АСТРОФИЗИКА

TOM 29

ДЕКАБРЬ, 1988

выпуск з

УДК: 524.724Марк5

КАРЛИКОВАЯ ГАЛАКТИКА МАРКАРЯН 5

А. Н. БУРЕНКОВ, А. Р. ПЕТРОСЯН, К. А. СААКЯН, Э. Е. ХАЧИКЯН Поступила 20 апреля 1988 Принята к печати 25 июня 1988

На основе спектров, полученных на 6-и телескопе САО АН СССР, проведено детальное опектрофотометрическое исследование галактики Маркарян 5. Полученные для яркого южного сгущения галактики результаты согласуются с данными работ [2, 16]. Обнаружены еще две эмиссионные области к северу от яркого сгущения. По морфологической структуре Маркарян 5 класоифицируется как иррегулярная галактика с несколькими центрами звездообразования, хотя по фязическим параметрам и обилию элементов не отличается от голубых карликовых компактных галактик.

1. Введение. В ходе исследования химической эволюции галактик и особенно начального содержания телия во Вселенной особое внимание уделяется неразвитым звездным системам — карликовым голубым компактным галактикам (DBCG) [1—3], которые в настоящий момент переживают вспышку бурного звездообразования (см., например, [4]). При этом для получения однозначных выводов важно как увеличение выборки исследуемых объектов [5], так и улучшение качества их спектрального исследования [6].

Марк 5 — одна из немногих карликовых галактик из объектов Маркаряна, отождествленная как таковая еще в 1968 г. [7]. Она классифицирована как ІШ-галактика [8], а морфологически детально исследована в [9]. Галактика имеет ярко выраженный голубой цвет [8], и содержит большое количество нейтрального водорода [10—12]. Она не регистрирована в радио и далекой инфракрасной сбластях спектра [13—15]. Спектрофотометрическое исследование яркой конденсации в Марк 5 [2, 16] позволило выявить факт дефицита содержания тяжелых элементов в ней, а также нормальное, космологическое содержание гелия.

В данной работе на основе большого количества высокодисперсионных спектров проводится детальное спектрофотометрическое исследование галактики Марк 5.

2. Наблюдения и обработка. Крупномасштабные прямые снимки Марк 5 получены 22/23 и 23/24 октября 1984 г. в фотографических лу-

А. Н. БУРЕНКОВ И ДР.

чах в кассегреновском фокусе телескопа Цейсс-600 САО АН СССР, при нзображениях около 2". Оба снимка с экспозициями соответственно 40 минут и 2 часа получены на эмульсии А-500 Н, очувствленной прогревом в водородной атмосфере. Оба снимка просканированы на микроденситометре АМД в ВЦ САО и построены их картины изоденс (рис. 1a, b).

Рис. 1. Карты изоденс галактики Марк 5: а) Экспозиция снимка 40^{те}. Указаны положения щели при спектральных наблюдениях, а также сгущение 3 в галактике; b) Экспозиция снимка 2^h. Указано положение сгущения 2 в галактике.

Спектры Марк 5 получены в первичном фокусе 6-м телескопа САО АН СССР со спектрографом СП-160 и ЭОП УМК-91В, при двух положениях щели спектрографа, которые указаны на рис. 1а. Данные о спектральных наблюдениях отдельно для каждого положения шели спектрографа приведены в табл. 1.

При спектральных наблюдениях в качестве звезд сравнения служиля. HZ 15, 34 Фейджа и BD + 33°2642 [17].

При всех наблюдениях дисперсия на выходе ЭОП ~ 65 А/мм (разрешение ~ 5 А), масштаб перпендикулярно дисперсии составлял ~ 17''/нм. а ширина щели спектрографа 0.15 мм (1."3).

Регистрация спектров производилась на микроденситометре PDS-1010А БАО АН Арм.ССР, с высотой щели, равной 3."4.

3. Результаты. По внешним слабым изофотам галактика имеет почти правильную вллиптическую форму, в южном фокусе которой наблюдается компактное сгущение с высокой поверхностной яркостью. В клочковатом внутреннем объеме галактики можно выделить еще несколько сгущений с низкой поверхностной яркостью. На северную часть Марк 5 проициру-, ется звезда галактического фона. Спектр упомянутого компактного сгущения (сгущение 1) получен при обоих положениях щели спектрографа. По непрерывному излучению его спектр выделяется на общем фоне галактики. Кроме эмиссионных линий H₁, H_β, H₁, H₁, H₂, H₃ и H₃ бальмеровской серии водорода, в нем отождествлены запрещенные линии [S II], [N II]. [O II], [O III] и [Ne III], а также линии однажды ионизированного гелия № 6678, 5876, 4471 АА.

щели оложение	№ па.	Дата	Эксп. мин.	Спектр. днапазон А	Изобр. (угл. сок.)
I	183	22/23.10.81	20	5700-7200	3"
	184		20	4600-6100	
	185		20	3600-5100	
	350	9/10.12.82	10	3600-5100	2.5
	351	11 74	12	4600-6100	
	352	90 99	21	5700-7200	200
	362	6/ 7.01.83	20	3600-5100	3
	363	н н	40	5700-7200	
	364	H H	5	5700-7200	
	365	79 99	6	4600-6100	
	366		12	3600-5100	71
П	396 A	7/ 8.01.83	15	3600-5100	1.5-2
	396		30	3600-5100	
*	397		30	5700-7200	

СПЕКТРАЛЬНЫЕ НАБЛЮДЕНИЯ МАРК 5

В спектре, полученном при первом положении щели спектрографа, на фоне слабого непрерывного излучения галактики, выявлены эмиссионные линии H₂, H_β, [O III] $\lambda\lambda$ 5007, 4959 и [O II] λ 3727, излучаемые отмеченным стрелкой на рис. 1b сгущением низкой поверхностной яркости (сгущение 2). При втором положении щели отождествлены эмиссионные линии [O III] λ 5007, 4959 и H_β от сгущения, отмеченного стрелкой на рис. 1a (сгущение 3).

Все отождествленные эмиссионные линии в исследуемых спектрах фотометрированы. Наблюдаемые $(F_{\lambda}/F_{H_{\beta}})$ и исправленные за поглощение, сотласно [18], значения относительных интенсивностей эмиссионных линий $(I_{\lambda}/I_{H_{\beta}})$ для трех стущений Марк 5 приведены в табл. 2. Там же приведено число измеренных линий, по которым проводилось усреднение значения ее относительной интенсивности.

Присутствие эмиссионной линии [O III] λ 4363 в спектре сгущения 1 деет воэможность непосредственно определить его влектрэнную темпера-

Таблица 1

Таблица 2

ОТНОСИТЕЛЬНЫЕ ИНТЕНСИВНОСТИ ЭМИССИОННЫХ ЛИНИЙ И ЭКВИВАЛЕНТНЫЕ ШИРИНЫ ЛИНИИ Н₽ В СГУЩЕНИЯХ МАРК 5

	Сгущение 1		Сгущение 2			Сгущение З			
	F)/F _{H3}	Ix/I _{Hg}	Ne	$F_{\lambda}/F_{H_{\beta}}$	$I_{\lambda}/I_{H_{\beta}}$	Ne	$F_{\lambda}/F_{H_{\beta}}$	$I_{\lambda}/I_{H_{\beta}}$	Ne
[S II] λ 6731	0.15 <u>+</u> 0.06	0.12 <u>+</u> 0.05	4						
[S II] 2 6717	0.22 ±0.67	0.18 ±0.06	.4	1 - 1		6.1			
He I). 6678	0.007	0,006	1	1000				τ.	
[N II] λ 6584	0.18 ±0.03	0.14 <u>+</u> 0.03	4	1000					1.
H ₂ λ 6563	3.46 ±0.33	2.80 <u>+</u> 0.37	5	3.27 <u>+</u> 0.20	2.80 +0.24	5			
[N 1I] λ 6548	0.06 ±0.01	0.05 ±0.01	4			-			1.1
[O III] λ 5007	3.E0 ±0.46	3.71 ±0.45	7	3.34+0.44	3.28 <u>+</u> 0.43	5	3.84	3.77*	1
[O III] λ 4959	1.37 <u>+</u> 0.16	1.35 ±0.15	7	1.03±0.14	1.02+0.13	5	1.25	1.24*	1
H3). 4861	1.00	1.00	7	1.00	1.00	5	1.00	1.00	1
Helλ 4471	0.05	0.05	2			2.81			
[O III] λ 4363	0.056±0.004	0.062+0.005	4				4		. *
Η ₁ λ 4340	0.51 ±0.08	0.56 <u>+</u> 0.08	4	1000	100 14				1
Na X 4102	0.16 <u>+</u> 0.08	0.19 <u>+</u> 0.09	4		1000		1.1.4		
H. ; [Ne III] λ 3968	0.17 ±0.02	0.21 <u>+</u> 9.03	4		-2				1
H ₈ +He I λ 3889	0.10 ±0.03	0.13 ±0.04	4	-			1.1.1.1	8 40	1.00
[Ne III] X 3869	0.27 ±0.06	0.33 ±0.08	4		-		- 1		
H ₉ λ 3835	0.07	0.09	3		1.	20		-	
[O II] λ 3727	2.05 <u>+</u> 0.31	2.63 <u>+</u> 0.49	4	3.46	4.14	3		1	
₩ (H3) A	. 173	<u>+</u> 43	7	18-	<u>+</u> 6.0	5		-	

• Относятельные вытенсявности исправлевы за покраснение с использованием значения $F_{\rm H_3}/F_{\rm H_3}$ сгущения 2.

туру. По значению R = I ([O III] λ 5007 + 4959) / I ([O III] λ 4363) = = 81.6 ± 10.2, согласно работе [19], для T_e получено значение 15 900 ± ± 900 К. Зная T_e , можно легко определить электронную плотность сгущения 1 по отношению интенсивности линий однажды ионизированной серы [S II] λ 6717, 6731. Она оказалась равной примерно 30 см⁻³.

Значение электронной температуры для сгущения 2 оценено по эмпирической зависимости между T_e и отношением I ([O III] + [O II])/ /I (H₃) [20]. Оно оказалось порядка 100С0 К. Для дальнейших расчетов для значения n_e в объекте принято значение 100 см⁻³.

Делая обычное для Н II-областей предположение, что излучение в эмиссионных линиях обусловлено фотоионизацией коротковолновым излучением О—В звезд, произведен расчет содержания гелия, а также кислорода, азота и неона в стущениях 1 и 2.

Содержание однажды ионизированного гелия (He⁺) вычислено согласно [16] с использованием относительной интенсивности линии He I λ 4471*. Общее содержание гелия вычислено согласно

$$He/H = \frac{He^{0} + He^{+}}{H^{+}} = \frac{He^{+}}{H^{+}} ICF$$
 (He),

где ICF (He) — фактор ионизационной коррекции, приведенной в [21]:

$$ICF$$
 (He) = $[1 - 0.25 (O^+/O)]^{-1}$

Ионное содержание кислорода, азота и неона вычислено с помощью зависимости

$$X^{+n}/H^{+} = \frac{I(\lambda, X^{+n})}{I(H_{\beta})} \frac{E(H_{\beta})}{E(\lambda, X^{+n})},$$

где относительные к H_β излучательные способности ($E(\lambda, X^{+n})/E(H_{\beta})$) используемых при расчетах эмиссионных линий [OIII] λ 5007, [OII] λ 3727 для кислорода, [NII] λ 6584 для азота и [NeIII] λ 3869 для неона заимствованы из работы [19]. Общее содержание этих элементов вычислено по обычным формулам (см., например, [22]).

Полученные эначения лотарифмов содержания указанных элементов при принятом количестве атомов водорода 10^{12} для сгущений 1 в 2 Марх 5 приведены в табл. 3. Для сравнения в табл. 3 приведено также содержание тех же элементов в ярком сгущении 1 согласно расчетам [2, 16]. Для более корректного сравнения данные работы [2] пересчитаны по новым зависимостям работы [19]. Полученные при $T_e = 12500$ К значения содержания гелия и тяжелых элементов приведены в кавычках.

^{*} Более сильная линия He I λ 5876 блендируется с линиями ($D_1 + D_2$) Na I ноч..о-го неба.

⁸⁻⁶³⁸

А. Н. БУРЕНКОВ И ДР.

4. Выводы. На основе большого числа щелевых слектров исследованы физические условия и содержание элементов в галактике Марк 5. Использованный нами размер проекционной щелевой апертуры $(1."3 \times 3."4)$ отличается от использованной в [2] $(2."4 \times 4")$ и [16] $(1."8 \times 8."5)$. Несмотря на вто, полученные значения относительных интенсивностей вмиссионных линий значимо не отличаются друг от друга.

Таблица З

СОДЕРЖАНИЕ ГЕЛИЯ И ТЯЖЕЛЫХ ЭЛЕМЕНТОВ В СГУЩЕНИИ 1 И 2 ГАЛАКТИКИ МАРК 5

	12+1g He/H	$12 + \log O/H$	$12 + \lg N/H$	12 + lg Ne/H	lg N/O
Сгущение 1 Сгущение 2	10.99	7.65 <u>+</u> 0.07 8.44	6.38±0.17	7.45 <u>+</u> 0.26	-1.27 <u>+</u> 0.03
Данные по [2] Данные по [16]	10.98 (11.03) 11.25	8.26 (8.01) 7.48	6.70 (6.65)	7.60 (7.73) 7.03	-1.56 (-1.36)

Эквивалентная ширина линии H_β в сгущении 1 с уменьшением апертуры показывает тенденцию к увеличению (по [16] $W_{H_{\beta}} = 135$ A, по [2] $W_{H_{\beta}} = 150$ A), что может быть следствием концентрации молодых звезд к центру сгущения.

По нашим данным величина покраснения для сгущения 1 E(B-V) равна 0.17, что совпадает с результатом работы [2] (E(B-V)=0.19).

Наши данные относительно содержания гелия и тяжелых элементов в стущении 1 находятся в согласии с данными работ [2, 16].

Обнаружение эмиссионных линий в сгущениях 2 и 3 указывает на то, что они являются местами повышенной концентрации разбросанных по всему телу галактики молодых горячих звезд [8].

По содержанию тяжелых элементов и по физическим условням Марк 5 не отличается от жарликовых иррегулярных и карликовых компактных голубых талактик [23]. Ее морфологическая структура, «визуализированная» благодаря блиэкому расстоянию галактики ($r \sim 13$ Мпк), а также наличие помимо сильно выделяющегося сгущения 1 других H IIобластей делает возможным отнесение Марк 5 к классу карликовых иррегулярных галактик.

Слециальная астрофизическая обсерватория АН СССР Бюраканская астрофизическая обсерватория

546

DWARF GALAXY MARKARIAN 5

A. N. BURENKOV, A. R. PETROSIAN, K. A. SAAKIAN, E. YE. KHACHIKIAN

The results of detailed spectrophotometrical investigation of the galaxy Markarian 5 the spectra obtained with the 6m telescope of SAO AS USSR are presented. Our data for the bright condensation in galaxy are in good agreement with the previous results [2, 16]. Two new emission line condensations have been detected. In morphological structure Markarian 5 was classified as an irregular galaxy having several centres of star formation, while in physical conditions and element abundances it does not differ from Blue Compact Dwarf Galaxies.

ЛИТЕРАТУРА

- 1. L. Searle, W. L. W. Sargent, Astrophys. J., 173, 25, 1972.
- 2. H. B. French, Astrophys. J., 240, 41, 1980.
- 3. D. Kunth, W. L. W. Sargent, Astrophys. J., 300, 496, 1986.
- 4. L. Vigroux, G. Stasinska, G. Comte, Astron. and Astrophys., 172, 15, 1987.
- 5. D. Kanth, W. L. W. Sargent, Astrophys., 273, 81, 1983.
- 6. K. Davidson, T. D. Kinman, Astrophys. J. Suppl. Ser., 58, 321, 1985.
- 7. Д. В. Видман, Э. Е. Хачикян, Астрофязика, 4, 587, 1968.
- 8. J. P. Hachra, Astrophys. J. Suppl. Ser., 217, 928, 1977.
- 9. C. Barbieri, C. Bonoli, P. Rafanelli, Astron. and Astrophys. Suppl. Ser., 37, 541, 1979.
- 10. T. X. Thuan, G. E. Martin, Astrophys. J., 247, 823, 1981.
- 11. J. R. Fisher, R. B. Tully, Astrophys. J. Suppl. Ser., 47, 139, 1981.
- 12. W. K. Huchtmeier, O. G. Richter, Astron. and Astrophys. Suppl. Ser., 63, 323, 1986.
- P. Biermann, J. N. Clarke, K. J. Fricke, I. I. K. Pauling-Toth, J. Schmidt, A. Witzel, Astron. and Astrophys., 81, 235, 1980.
- 14. C. G. Wynn Williams, E. E. Becklin, Astrophys. J., 308, 620, 1986.
- 15. H. A. Thronson, Jr., C. M. Telesco, Astrophys. J., 311, 98, 1986.
- 16. J. Zamorano, M. Rego, Astron. and Astrophys., 170, 31, 1986.
- 17. R. P. S. Stone, Astrophys. J., 218, 767, 1977.
- 18. J. S. Mathis, Astrophys. J., 159, 263, 1970.
- 19. J. Zamorano, M. Rego, Astron. and Astrophys. Suppl. Ser., 62, 173, 1985.
- P. A. Shaver, R. X. McGee, L. M. Newton, A. C. Danks, S. R. Pottasch, Mon. Notic. Roy. Astron. Soc., 204, 53, 1983.
- 21. G. Stasinska, Astron. and Astrophys., 84, 320, 1980.
- 22. M. Peimbert, R. Costero, Boll. Observ. Tonantzintla y Tacubaya, 5, 3, 1969.
- 23. А. Р. Петросян, Сообщ. Бюракан. обс., 61, 1988.