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In this paper, two efficient computational algorithms based on Rational and Exponential
Bessel (RB and EB) functions are compared to solve several well-known class of non-linear Lane-
Emden type models. The problems, which define in some models of non-Newtonian fluid mechanics
and mathematical physics, are nonlinear ordinary differential equations of second-order over the
semi-infinite interval and have a singularity at x=0. The non-linear Lane-Emden equations are
converted to a sequence of linear differential equations by utilizing the quasilinearization method
(QLM) and then, these linear equations are solved by RB and EB collocation methods. Afterward,
the obtained results are compared with the solution of other methods for demonstrating the
efficiency and applicability of the proposed methods.
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1. Introduction. The investigation of singular initial/boundary value problem
for non-linear second order differential equations has been attracted by some
astrophysicist, mathematicians, and physicists. Lane-Emden type equations describe
the temperature variation of a spherical gas cloud under the mutual attraction of
its molecules and subject to the laws of classical thermodynamics. Let P(r) denote
the total pressure at a distance » from the center of spherical gas cloud. The total
pressure is due to the usual gas pressure and a contribution from radiation:

P= l;T“ + E,
3 v

where &, T, R, and v are the radiation constant, the absolute temperature, the
gas constant, and the specific volume, respectively [1]. Let M(r) be the mass within
a sphere of radius » and G the constant of gravitation, the equilibrium equation
for the configuration are

2—f=—p GA;(F), dﬁjr(r)=4npr2, (1)
where p is the density at a distance » from the center of a spherical star. To




160 K.PARAND ET AL.

eliminate M, the previous equations should be written in a dimensional form as

follows [1,2]:
2
in AP 4nGop,
rodr\ p dr

We already know that in the case of a degenerate electron gas, the pressure and
density are p=P3/ 3 assuming that such a relation exists in other states of the
star, we are led to consider a relation of the form P=K p”l/ " where K and m
are constants.

We can insert this relation into Eq. (1) for the hydrostatic equilibrium
condition and, from this, we can rewrite the equation as follows:

|:K(m+ 1)7\41/]”_1:|Li(7’2 QJ — _ym ,

4nG r2 dr dr

where A represents the central density of the star and y denotes the dimensionless
quantity, which are both related to p through the following relation [1,2]:

p=1y"(x),
and let

12
4G

Inserting these relations into our previous relation, we obtain the Lane-Emden

equation [1,2]:
1 d 2 dy _ m
x? dx (x dxj_ o

V()2 ()57 (1)=0. x>0, @

or

where the initial conditions are as follows:

y(0)=1, y'(0)=0. (3)
Eq. (2) with the initial conditions (3) is known as the standard Lane-Emden
equation.

The values of m, which are physically interesting, lie in the interval [0, 5].
The main difficulty in analyzing this type of equation is the singularity behaviour
occurring at x=0.

The solutions of the Lane-Emden equation could be exact only for m=20,
1 and 5. For the other values of m, the Lane-Emden equation is to be integrated
numerically [2]. Thus, we decided to present a new and efficient technique to
solve it numerically for m=1.5, 2, 2.5, 3, and 4.
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1.1. Previous works. Recently, some analytical, semi-analytical, and numerical
techniques have been applied to solve Lane-Emden equations. The main difficulty
arises in the singularity of the equations at x=0. We have introduced several
techniques as follow:

Bender et al. [3] proposed a new perturbation technique based on an artificial
parameter &, the method is often called 6 -method. Wazwaz [4] employed the
Adomian decomposition technique with an alternate framework designed, He [5]
employed Ritz's method to obtain an analytical solution, Parand et al. [6,7]
applied Spectral methods based on the fractional order of rational Bernoulli
functions and the fractional order of Chebyshev functions, Ramos [8,9] presented
linearzation methods to utilize an analytical solutions and globally smooth solutions,
and the obtained series solutions of the Lane-Emden type equation, Yousefi [10]
applied Legendre Wavelet approximations and used integral operator and converted
Lane-Emden equations to integral equations, Chowdhury and Hashim [11] used
analytical solutions of the generalized Emden-Fowler type equations by Homotopy
perturbation method (HPM), Aslanov [12] introduced a further development in
the Adomian decomposition technique, Dehghan and Shakeri [13] investigated
Lane-Emden equations by applying the variational iteration method (VIM),
Marzban et al. [14] used a method based upon hybrid of block-pulse functions
and Lagrange interpolating polynomials together with the operational integration
matrix to approximate solution of the problem, Adibi and Rismani [15] proposed
the approximate solutions of singular the Lane-Emden via modified Legendre-
spectral method, Vanani and Aminataei [16] provided a numerical method which
produces an approximate polynomial solution, they used an integral operator and
convert Lane-Emden equations into integral equations and then convert the
acquired integral equations into a power series and finally, transforming the power
series into padé series form, Kaur et al. [17] obtained the Haar wavelet approximate
solution.

Furthermore, other researchers trying to solve the Lane-Emden type equations
with several methods, For example, Yildirm and Ozig [18] by using HPM method,
Igbal and Javad [19] by using Optimal HAM, Boubaker and Van Gorder [20]
by using boubaker polynomials expansion scheme, Dascoglu and Yaslan [21] by
using Chebyshev collocation method, Yiizbas [22] by using Bessel matrix method,
Boyd [23] by using Chebyshev spectral method, Bharwy and Alofi [24] by using
Jacobi-Gauss collocation method, Pandey et al. [25] by using Legendre operation
matrix, Rismani and Monfared [26] by using Modified Legendre spectral method,
Delkhosh et al. [27] by using the fractional order of rational Euler collocation
methods, Nazari-Golshan et al. [28] by using Homotopy perturbation with Fourier
transform, Doha et al. [29] by using second kind Chebyshev operation matrix
algorithm, Mall and Chakaraverty [30] by using Chebyshev Neural Network based
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model, Giirbiiz and Sezer [31] by using Laguerre polynomial and Kazemi-Nasab
et al. [32] by using Chebyshev wavelet finite difference method. In this paper,
we attempt to introduce two efficient computational algorithms based on Rational
and Exponential Bessel (RB and EB) functions for solving non-linear singular
Lane-Emden equations.

The rest of this paper is arranged as follows: Section 2 introduces new rational
and exponential Bessel (RB and EB) functions and their properties. Section 3
describes a brief formulation of quasilinearization method (QLM) [38]. In section
4 at first, by utilizing the QLM over the Lane-Emden equation a sequence of
linear differential equations is obtained, and then at each iteration, the linear
differential equation is solved by RB and EB collocation methods that we name
RB-QLM and EB-QLM methods. Comparison between these two methods with
some well-known results in section 5, show that using rational functions is highly
accurate, and we also describe our results via tables and figures. Finally, we give
a brief conclusion in section 6.

2. Properties of rational and exponential Bessel functions. The
Bessel functions arise in many problems in physics possessing cylindrical symmetry,
such as the vibrations of circular drumheads and the radial modes in optical fibers.
Bessel functions are usually defined as a particular solution of a linear differential
equation of the second order which known as Bessel's equation [33]. Bessel
functions first defined by Daniel Bernoulli on heavy chains (1738) and then
generalized by Friedrich Bessel. More general Bessel functions were studied by
Leonhard Euler in 1781 and in his study of the vibrating membrane in 1764.

Bessel differential equation of order neRR is:

d’y(x)  dy(x)
2 2 2
xT——2+x +\x"—n x)=0, xe(—o,m).
e D (7w () (-0, 0) O
One of the solutions of equation (4) by applying the method of Frobenius

as follows [34]:
o 1Y 2r+n
J,(x)= Z&[fj : 5)

i (ntr)\ 2
where series (5) is convergent for all xe(— oo,oo).
Bessel polynomials have been introduced as follows [35]:

[N—n]/z (_1),‘ ¥ 2r+n
B"(x)z ,;0 r!(n+r)!(§j ’ XE[O’I]’ ©)

where neN, [.] denotes the floor of a number, and N is the number of basis
of Bessel polynomials.

2.1. Rational Bessel functions. The new basis functions, "Rational Bessel
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(RB) functions” denote by RB (x, L) which are generated from well known Bessel
polynomials by using the algebraic mapping of ¢(x):x/(x+ L) as follow:

RB,(x,L)=B,(0(x)), n=0,1,..,N,

or

[N—n]/z (_ 1),, ( X 2r+n
RB,(x,L)= ;0 r!(n+r)!k2(x+L)J , n=0,1,..,N, (7
where xe[O,oo), B (x) is Bessel polynomials of order n, and the constant
parameter L>0 is a scaling/stretching factor which can be used to fine tune the
spacing of collocation points. For a problem whose solution decays at infinity,
there is an effective interval outside of which the solution is negligible, and
collocation points which fall outside of this interval are essentially wasted. On the
other hand, if the solution is still far from negligible at the collocation points
with largest magnitude, one cannot expect a very good approximation. Hence, the
performance of spectral methods in unbounded domains can be significantly
enhanced by choosing a proper scaling parameter such that the extreme collocation
points are at or close to the endpoints of the effective interval [36]. Boyd [37]
offered guidelines for optimizing the map parameter L for rational Chebyshev
functions which is also useful for the RB functions.

Let us define T'= {x O§x<oo} and

L, ()= {u:F —[R|v is measurable and ||u||W < oo}, where

i, <[ fiteo i

with w,(x,L):L/ (x+L , is the norm induced by inner product of the space
Lfvr () as follows:

<u, u)w = .[v(x)u(x)w,, (x, L)dx.
"
Now, suppose that
@ =span{RB,(x), RB,(x),..., RB (x)},
where © is a finite-dimensional subspace of I2(T'), dim(@)=N+1,s0 @ is a
closed subspace of L*(T'). Therefore, & is a complete subspace of L*(I"). Assume

that fix) be an arbitrary element in Lz(l" ) Thus f(x) has a unique best
approximation in & subspace say b( )e@ that is

W(x)e®, Vh(x)eS(x), |/(x) x)ﬂwr <[ (x)-b(), -

Notice that we can write b(x) vector as a combination of the basis vectors of ©
subspace.
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We know function of f{x) can be expanded by N+ 1 terms of RB functions as:

S (%)= fy(x)+ R(x),
that is

fv(x)=>a,RB,(x)=4"RB(x), (8)
n=0

where RB(x) is vector [RBy(x),RB,(x).....,RBy(x)]" and Re@* that & is the
orthogonal complement. So f(x)- fy(x)e @* and b(x)e S are orthogonal which
we denote it by:

1) Fu) L,

thus f(x)- fy(x) vector is orthogonal over all of basis vectors of & subspace as:
()~ £ (). RE (), = (f(x)= A RBG). RB,(+)) =0, i=0.1....,

hence

(f(x)-4"RB(x), RB" (x)) =0,

WV

and A can be obtained by
(f(x).RB"(x) =(4"RB(x),RB" (x))

A" =(f(x), RB" (x)) , (RB(x), RB" (x))

2.2. Exponentioal Bessel functions. Exclusive of rational functions, we
can use exponential transformation to have new functions which are also defined on
the semi-infinite interval. The exponential Bessel (EB) functions can be defined by

EB,(x)=B,(1-¢"), n=0,1,...N.

-1

w, w,

)

or
(V)2 (—l)r r+n
= 7 _\] - _x/L =
£, (x 1)= 3, r!(n+r)!(1 e =01, N ©)

where parameter L is a constant parameter and, like rational functions, it sets the
length scale of the mapping. All of the above relations can also be used to EB
functions with respect to the weight function w,(x, L)=e™/*/L in the interval [0, ).

3. The quasilinearization method (QLM). The QLM is a generalization
of the Newton-Raphson method [38] to solve the nonlinear differential equation
as a limit of approximating the nonlinear terms by an iterative sequence of linear
expressions. The QLM techniques are based on the linearization of the higher
order ordinary/partial differential equation and require the solution of a linear
ordinary differential equation at each iteration. Mandelzweig and Tabakin [39] have
determined general conditions for the quadratic, monotonic, and uniform convergence
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of the QLM to solve both initial and boundary value problems in nonlinear
ordinary n-th order differential equations in N-dimensional space. And also,
Canuto et al. [40] have proved the stability and convergence analysis of spectral
methods, and, we will show that our numerical results are convergent.
Let us assume that a second-order nonlinear ordinary differential equation in
one variable on the interval [0,0) as follows:
2
U plu(x), ulx). x). (10)
dx
with the initial conditions: #(0)=A4, «'(0)= B, where A and B are real constants
and F is a nonlinear function.
By utilizing the QLM to solve Eq. (10) determines the (/+ 1)-th iterative

approximation u,,,(#) as a solution of the linear differential equation:

dz ! ’ ! ! ’
ﬁ: F(“]»“lax)‘*‘ (“1+1_“1)Fu(“1»“1»x)+ (“1+1_“1)Fu'(“13“1>x)a a1
with the initial conditions:
ur,(0)=4, up,(0)=5, (12)

where /=0, 1, 2, ... and the functions F,=0F/0u and F,=0F/ou' are
functional derivatives of the functional of F(u},u ,,x).

4. Application of methods. In this paper, two methods based on RB
collocation method and EB collocation method for solving Eq. (2) with initial
conditions of Eq. (3) have been considered.

First, by utilizing the QLM technique on Eq. (2), we have

XV7a (x)+ 2y (x)— (m— l)xy;n (x)+ mxyhl(x)y;”’l (x)= 0 (13)
with the initial conditions:
J’1+1(O):1a y}+1(0): 0, (14)

where 1=0, 1, 2, ...

For rapid convergence is actually enough that the initial guess is sufficiently
good to ensure the smallness of just one of the quantity ¢, = k|| Yia— Vi, where
k is a constant independent of /. Usually, it is advantageous that y (7) would satisfy
at least one of the initial conditions Eq. (3) [39], thus set y,(x) =1 for the initial
guess of the Lane-Emden equation.

Then, we can approximate y,, (x) by N+ 1 basis of RB and EB functions as
follows:

1. approximating y, (x) by N+ 1 basis of RB functions:

N A
J’1+1(x)z”1v,1+1(x):1+x2 anRBn(x,L)- (15)
n=0
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where r=0, 1, 2, ... and two terms 1 and x°

Eq. (14).

To apply the collocation method, we have constructed the residual function
for (/+ 1)-th iteration in QLM by substituting y, (x) by u, . (x) into Eq. (13)
as follows:

are to satisfy initial conditions

N, I+1

REST (x) = XUN 4 41 (x) +2Uly (x) -

m m- 16
~(m- 1)X“N+1,1 (x)+ MXUN 1141 (x)”N+11,1 (x)=0. (10
2. approximating y,, (x) by N+ 1 basis of EB functions:
1 P
J’]arl(x)z WN,1+1(X)= 2 +X—ZCnEBn(x,L) (17)

x+1 x+1,5
where =0, 1, 2, ...

Two terms of 1/ (x2+ 1) and x* / (x+1) are considered to satisfy initial conditions
Eq. (14). Also, like above, to apply the collocation method, we have constructed
the residual function for (/+ 1)-th iteration in QLM by substituting y, (x) by
Wy (%) into Eq. (13) as follows:

RESe, (x) = XWX/+1,1+1(X)+ 2Wyi, 141 (x)—
- (m— l)xw]'{jﬂ,, (x)+ MXWN 11, 141 (X)W%I%,I (x) =0. (18)
In all of the spectral methods, the purpose is to find the Bn and ¢, unknown
coefficients.
A method for forcing the residual functions Eq. (16) and Eq. (18) to zero
can be defined as collocation algorithm. There is no limitation to choose points

in the collocation method. The N+ 1 collocation points have been substituted in
the equations of RESr, (x) and RESe,, (x), therefore:

I+1 +1

RESr;,(x,)=0, i=0,1,..,N, (19)
RESe,, (x,)=0, i=0,1,..,N, (20)
Table 1

COMPARISON OF THE FIRST ZEROS OF STANDARD LANE-EMDEN
EQUATIONS, WITH VALUES GIVEN BY HOREDT [2] AND THE
PRESENT METHODS WITH N =75 AND ITERATION 15

m RB EB Horedt [2]

1.5 | 3.65375373622763424836747856706295570 | 3.653753736227530116708951 | 3.65375374
2.0 | 4.35287459594612467697357006152614262 | 4.352874595946124676973570 | 4.35287460
2.5 | 5.35527545901076012377857991160851840 | 5.355275459010769844745925 | 5.35527546
3.0 | 6.89684861937696037545452818712314053 | 6.896848619376960375436984 | 6.89684862
4.0 | 14.9715463488380950976509645543077611 | 14.97154634883796085494984 | 14.9715463
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which x; are roots of the shifted Chebyshev functions on the finite interval [7].
Finally, a linear system of equations has been obtained, all of these equations
can be solved by a suitable method such as the Newton method for calculating
the unknown coefficients.

5. Results and discussion. The Lane-Emden type equations describe the
variation of density as a function of the radial distance for a poly-trope. They

Table 2
NUMERICAL RESULTS OF FIRST ZEROS BY BASIS OF

RB WITH VARIOUS VALUES OF m, N AND ITERATIONS,
ACCURATE DIGITS ARE BOLD

m | N |Iteration RB
1.5] 50 05 3.65375373625072342590
10,15,20 3.65375373625071853754
75 05 3.65375373622763914172
10,15,20 3.65375373622763424836
100 05 3.65375373622225950682
10,15,20 3.65375373622225461061

2150 05 4.3541023191782544510394699271974639349588062470049419121696397470
10,15,20 | 4.35287459594612467697357006152614339487342457587311708331752
75 05 4.352874597893199784546816142774753394907169932534281348066892095
10,15,20 |4.352874595946124676973570061526142628112365363213147181521
100 05 4.352874597893199784546816142774753394907169932542963806389373524
10,15,20 |4.352874595946124676973570061526142628112365363213008835302

2550 o5 5.3552964545076443677
10,15,20 5.355275459010744925
75| 05 5.35529645450764436772
10,15,20 5.3552754590107601237
100| 05 5.35529645450764436772
10,15,20 5.3552754590107873176
35 05 7.1216938046517305045330727094680858444666907392
10,15,20 6.8968486193769603754542796110144170369244612
75| 05 7.121693804640414520499550380081108 1360235860196
10,15,20 6.89684861937696037545452818712314053555203
100| 05 7.1216938046404152911963760032858519494248670403
10,15,20 6.89684861937696037545452818712312127697218
4135 05 16.71104570707284231534045779869890398874055970 1
10 14.97154867059731700938111496437106672775015032
15,20 14.971546348838095097650964554307761107155441
75| 05 16.40267023996077525941870205656452705825094478 1
10 14.97154289318059650158197244640609252173187180
15,20 14.971546348838095097650964554307761107155441
100| 05 16.1727874359355139190211994543646969560813181439
10 14.97154439717955256111887952830248179390503419

15,20 14.971546348838095097611066133148254587457821
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were first studied by the astrophysicists Jonathan Homer Lane and Robert Emden,
which considered the thermal behavior of a spherical cloud of gas acting under
the mutual attraction of its molecules and subject to the classical laws of
thermodynamics [1]. In the Lane-Emden type equations, the first zero of y(x)
is an important point of the function, so we have computed y(x) to calculate this
zero. In this paper, the equation is solved for m=1.5, 2, 2.5, 3 and 4, which

Table 3

NUMERICAL RESULTS OF FIRST ZEROS BY BASIS OF
EB WITH VARIOUS VALUES OF m, N AND ITERATIONS,
ACCURATE DIGITS ARE BOLD

m N Iteration EB
1.5 50 05 3.65375373625083916424
10,15,20 3.65375373625083427589
75 05 3.65375373622753501010
10,15,20 3.65375373622753011670
100 05 3.65375373622227432714
10,15,20 3.65375373622226943093
2 50 05 4.352874597893199785338903310594652764
10,15,20 4.35287459594612467776565735834309221
75 05 4.35287459594612467697472244822039342
10,15,20 4.3528745959461246769735701033024306
100 05 4.3528745978931997845468161427747526020
10,15,20 4.3528745959461246769735700615261418
2.5 50 05 5.35529645450764438595
10,15,20 5.3552754590107203902
75 05 5.35529645450764436772
10,15,20 5.3552754590107698447
100 05 5.35529645450764436772
10,15,20 5.3552754590107770840
3 50 05 7.12169371888993111013538427437823
10,15,20 6.896848619376969505160794512467
75 05 7.12169380466912339539903047482119
10,15,20 6.89684861937696037543698467213
100 05 6.89684861937696037791871227973
10,15,20 6.89684861937696037545452817312
4 50 05 16.26491731190237369943385
10 14.9715473275763026931076
15,20 14.9715463522353010587855
75 05 16.05210011924457026115446
10 14.9715472743172097800824
15,20 14.971546348837960854949
100 05 16.03218609785456527010395
10 14.9715472744622920651685
15,20 14.971546348838095104708
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does not have exact solutions.
The comparison of the initial slope y'(O) calculated by RB-QLM (N=75 and
iteration 15) with values obtained by Horedt [2] is given in Table 1.

Table 4

OBTAINED VALUES OF y(x) AND y'(x) OF STANDARD
LANE-EMDEN EQUATIONS FOR m=1.5 BY BASIS OF RB
WITH N=75 AND ITERATIONS 15

X ¥(x) y'(x)

0.1 0.998334582651024 -0.033283374960220
0.2 0.993353288961344 -0.066267995319313
0.3 0.985100745872271 -0.098660068556290
0.4 0.973650509840501 -0.130175582648867
0.5 0.959103856956817 -0.160544891813613
0.6 0.941588132070691 -0.189516931926819
0.7 0.921254699087677 -0.216862968455471
0.8 0.898276543103152 -0.242379797978458
0.9 0.872845582616537 -0.265892334576062
1.0 0.845169755493675 -0.287255540026184
2.0 0.495936764048973 -0.372832141746160
3.0 0.158857608676200 -0.284252727750886
3.6 0.011090994555729 -0.209392664698195

Table 5

OBTAINED VALUES OF y(x) AND y'(x) OF STANDARD
LANE-EMDEN EQUATIONS FOR m=2.5 BY BASIS OF RB
WITH N=75 AND ITERATIONS 15

X ¥(x) y'(x)

0.1 0.998335414189491 -0.033250148555062
0.2 0.993366508668235 -0.066004732702853
0.3 0.985166960607077 -0.097785664864449
04 0.973856692696194 -0.128148702313160
0.5 0.959597754464204 -0.156697706048055
0.6 0.942588917282480 -0.183095996800778
0.7 0.923059301998553 -0.207074283925069
0.8 0.901261395554722 -0.228434944738734
0.9 0.877463820286722 -0.247052726803513
1.0 0.851944199128236 -0.262872200779799
2.0 0.558372334987405 -0.290313683599236
3.0 0.306675101717593 -0.208571050779423
40 0.137680733022609 -0.134053438395795
5.0 0.029019186649369 -0.087473533084964
53 0.004259543533703 -0.077863974396729
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OBTAINED VALUES OF y(x) AND y'(x) OF STANDARD
LANE-EMDEN EQUATIONS FOR m=4 BY BASIS OF RB
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WITH N=75 AND ITERATIONS 15

y(x)

y'(x)

0.1
0.2
0.3
04
0.5

0.7
0.8
0.9
1.0
20
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10
11

13
14
14.9

0.99833665953957353917
0.99338621353236887458
0.98526489445824457228
0.97415840895070184085
0.96031090234222125391
0.94401129085560210481
0.92557835269653368985
0.90534592383779093911
0.88364932397603694257
0.86081381220831175185
0.62294077167068319754
0.44005069158766127850
0.31804242903566436744
0.23592273104248679739
0.17838426534298279218
0.13635230535983164961
0.10450408207160914867
0.07961946745395432400
0.05967274158948932881
0.04334009538193507922
0.02972593235798682964
0.01820540390617142867
0.00833052669542489543
0.00057641886621354664

-0.03320042731101602052
-0.06561355430127865539
-0.09650144694916813609
-0.12521904232653407185
-0.15124704523040264218
-0.17421139290379387733
-0.19388869549916036586
-0.21019908106443456806
-0.22318930318706216396
-0.23300964460615518736
-0.21815323531073192916
-0.14895436785082222650
-0.09886802020831413214
-0.06788810347440624083
-0.04865643577466167176
-0.03626805424834208635
-0.02795075318477840998
-0.02214833117831084820
-0.01796142023434323612
-0.01485063006054293705
-0.01248033393137584648
-0.01063445527740952134
-0.00916953946501606750
-0.00809526559361695336

Table 6

Tables 2 and 3 present some numerical examples to illustrate the accuracy
and convergence of our suggested methods by increasing the number of points and

iterations.

Tables 4-6 show the obtained values of y(x) and y'(x) by the approach which
based on RB collocation method, for m=1.5, 2.5, and 4 with the values of
N=75 and iteration 15.

The resulting graphs of the standard Lane-Emden equation obtained by the

present methods for m=1.5, 2, 2.5, 3, and 4 are shown in Fig.1.

Finally, Fig.2-6 show the residual errors for approximation solutions by basis
of the rational and exponential functions with N=50, 75, and 100. Note that

the residual error decreases with the increase of the collocation points.

6. Conclusion. The fundamental goal of this paper was to introduce novel
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hybrid basis of Rational Bessel and Exponential (RB and EB) functions with the
quasilinearization method (QLM) to construct an approximation for solving
nonlinear Lane-Emden type equations. These problems describe a variety of
phenomena in theoretical physics and astrophysics, including aspects of stellar
structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,
and thermionic currents [1]. To achieve this goal at first, a sequence of linear
differential equations is obtained by utilizing the QLM over Lane-Emden equation.
Second, at each iteration of QLM, the linear differential equation is solved by
new RB and EB collocation methods. This paper has been shown that the present
works have provided two acceptable approaches for solving Lane-Emden type
equations caused by the following reasons:

1. Cause of simplicity to solve problems and convergence of approximation

1.0

rational exponential
0.8
0.6 m=15, 2, 2.5, 3, 4 m=15, 2, 2.5, 3, 4
0.4
0.2 a b
0
2 6 10 14 2 6 10 14
X X

Fig.1. The obtained graphs of solutions of Lane-Emden standard equations by basis of RB and
EB with m=1.5, 2, 2.5, 3, 4.

—— N=100 i
= N — exponential
- “:;go rational i N=75 P

Fig.2. Logarithmic graph of residual error by present works with N=150, 75, 100 and iteration
15 when m=1.5.
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Fig.3. Logarithmic graph of residual error by present works with N = 50, 75, 100 and iteration
15 when m = 2.

exponential N=75

1010
1072 |
10" rational a
0 1 2 3 4 5
X 0 1 2 3 4 5
X

Fig.4. Logarithmic graph of residual error by present works with N=150, 75, 100 and iteration
15 when m=2.5.

functions, we convert the nonlinear problems to a sequence linear equations using
the QLM.
2. Numerical results indicate effectiveness, applicability, and accuracy of the

present approaches.

3. Present paper describes shortly bibliography of different methods utilized
in previous works for solving Lane-Emden-type equations.

4. The approaches applied to solve the problems without reformulating the
equation to bounded domains.
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Fig.5. Logarithmic graph of residual error by present works with N=150, 75, 100 and iteration
15 when m=3.
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Fig.6. Logarithmic graph of residual error by present works with N=150, 75, 100 and iteration
15 when m=4.

5. The approaches have been displayed converges when increasing the number
of collocation points by tabular reports.

6. At the first time, Rational and Exponential Bessel functions have been to
obtain numerical outcomes of the nonlinear exponent m of the standard Lane-
Emden equations.

7. Moreover, a very good approximation solution of y(x) for Lane-Emden type
equations with the various values of parameter m after only fifteen iterations are
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obtained. So, these methods are a good experience and method for the other
sciences.
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ABA SOOEKTUBHbBIX BbIYUCIWUTEIbBHbBIX
AJITOPUTMA [Jis1 PELUEHWA HEJIMHEWHBIX
CUHIVIAPHBIX YPABHEHUWN JIEMHA-OMIEHA

K.IIMAPAHO'?2, ATAOEPU-KAHTABAPW?, M.AEJXOLL

B crathe cpaBHMBaWOTCS nBa 3(POEKTUBHBIX BBIYMCIUTEIbHBIX aJropyuTMa,
OCHOBaHHbIe Ha pallMOHAJIbHBIX U 3KCIMOHEeHUMaNbHbIX (yHKIMsAX beccens (RB u
EB), s pelieHUs HEKOTOPBIX XOPOIIIO U3BECTHBIX KJIACCOB HEJIMHEMHBIX Moaesei
tuna JleitHa-OmaeHa. 3aaaun, KOTOpbIe BCTPEUAOTCs B Psie MOAEIICi He-HbIOTOHOBCKOM
MEXaHUKU XMIKOCTU W MaTeMaTUuecKoi (PUIUKU, SIBISIOTCS HEJIUHEWMHBIMU
OOBIKHOBEHHBIMU I(hdepeHIIMaNTbHBIMI YPaBHEHUSIMU BTOPOTO MOPSIIKA Ha TOJTy-
OECKOHEUHOM MHTepBajie U UMEIOT ocobeHHOCTh npu x=0. HenuHeliHble ypaBHEHMS
JleliHa-OmaeHa npeobpasyloTcst B MOCIEI0BATENLHOCTD IMHEWHBIX AUddepeHIIMaTbHBIX
YpaBHEHUWI ¢ UCIIOIb30BAaHUEM MeToma KBasuiarHeapusauuu (QLM), a 3aTeMm 3Tu
JIMHEHbIe ypaBHEHUS pelaroTcss Metonamu Kosutokaimu RB u EB. Ilocne atoro
MOJIyueHHbIE pe3yJbTaThl CPAaBHUBAIOTCS C pPELIEHWEM JPYTrMX METOJO0B [JIs
JeMOHCTpaluuu 3(GEKTUBHOCTHA U MTPUMEHUMOCTH TPEIOXKEHHBIX METOIOB.

KoiroueBble ciioBa: payuonanvhvie ynxyuu beccensi: IKCHOHEHYUANbHBIE QYHKUUU
beccens: ypasnenus muna Jlevina-moena: neauneiinoe OUY:
Memod KeazuauHeapuzayuu: Mmemoo KoA10Kauuu
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