o1 = 0, then by the similar reasoning as in Theorem 1.1 we can obtain
the conclusions (1) and (2). Below, we give the details. By ¢1 = 0, one has the
differential equation ajasf? — 2(ay + o) ff' + 2ff" + 2(f)? = 0. Plus the fact

fTH =( fTI)’ + (fT/)Q, we can rewrite the above equation to a Riccati equation
t 22 — (a1 + ao)t + anae/2 =0,

where t = fT, Clearly, the equation has two constant solutions t1 = a1 /2, to = aa/2.
Suppose the solution t # t1,t5. Then
1 ( t/ t
t17t2 tl*tQ t17t2
Integrating the above equation yields
t—1t
n
t—to

where C' is a constant. Therefore,

)= —2.

1

=2(t2 —t1)z + C,

-t _ eQ(tg—tl)z—i-C
t—ty '
This immediately yields

- log — 11 _f
t = t2 + 62(t2—t1)z+07_ 1 — 7

Note that the zeros of e2(t2=%1)2+C _ 1 are the zeros of f. If zg is the zero of f
with the multiplicity k, then

f/ to —t1 1
k= ReS[?Zo] =Reslts + e ol = 5

It is a contradiction. Thus, either t =t; = a1 /2 or t = to = /2.
If t =t = /2, then f(z) = cie 2 %. Substituting f(z) = cie® * into (1.3), we

obtain

e+ erg(2)e T (€T —1) = pre™7 ot
Moreover, we have ¢? = p1, clq(e% —1) = po and a1 = 2as.
Similarly, if ¢ = to = ag/2, then we have f(z) = Coe 57 satisfying ¢3 = po,
a2
caq(e® —1) =p; and ag = 2.
Thus, we finish the proof of Theorem [1.2
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