АСТРОФИЗИКА

TOM 29

ДЕКАБРЬ, 1988

выпуск з

УДК: 52-32-337

ГРАВИТИРУЮЩИЕ КОНФИГУРАЦИИ С МАГНИТНЫМ ПОЛЕМ. II. ТЕОРЕМА РИМАНА И ТВЕРДОТЕЛЬНОЕ ВРАЩЕНИЕ

О. В. КРАВЦОВ, С. Н. КОПЫЧКО Поступила 20 августа 1987 Принята к печати 28 февраля 1988

Исследуются вращающиеся с угловой скоростью ω гравитирующие конфигурации с магнитиым полем и внутренним движением с постоянной завихренностью ξ . Показано, что теорема Римана, согласно которой ω и ξ лежат в одной из главных плоскостей вландсонда, остается в силе. Твердотельно вращающиеся конфигурации рассматриваются как предельный случай объектов с внутренним движением. Доказана теорема околлинеарности векторов ω и плотности J влектрического тока. Получены условия равновесия вландсондальных форм. Выяснено, что существует предельная сплюснутость $f=1-(a_3/a_1)\lesssim 0.4$, магнитное поле и угловая екорость однозначно выражаются через отношения полуосей вландсонда, в случае $a_1+a_2+a_3$ магнитное поле не имеет осевой симметрии. Показано, что тороидальное поле не допускает существования трехосных вландсондов. Найдены магнитные моменты, создаваемые поверхностным током.

1. Введение. В работе [1] было показано, что замкнутая система уравнений магнитогидродинамики допуокает существование самогравитирующихся вылипсоидов с внутренними движениями и однородной завихренностью (вылипсоиды Римана) и найдены соответствующие магнитные поля, являющиеся точными решениями задачи. С точки зрения современных представлений о происхождении магнитных полей [2, 3] твердотельно вращающиеся конфигурации логично рассматривать как предельный случай объектов с внутренними движениями. В связи с этим результаты [1] и подход, используемый в [1], в данной работе применяются для исследования твердотельно вращающихся трехосных вылипсоидов. Сначала доказывается справедливость теоремы Римана [4] для замагниченных вылипсоидов с внутренними движениями. Далее пожазывается, что для твердотельно вращающихся жонфигураций верен более «жесткий» аналог

этой теоремы: векторы плотности тока и угловой скорости © должны бытьколлинеарн... Это ысключает, жак шоказано, возможность «наклонного»- вращения, при котором о не совпадает ни с одной из главных осей инерции. Вывод не очевидный, поскольку теорема Лихтенштейна [5] о существовании плоскости симметрии для объектов с магнитным полем никем не доказана.

Необходимо отметить, что наиболее полное изучение твердотельно зращающихся эллипсоидов с магнитным полем было проведено в работах [6, 7]. Однако далеко не все аспекты теории заматниченных эллипсоидальных конфигураций были рассмотрены. Данная работа посвящена исследованию этих вопросов на основе подхода [1]. Мы оставляем все обозначения работы [1] без изменения.

2. Теорема Римана для эллипсоидальных форм с магнитным полем. Теорема Римана утверждает [4], что равновесие однородных эллипсоидов возможно в двух случаях: либо завихренность ξ внутреннего движения и утловая скорость ψ объекта параллельны и направлены вдоль одной из главных осей эллипсоида, либо они не параллельны, но лежат в одной из главных плоскостей эллипсоида.

Покажем, что эта теорема остается в силе и при наличии магнитного поля.

Матричное уравнение (32) в [1], спределяющее стационарное равновесие объекта, с учетом выражения для магнитного поля (формулы (35), (37) в [1]), имеет вид

$$A\Lambda^{2} + \Omega^{2}A + (t\Xi - 2\Omega) A\Lambda = -k\Phi A + A^{-1}\delta, \tag{1}$$

здесь $\delta=2\rho_c/\rho$, $k=2\pi G\rho$, $t=w_Hw_k$ — отношение плотности энергии магнитного поля к плотности кинетической энергии внутре ннего дви жения (то есть относительно вращающихся главных осей эллипсоида) и $\Xi=-(A\Lambda A^{-1}+A^{-1}\Lambda A)$ — антисимметричная матрица завихренно сти $\left(\xi_l=\frac{1}{2}\,\varepsilon_{lkl}\Xi_{kl}\right)$.

В рассматриваемой системе координат диатональные и недиагональные компоненты (1) имеют вид (ниже i, j, $k=1,2,3,\ i\neq j\neq k$, по повторяющимся индексам в (2) суммирования нет)

$$-a_{i}(\lambda_{j}^{2} + \lambda_{k}^{2} + \omega_{j}^{2} + \omega_{k}^{2}) + \omega_{k}\lambda_{k}\theta_{k}a_{j} + + \omega_{j}\lambda_{j}\theta_{j}a_{k} = -k\Phi_{i}a_{i} + (\delta/a_{i}),$$
(2a)

$$a_i \lambda_i \lambda_j + a_j \omega_j \omega_i - a_k \lambda_i \omega_j \theta_j = 0, \qquad (26)$$

$$a_i \omega_i \omega_j + a_j \lambda_i \lambda_i - a_i \lambda_j \omega_i \theta_i = 0, \qquad (2B)$$

где обозначено $\theta_i = 2 - (t \xi_l | \omega_i)$, $\Phi_l = \Phi_{li}$ и, как и ранее,

$$\omega_{l} = \frac{1}{2} \, \varepsilon_{ikl} \, \Omega_{kl}, \quad \lambda_{l} = \frac{1}{2} \, \varepsilon_{ikl} \Lambda_{kl}.$$

Разделив уравнения (26) и (2в) на a_k и используя соотношение $\lambda_i = -\xi_i \frac{a_i/a_k}{1+(a_i/a_k)^2}$, с помощью влементарных преобразований приводим к виду

$$a^{2}\xi_{l}(\xi_{l}(1-t)+2\omega_{l})-a^{2}\xi_{l}(\xi_{l}(1-t)+2\omega_{l})+2a_{k}^{2}(\xi_{l}\omega_{l}-\xi_{l}\omega_{l})=0.$$
 (3)

Определитель системы уравнений (3) относительно величин a_k^2 имеет вид

$$\Delta \equiv 2\xi_1\xi_3b_2^2[\xi_1\omega_3] + 2\xi_2\xi_3b_1^2[\xi_3\omega_2] + 2\xi_1\xi_2b_3^2[\xi_2\omega_1] - 8[\xi_1\omega_2][\xi_2\omega_3][\xi_3\omega_1],$$

 rae $b_i = (1-t)\xi_i + 2\omega_i$ in $[\xi_i\omega_k] = \xi_i\omega_k - \xi_k\omega_i$.

Для раврешимости системы (3) необходимо, чтобы втот определитель обращался в нуль. Легко увидеть, что это возможно только в случаях: 1) когда равна нулю лишь одна пара компонентов $\xi_i = \omega_i = 0$; ξ_k , $\omega_k \neq 0$; $(i \neq j \neq k)$; 2) когда отлична от нуля лишь одна пара компонентов ξ_i , $\omega_i \neq 0$, $\xi_j = \xi_k = \omega_j = \omega_k = 0$; 3) когда $\xi_1 = \xi_2 = \xi_3$, $\omega_1 = \omega_2 = \omega_3$; непосредственно из уравнений (3) видно, что это соответствует сфере и эквивалентно предыдущему при $\alpha_1 = \alpha_2 = \alpha_3$. Первый случай означает, что векторы ξ и ω лежат в одной из главных плоскостей вллипсоида, что отвечает I-III эллипсоидам Римана, а второй—соответствует S-эллипсоидам Римана, поскольку ξ и ω коллинеарны и лежат на одной из главных осей [4]. Тем самым теорема Римана доказана.

Заметим, что поскольку плотность J влектрического тока и завихренность $\bar{\xi}$ параллельны (соотношения (36) в [1]), то можно ожидать, что в предельном случає твердотельного вращения будет справедлива подобная теорема, в которой роль $\bar{\xi}$ будет играть \bar{J} . Покажем, что это так.

3. Теорема о коллинеарности векторов плотности электрического тока и угловой скорости. Полагая в общем решении для магнитного поля (формулы (27), (29) в [1]) матрицу $\Lambda=0$, получаем выражение для напряженности магнитного поля для случая твердотельного вращения

$$\vec{H} = Q\vec{r} = \rho A D A^{-1} \vec{r}, \tag{4}$$

где антисимметричная матрица $D = A_0^{-1} Q_0 A_0/\varrho_0$ задает начальное маг-

нитное поле. Вводя матрицу плотности тока $I=-\frac{c?}{4\pi}(ADA^{-1}+A^{-1}DA)$, запишем уравнение (32) работы [1] для стационарного-случая (с учетом $\Lambda=0$) в виде

$$2^{2}A + \frac{1}{c}IAD = -k\Phi A + A^{-1}\delta.$$
 (5)

Типичные диагональные и недиагональные компоненты (5) имеют вид

$$-a_{i}(\omega_{j}^{2}+\omega_{k}^{2})-\frac{1}{c}(a_{j}d_{k}J_{k}+a_{k}d_{j}J_{j})=-k\Phi_{i}a_{i}+(\delta/a_{i}), \qquad (6a)$$

$$a_j \omega_j \omega_i + \frac{1}{c} a_k d_i J_j = 0, \qquad (66)$$

$$a_i \omega_i \omega_j + \frac{1}{c} a_k d_j J_i = 0, \tag{6b}$$

 $i \neq j \neq k$.

Здесь учтено, что

$$d_k = \frac{1}{2} \varepsilon_{kij} D_{ij}, \quad J_k = \frac{1}{2} \varepsilon_{kij} I_{ij} = -\frac{c\rho}{4\pi} \frac{\alpha_i^2 + \alpha_j^2}{\alpha_i \alpha_j} d_k. \tag{7}$$

Используя (7), приводим недиагональные уравнения (6 б, в) к виду

$$\omega_i \omega_j (a_k^2 + a_j^2) - \frac{4\pi}{\rho c^2} J_i J_j a_k^2 = 0,$$
 (8a)

$$\omega_i \omega_j (a_k^2 + a_i^2) - \frac{4\pi}{\rho c^2} J_i J_j a_k^2 = 0.$$
 (86)

Складывая уравнения (8), получаем

$$a_i^2 \omega_i \omega_j + a_j^2 \omega_i \omega_j + 2a_k^2 \left(\omega_i \omega_j - \frac{4\pi}{\rho c^2} J_i J_j \right) = 0, \qquad (9)$$

$$i \neq j \neq k.$$

Система уравнений (9) является аналогом системы (3) для твердотельного вращения. Рассматривая как и в общем случае уравнений (3) определитель системы (9), убеждаемся, что он обращается в нуль, либо, например, при ω_8 , $J_8 \neq 0$, а $\omega_1 = \omega_2 = J_1 = J_2 = 0$, либо при $\omega_1 = J_1 = 0$, ω_2 , $J_2 \neq 0$, ω_3 , $J_3 \neq 0$.

Первая ситуация соответствует твердотельным аналогам (по электрическому току) S—эланпсоидов Римана. Во втором случае, казалось, мож-

но было бы говорить о твердотельных аналогах I—III эллипсоидов Римана. Однако нетрудно убедиться, что «наклонного» вращения в этом случае все же не существует. Действительно, вычитая уравнения (8 a, 5) одно из другого, получим $\mathbf{w}_i \mathbf{w}_j (a_j^2 - a_i^2) = 0$. Поэтому, если $\mathbf{w}_2 \neq 0$, $\mathbf{w}_3 \neq 0$, то получаем $a_2 = a_3$, что с точностью до тривиального поворота координат в плоскости $(\mathbf{x}_2, \mathbf{x}_3)$ сводит второй случай к первому. Итак, доказанная теорема утверждает: равновесие твердотельно вращающихся однородных эллипсоидов требует, чтобы векторы плотности электрического тока f и угловой скорости \mathbf{w} были параллельны и направлены вдоль одной из главных осей эллипсоида.

По втой причине дальнейшее рассмотрение посвящено именно указанным токовым аналогам S—эллипсоидов Римана.

4. Условия равновесия твердотельно вращающихся эллипсоидов с магнитным полем. В силу вышесказанного, рассмотрим эллипсоид с полуосями a_1 , a_2 , a_3 , в котором векторы плотности тока и угловой скорости имеют вид $\vec{J} = \{0, 0, J\}$, $\vec{\omega} = \{0, 0, \omega\}$. Диагональные компоненты (ба) уравнений движения в этом случае таковы:

$$-a_1\omega^2 - \frac{1}{c}a_2df = -k\Phi_1a_1 + (\delta/a_1), \qquad (10a)$$

$$-a_{2}^{\omega_{2}^{2}}-\frac{1}{c}a_{1}dJ=-k\Phi_{2}a_{2}+(\delta/a_{2}), \qquad (106)$$

$$O = -k\Phi_3\alpha_3 + (\delta/\alpha_3). \tag{10a}$$

Из уравнений (10 а, б) находим

$$\omega_* \equiv \frac{\omega^2}{\pi G \rho} = 2 \frac{\Phi_1 a_2^2 - \Phi_1 a_1^2}{a_2^2 - a_1^2} = 2B_{12}, \tag{11}$$

тде использована связь между интегральными коэффициентами Φ_i и B_{ij} [4]: $a_i^2 \Phi_i - a_j^2 \Phi_j = + (a_i^2 - a_j^2) B_{ij}$. Исключая далее δ из (10), получаем выражение для вектора $\vec{d} = \{0; 0, d\}$, определяющего, в соответствии с (4) и (7), магнитное поле конфигурации,

$$d_{\bullet}^{2} = \frac{d^{2}}{\pi^{2}G} = 8 \frac{B_{12} + (y^{2} - 1)B_{13}}{1 + x^{2}}, \tag{12}$$

где обозначено $x = a_2/a_1$, $y = a_3/a_1$.

Выполнимость соотношений (11)—(12) является условием равновесия однородной твердотельно вращающейся эллипсоидальной формы с

матнитным полем и полуосями a_1 , a_2 , a_3 . Заметим, что в отсутствие магнитного поля (d=0) выражение (12) дает известное соотношение для бллипсондов Якоби [4] $a_1^2 a_2^2 \Phi_{12} = \Phi_3 a_3^2$. Ясно, что при наличии магнитного поля для определения физических характеристик бллипсондальной конфигурации требуется задать уже не один параметр, как в классическом случае, а два.

Проанализируем соотношение (12). Коль скоро $d^2 > 0$, то необходимым условием существования равновесных эллипсоидов с магнитным полем является выполнение неравенства

$$1 - y^2 = 1 - \frac{a_3^2}{a_1^2} < \frac{B_{12}}{B_{13}}.$$
 (13)

В силу положительности B_{ij} этому неравенству удовлетворяют как вытянутые вдоль оси вращения $(a_3 > a_1)$, так и сплюснутые $(a_3 < a_1)$ эллипсоиды $(a_1 \neq a_2 \neq a_3)$ и сфероиды $(a_1 = a_2)$, а также вращающиеся сферы. Из свойств ковффициентов B_{ij} понятно, что неравенство (13) не накладывает ограничений на вытянутость эллипсоидов, но ограничивает сплющенность. Именно, равновесные конфигурации допустимы при таких магнитных полях, при которых выполняются условия:

анбо
$$y \geqslant x$$
, анбо $y_* \leqslant y \leqslant x \leqslant 1$, (14)

тде y_* есть корень уравнения (при заданном x)

$$B_{12}(x, y) + (y^2 - 1) B_{12}(x, y) = 0.$$

В табл. 1 и 2 приведены результаты вычислений физических характеристик эллипсоидов и сфероидов. Данные табл. 2 показывают, что у сфероидов существует наименьшее отношение полуосей $y=\frac{a_3}{a_1}\approx 0.6$, так что в полном соответствии с неравенством (14) существует предельная сплюснутость $f=1-\frac{a_3}{a_1}\lesssim 0.4$. Приведенная в таблицах безразмерная плотность тока, согласно (7), выражается через параметры эллипсоида соотношением

$$f_* \equiv \frac{\int}{cp\sqrt{G}} = \omega_* \left[\frac{1 + x^2}{4x^2} \left(1 + (y^2 - 1) \frac{B_{13}}{B_{12}} \right]^{1/2} \right]$$
 (15)

Заметим в заключение, что магнитное поле эллипсоида, согласно (4) и (7), имеет вид

$$H_1 = pd \frac{a_1}{a_2} x_2, \quad H_2 = -pd \frac{a_2}{a_1} x_1, \quad H_3 = 0,$$
 (16)

где d определяется условием равновесия (12).

Таблица 1
СВОЙСТВА ЭЛЛИПСОИДОВ С МАГНИТНЫМ ПОЛЕМ

$(a_1 \neq a_2 \neq a_3)$								
$x = \frac{a_2}{a_1}$	$y = \frac{a_3}{a_1}$	Параметр поля <u>d²</u> π² G	Плотность тока	Угловой момент L (GM ³ a) ^{1/2}	Угловая скорость ω ² π.Gρ			
0.20	0.183524*	_0,000000	Условия равновесия не выполняютс					
0.40	0.325609°	0.000000						
0.60	0.433781*	0.000000	19		o magain			
0.60	0.50	0.1687	0.0542	0.1531	0.3739			
0.60	0.550	0.3056	0.0981	0.1490	0.3995			
0.90	0.80	0.6409	0.1620	0.2163	0.4799			
0.30	0.30	0.0793	0.0655	0.0925	0.2402			
0.50	0.50	0.2997	0.1171	0.1325	0.2947			
1.20	1.20	1.3116	0.3389	0.3150	0.5546			
0.10	0.30	0.2217	1.4132	0.6806	0.1411			
0.50	0.80	1.1848	0.4628	0.2817	0.4990			
0.70	1.00	1.5214	0.4308	0.2464	0.5667			
0.90	1.00	1.2103	0.3059	0.2489	0.5476			
0.90	1.20	1.7879	0.4520	0.2312	0.6026			

[•] Значения для вланпсоидов Якоби (взяты вз [4]).

Таблица 2 СВОЙСТВА СФЕРОИДОВ С МАГНИТНЫМ ПОЛЕМ $(a_1=a_2=R)$

$y = \frac{a_3}{a_1}$	Поле на вкваторе $\frac{H^2}{G(\pi \rho R)^2}$	Плотность тока $\frac{J^2}{(\pi \rho)^2 G}$	Магнитный момент	Угловой момент <i>L</i> (<i>GM</i> ³ a) ^{1/2}	Угловая скорость ω^2			
0.10				-				
	<0	Условия равновесия не выполняются						
0.30	<0				**			
0.50	<0		=	0				
0.582724	-0.000000	-0.000000	**	0.303751*	0.374230*			
0.70	0.5489	0.0686	0.1434	0.2869	0.4262			
0.90	1.5888	0.1986	0.2279	0.2631	0.5012			
1.00	2.1333	0.2667	0.2582	0.2529	0.5333			
1.10	2.6841	0.3355	0.2845	0.2438	0.5623			
1.20	3.2361	0.4045	0.3079	0.2354	0.5887			
1.30	3.7858	0.4732	0.3292	0.2276	0.6126			
1.50	4.8690	0.6086	0.3668	0.2139	0.6544			

[•] Граничные значения

Видно, что магнитное поле (16) не имеет осевой симметрии, оно становится тороидальным лишь при условии $a_1 = a_2$. То есть, тороидальное

магнитное поле допускает равновесие только сфероидов и сфер, но никак не трехосных вллипсоидов с полуосями $a_1 \neq a_2 \neq a_3$.

5. Магнитный момент конфигурации. В [1] показано, что линейное по координатам магнитное поле приводит к наличию поверхностного электрического тоха плотности i_{\bullet} , через который замыжается внутренний однородный ток конфигурации. Условие равновесия токового слоя на поверхности объекта дает тангенциально-вращательный разрыв магнитного поле H. При втом вектор H, «переходя» через границу, не меняет своей величины, а поворачивается на некоторый угол β , который в общем случае является функцией координат точки поверхности. Плотность поверхностного тока связана со скачком матнитного поля $\Delta H = H_{ex} - H_{tn}$ соотношением

$$\vec{i_s} = \frac{c}{4\pi} \vec{n} \times \Delta \vec{H}, \tag{17}$$

где п — единичная внешняя нормаль к поверхности.

В работе [1] сшивка с внешним бессиловым матнитным полем приводила к углу поворота $\beta=\pm\pi/2$, то есть, «переходя» через токовый слой, азимутальное магнитное поле становилось на внешней поверхности меридианальным. Вообще же, например, на границе с вакуумом, ограничений на величину угла β нет (кроме тривиального: $\beta\neq 0$). Вместе с тем, для определения внешнего магнитного поля угол β необходим. Через него определяется поверхностный ток i_s , который в свою очередь, дает вклад во внешнее поле. Кроме того, i_s , как указывалось в [1], может создавать магнитный момент конфигурации

$$\vec{\mu} = \frac{1}{2c} \oint_{S} \vec{r} \times \vec{i}_{s} dS. \tag{18}$$

Если ищется вакуумное внешнее магнитное поле (определяемое законом Био-Савара), то угол β нужно задавать. Мы рассмотрим ситуацию, котда на внешней поверхности магнитное поле направлено вдоль меридиана, то есть $\beta=\pm\pi/2$. Во втором предельном случае, $\beta=\pi$, как нетрудно показать, магнитный момент отсутствует. Ограничимся для простоты вычислением магнитного момента сфероидов ($\alpha_1=\alpha_2$). Расчеты для влампсоидов громоздки и не дают качественного отличия. В соответствии с (17) получаем для этого случая (в сфероидальных координатах $\{u, v, \varphi\}$)

$$\vec{i}_{*} = -\frac{cl}{4\pi} d \sqrt{(u^{2} + 1)(1 - v^{2})} (\vec{e}_{V} \pm \vec{e}_{v}), \qquad (19)$$

где e_{ν} , e_{ϕ} — орты криволинейной системы координат на поверхности, а $l=\sqrt[4]{a_1^2-a_3^2}$ для сплисснутого сфероида и $l=\sqrt[4]{a_3^2-a_1^2}$ для вытянутого.

Подставляя (19) в (18), находим:

а) дипольный магнитный момент сплюснутого сферонда

$$\vec{\mu} = \pm e^{\frac{\rho dR^4}{4}} \left(\frac{3e_{\bullet}^2 - 1}{4e_{\bullet}^2} + \frac{1 + 2e_{\bullet}^2 - 3e_{\bullet}^4}{8e_{\bullet}^3} \ln \frac{1 + e_{\star}}{1 - e_{\bullet}} \right), \tag{20}$$

где $e_* = V \overline{1-y^2} -$ эксцентриситет, $R = a_1 -$ экваториальный радиус;

б) дипольный магнитный момент вытянутого сфероида

$$\mu = \pm e_3 \frac{\rho dR^4}{16e_*^2} \left((e_*^2 - 1)^2 (2e_*^2 + 1) + \frac{1}{e_*} (4e_*^2 - 1) (1 - e_*^2)^{3/2} \arcsin e_* \right), (21)$$

здесь $e_* = \sqrt{1 - (1/y^2)}$.

Заметим, что магнитный момент сферы равен

$$\vec{\mu} = \pm \vec{e_3} \frac{\rho dR^4}{3} = \pm \vec{\omega} \frac{\sqrt{2\pi\rho}}{3} R^4 = \pm \vec{e_3} \frac{MRV \, \overline{G}}{\sqrt{15}}, \quad (22)$$

где М — масса.

Из табл. 2, в которой приведены численные значения магнитных моментов сфероидов в единицах $\mu_* = \mu/MRV \overline{G}$, видно, что с увеличением вытянутости магнитный момент возрастает. Легко показать, что однородный ток внутри объекта не создает магнитного момента. Поэтому моменты (20)—(22) являются полными дипольными магнитными моментами. В рассматриваемом случае ($\beta = \pm \pi/2$) они направлены вдоль оси вращения.

Интересно отметить, что магнитный момент нейтронной звезды $(M=2\cdot 10^{33}~{\rm f},~R=10^{8}~{\rm cm})$, вычисленный по формуле (22), оказывается равным $\mu \approx 1.4\cdot 10^{35}~{\rm Fc}~{\rm cm}^3$, что совпадает по порядку величины с магнитным моментом, вычисленным по космогонической формуле Мурадяна для звезд [8] $\mu \approx 10^{-41}\,(M/m_\rho)^{4/3}~{\rm Fc}~{\rm cm}^3$.

Обратим внимание на то, что уравнения (10) в случае $\omega=0$ дают известный [7] класс единственно возможных невращающихся однородных форм равновесия с магнитным полем — вытянутые сфероиды. Как следует из вышесказанного, они имеют дипольный магнитный момент, который (в c^{Λ} учае $\beta=\pm\pi/2$) определяется формулой (21).

Роль токового слоя не ограничивается созданием магнитного момента и вкладом во внешнее магнитное поле. Как показано в [1], условия его равновесия конкретизируют граничные условия, что, естественно, сказывается на решениях уравнений движения, в частности, на выражении для гидродинамического давления. Кроме того, наличие токового слоя очевидно влияет на устойчивость формы равновесия. Это не учтено, например, в работе [9].

Авторы признательны профессору К. А. Пирагасу за полезные обсуждения.

Кневский политехнический институт

GRAVITATING CONFIGURATIONS WITH A MAGNETIC FIELD. II. THE RIEMANN THEOREM AND RIGID ROTATION

O. V. KRAVTSOV, S. N. KOPYCHKO

Gravitating configurations with magnetic field and constant ξ vorticity internal motion, rotating with angular velocity $\bar{\omega}$ are investigated. It has been shown that the Riemann theorem, according to which $\bar{\omega}$ and $\bar{\xi}$ lie in one of the principal ellipsoid planes, remains valid. Rigidly rotating configurations are considered as a limiting case of objects with internal motion. The theorem of collinearity of $\bar{\omega}$ vectors and electric current density \bar{J} has been proved. Equilibrium conditions for ellipsoidal forms have been obtained. It has been found that: there exists a limiting oblateness $f=1-(a^3/a_1)\lesssim 0.4$; magnetic field and angular velocity are unambiguously expressed by ellipsoid semi-axis ratio; in the case of $a_1 \neq a_2 \neq a_3$ magnetic field has no axis symmetry. It has been shown that the toroidal field does not allow the existence of three-axis ellipsoids. Magnetic moments produced by surface current have been found.

ЛИТЕРАТУРА

- 1. О. В. Кравцов, Астрофизика, 24, 603, 1986.
- 2. Д. М. Седрахян, К. М. Шахабасян, А. Г. Мовсисян, Астрофизика, 19, 303, 1983.
- 3. С. И. Вайнштейн, Магвятные поля в космосе, Наука, М., 1983.
- 4. С. Чандрасскар, Эллипсондальные фитуры равновесия, Мвр. М. 1973.
- 5. Л. Лихтенштейн, Фигуры равновесня вращающейся жилкести, Наука, М., 1965.
- 6. Р. С. Оганесян, М. Г. Абрамян, Астрон. ж., 50, 996, 1973.
- 7. Р. С. Отанесян, М. Г. Абрамян, Астрофизика, 9, 401, 1973.
- R. M. Muradian, Astrophys. and Space Sci., 69, 325, 1980.
 P. J. Luyten, Astrophys. and Space Sci., 128, 289, 1986.