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In this paper, two efficient computational algorithms based on Rational and Exponential
Bessel (RB and EB) functions are compared to solve several well-known class of non-linear Lane-
Emden type models. The problems, which define in some models of non-Newtonian fluid mechanics
and mathematical physics, are nonlinear ordinary differential equations of second-order over the
semi-infinite interval and have a singularity at x = 0. The non-linear Lane-Emden equations are
converted to a sequence of linear differential equations by utilizing the quasilinearization method
(QLM) and then, these linear equations are solved by RB and EB collocation methods. Afterward,
the obtained results are compared with the solution of other methods for demonstrating the
efficiency and applicability of the proposed methods.
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1. Introduction. The investigation of singular initial/boundary value problem
for non-linear second order differential equations has been attracted by some
astrophysicist, mathematicians, and physicists. Lane-Emden type equations describe
the temperature variation of a spherical gas cloud under the mutual attraction of
its molecules and subject to the laws of classical thermodynamics. Let P(r) denote
the total pressure at a distance r from the center of spherical gas cloud. The total
pressure is due to the usual gas pressure and a contribution from radiation:
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where  , T, R, and v  are the radiation constant, the absolute temperature, the
gas constant, and the specific volume, respectively [1]. Let M(r) be the mass within
a sphere of radius r and G the constant of gravitation, the equilibrium equation
for the configuration are
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where   is the density at a distance r from the center of a spherical star. To
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eliminate M, the previous equations should be written in a dimensional form as
follows [1,2]:
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We already know that in the case of a degenerate electron gas, the pressure and
density are 53P , assuming that such a relation exists in other states of the
star, we are led to consider a relation of the form mKP 11 , where K and m
are constants.

We can insert this relation into Eq. (1) for the hydrostatic equilibrium
condition and, from this, we can rewrite the equation as follows:
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where   represents the central density of the star and y denotes the dimensionless
quantity, which are both related to   through the following relation [1,2]:
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Inserting these relations into our previous relation, we obtain the Lane-Emden
equation [1,2]:
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where the initial conditions are as follows:

    . 00, 10  yy (3)

Eq. (2) with the initial conditions (3) is known as the standard Lane-Emden
equation.

The values of m, which are physically interesting, lie in the interval [0, 5].
The main difficulty in analyzing this type of equation is the singularity behaviour
occurring at x = 0.

The solutions of the Lane-Emden equation could be exact only for m = 0,
1 and 5. For the other values of m, the Lane-Emden equation is to be integrated
numerically [2]. Thus, we decided to present a new and efficient technique to
solve it numerically for m = 1.5, 2, 2.5, 3, and 4.
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1.1. Previous works. Recently, some analytical, semi-analytical, and numerical
techniques have been applied to solve Lane-Emden equations. The main difficulty
arises in the singularity of the equations at x = 0. We have introduced several
techniques as follow:

Bender et al. [3] proposed a new perturbation technique based on an artificial
parameter  , the method is often called  -method. Wazwaz [4] employed the
Adomian decomposition technique with an alternate framework designed, He [5]
employed Ritz's method to obtain an analytical solution, Parand et al. [6,7]
applied Spectral methods based on the fractional order of rational Bernoulli
functions and the fractional order of Chebyshev functions, Ramos [8,9] presented
linearzation methods to utilize an analytical solutions and globally smooth solutions,
and the obtained series solutions of the Lane-Emden type equation, Yousefi [10]
applied Legendre Wavelet approximations and used integral operator and converted
Lane-Emden equations to integral equations, Chowdhury and Hashim [11] used
analytical solutions of the generalized Emden-Fowler type equations by Homotopy
perturbation method (HPM), Aslanov [12] introduced a further development in
the Adomian decomposition technique, Dehghan and Shakeri [13] investigated
Lane-Emden equations by applying the variational iteration method (VIM),
Marzban et al. [14] used a method based upon hybrid of block-pulse functions
and Lagrange interpolating polynomials together with the operational integration
matrix to approximate solution of the problem, Adibi and Rismani [15] proposed
the approximate solutions of singular the Lane-Emden via modified Legendre-
spectral method, Vanani and Aminataei [16] provided a numerical method which
produces an approximate polynomial solution, they used an integral operator and
convert Lane-Emden equations into integral equations and then convert the
acquired integral equations into a power series and finally, transforming the power
series into padé series form, Kaur et al. [17] obtained the Haar wavelet approximate
solution.

Furthermore, other researchers trying to solve the Lane-Emden type equations
with several methods, For example, Yildirm and Özis,  [18] by using HPM method,
Iqbal and Javad [19] by using Optimal HAM, Boubaker and Van Gorder [20]
by using boubaker polynomials expansion scheme, Das, cog( l u and Yaslan [21] by
using Chebyshev collocation method, Yüzbas,  [22] by using Bessel matrix method,
Boyd [23] by using Chebyshev spectral method, Bharwy and Alofi [24] by using
Jacobi-Gauss collocation method, Pandey et al. [25] by using Legendre operation
matrix, Rismani and Monfared [26] by using Modified Legendre spectral method,
Delkhosh et al. [27] by using the fractional order of rational Euler collocation
methods, Nazari-Golshan et al. [28] by using Homotopy perturbation with Fourier
transform, Doha et al. [29] by using second kind Chebyshev operation matrix
algorithm, Mall and Chakaraverty [30] by using Chebyshev Neural Network based
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model, Gürbüz and Sezer [31] by using Laguerre polynomial and Kazemi-Nasab
et al. [32] by using Chebyshev wavelet finite difference method. In this paper,
we attempt to introduce two efficient computational algorithms based on Rational
and Exponential Bessel (RB and EB) functions for solving non-linear singular
Lane-Emden equations.

The rest of this paper is arranged as follows: Section 2 introduces new rational
and exponential Bessel (RB and EB) functions and their properties. Section 3
describes a brief formulation of quasilinearization method (QLM) [38]. In section
4 at first, by utilizing the QLM over the Lane-Emden equation a sequence of
linear differential equations is obtained, and then at each iteration, the linear
differential equation is solved by RB and EB collocation methods that we name
RB-QLM and EB-QLM methods. Comparison between these two methods with
some well-known results in section 5, show that using rational functions is highly
accurate, and we also describe our results via tables and figures. Finally, we give
a brief conclusion in section 6.

2. Properties of rational and exponential Bessel functions . The
Bessel functions arise in many problems in physics possessing cylindrical symmetry,
such as the vibrations of circular drumheads and the radial modes in optical fibers.
Bessel functions are usually defined as a particular solution of a linear differential
equation of the second order which known as Bessel's equation [33]. Bessel
functions first defined by Daniel Bernoulli on heavy chains (1738) and then
generalized by Friedrich Bessel. More general Bessel functions were studied by
Leonhard Euler in 1781 and in his study of the vibrating membrane in 1764.

Bessel differential equation of order Rn  is:

         .  ,, 022
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One of the solutions of equation (4) by applying the method of Frobenius
as follows [34]:
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where series (5) is convergent for all    ,x .
Bessel polynomials have been introduced as follows [35]:
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where Nn , [.] denotes the floor of a number, and N is the number of basis
of Bessel polynomials.

2.1. Rational Bessel functions. The new basis functions, "Rational Bessel
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(RB) functions" denote by RB
n
(x, L) which are generated from well known Bessel

polynomials by using the algebraic mapping of    Lxxx   as follow:
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where    ,0x , B
n
(x) is Bessel polynomials of order n, and the constant

parameter L > 0 is a scaling/stretching factor which can be used to fine tune the
spacing of collocation points. For a problem whose solution decays at infinity,
there is an effective interval outside of which the solution is negligible, and
collocation points which fall outside of this interval are essentially wasted. On the
other hand, if the solution is still far from negligible at the collocation points
with largest magnitude, one cannot expect a very good approximation. Hence, the
performance of spectral methods in unbounded domains can be significantly
enhanced by choosing a proper scaling parameter such that the extreme collocation
points are at or close to the endpoints of the effective interval [36]. Boyd [37]
offered guidelines for optimizing the map parameter L for rational Chebyshev
functions which is also useful for the RB functions.

Let us define   xx 0  and
   vv R :2

rwL  is measurable and 
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with    2 , LxLLxwr  , is the norm induced by inner product of the space
 2
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Now, suppose that

      ,  ..., , ,span 10 xRBxRBxRB NS
where S  is a finite-dimensional subspace of  2

wL ,   1dim  NS , so S  is a
closed subspace of  2L . Therefore, S  is a complete subspace of  2L . Assume
that f(x) be an arbitrary element in  2L . Thus f(x) has a unique best
approximation in S  subspace, say   Sxb̂ , that is
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Notice that we can write b(x) vector as a combination of the basis vectors of S
subspace.
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We know function of f(x) can be expanded by N + 1 terms of RB functions as:

      , xRxfxf N 

that is
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(8)

where RB(x) is vector       TN xRBxRBxRB  ..., , , 10  and SR  that S  is the
orthogonal complement. So      Sxfxf N  and   Sxb  are orthogonal which
we denote it by:

    , bxfxf N 

thus    xfxf N  vector is orthogonal over all of basis vectors of S  subspace as:
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2.2. Exponentioal Bessel functions. Exclusive of rational functions, we
can use exponential transformation to have new functions which are also defined on
the semi-infinite interval. The exponential Bessel (EB) functions can be defined by
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where parameter L is a constant parameter and, like rational functions, it sets the
length scale of the mapping. All of the above relations can also be used to EB
functions with respect to the weight function   LeLxw Lx

e
 ,  in the interval   ,0 .

3. The quasilinearization method (QLM). The QLM is a generalization
of the Newton-Raphson method [38] to solve the nonlinear differential equation
as a limit of approximating the nonlinear terms by an iterative sequence of linear
expressions. The QLM techniques are based on the linearization of the higher
order ordinary/partial differential equation and require the solution of a linear
ordinary differential equation at each iteration. Mandelzweig and Tabakin [39] have
determined general conditions for the quadratic, monotonic, and uniform convergence
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of the QLM to solve both initial and boundary value problems in nonlinear
ordinary n-th order differential equations in N-dimensional space. And also,
Canuto et al. [40] have proved the stability and convergence analysis of spectral
methods, and, we will show that our numerical results are convergent.

Let us assume that a second-order nonlinear ordinary differential equation in
one variable on the interval   ,0  as follows:

    .  , ,2

2
xxuxuF

dx
ud  (10)

with the initial conditions: u(0) = A,   Bu  0 , where A and B are real constants
and F is a nonlinear function.

By utilizing the QLM to solve Eq. (10) determines the (I + 1)-th iterative
approximation u

I+1(t) as a solution of the linear differential equation:

          ,  , , , , , , 112
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IIuIIIIuIIII
I  
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with the initial conditions:

    , 0, 0 11 BuAu II   (12)

where I = 0, 1, 2, ... and the functions uFFu   and uFFu   are
functional derivatives of the functional of  xuuF II  , , .

4. Application of methods. In this paper, two methods based on RB
collocation method and EB collocation method for solving Eq. (2) with initial
conditions of Eq. (3) have been considered.

First, by utilizing the QLM technique on Eq. (2), we have

            012 1
111  
 xyxmxyxxymxyxyx m

II
m
III (13)

with the initial conditions:

    , 00, 10 11   II yy (14)

where I = 0, 1, 2, ...
For rapid convergence is actually enough that the initial guess is sufficiently

good to ensure the smallness of just one of the quantity IIr yykq  1 , where
k is a constant independent of I. Usually, it is advantageous that y0(t) would satisfy
at least one of the initial conditions Eq. (3) [39], thus set y0(x) = 1 for the initial
guess of the Lane-Emden equation.

Then, we can approximate y
I+1(x) by N + 1 basis of RB and EB functions as

follows:
1. approximating y

I+1(x) by N + 1 basis of RB functions:
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where r = 0, 1, 2, ... and two terms 1 and 2x  are to satisfy initial conditions
Eq. (14).

To apply the collocation method, we have constructed the residual function
for (I + 1)-th iteration in QLM by substituting y

I+1(x) by u
N,I+1(x) into Eq. (13)

as follows:
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2. approximating y
I+1(x) by N + 1 basis of EB functions:
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where r = 0, 1, 2, ....
Two terms of  11 2x  and  12 xx  are considered to satisfy initial conditions

Eq. (14). Also, like above, to apply the collocation method, we have constructed
the residual function for (I + 1)-th iteration in QLM by substituting y

I+1(x) by
w

N,I+1(x) into Eq. (13) as follows:
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In all of the spectral methods, the purpose is to find the nb̂  and nĉ  unknown
coefficients.

A method for forcing the residual functions Eq. (16) and Eq. (18) to zero
can be defined as collocation algorithm. There is no limitation to choose points
in the collocation method. The N + 1 collocation points have been substituted in
the equations of RESr

I+1(x) and RESe
I+1(x), therefore:

  ,  ..., 1, ,0, 01 NixRESr iI  (19)

  ,  ..., 1, ,0, 01 NixRESe iI  (20)

m RB EB Horedt [2]

1.5 3.65375373622763424836747856706295570 3.653753736227530116708951 3.65375374
2.0 4.35287459594612467697357006152614262 4.352874595946124676973570 4.35287460
2.5 5.35527545901076012377857991160851840 5.355275459010769844745925 5.35527546
3.0 6.89684861937696037545452818712314053 6.896848619376960375436984 6.89684862
4.0 14.9715463488380950976509645543077611 14.97154634883796085494984 14.9715463

Table 1

COMPARISON OF THE FIRST ZEROS OF STANDARD LANE-EMDEN
EQUATIONS, WITH VALUES GIVEN BY HOREDT [2] AND THE

PRESENT METHODS WITH N = 75 AND ITERATION 15
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which x
i
 are roots of the shifted Chebyshev functions on the finite interval [7].

Finally, a linear system of equations has been obtained, all of these equations
can be solved by a suitable method such as the Newton method for calculating
the unknown coefficients.

5. Results and discussion. The Lane-Emden type equations describe the
variation of density as a function of the radial distance for a poly-trope. They

m N Iteration RB

1.5 50 05 3.65375373625072342590
10,15,20 3.65375373625071853754

75 05 3.65375373622763914172
10,15,20 3.65375373622763424836

100 05 3.65375373622225950682
10,15,20 3.65375373622225461061

2 50 05 4.3541023191782544510394699271974639349588062470049419121696397470
10,15,20 4.35287459594612467697357006152614339487342457587311708331752

75 05 4.352874597893199784546816142774753394907169932534281348066892095
10,15,20 4.352874595946124676973570061526142628112365363213147181521

100 05 4.352874597893199784546816142774753394907169932542963806389373524
10,15,20 4.352874595946124676973570061526142628112365363213008835302

2.5 50 05 5.3552964545076443677
10,15,20 5.355275459010744925

75 05 5.35529645450764436772
10,15,20 5.3552754590107601237

100 05 5.35529645450764436772
10,15,20 5.3552754590107873176

3 50 05 7.1216938046517305045330727094680858444666907392
10,15,20 6.8968486193769603754542796110144170369244612

75 05 7.1216938046404145204995503800811081360235860196
10,15,20 6.89684861937696037545452818712314053555203

100 05 7.1216938046404152911963760032858519494248670403
10,15,20 6.89684861937696037545452818712312127697218

4 50 05 16.711045707072842315340457798698905988740559701
10 14.97154867059731700938111496437106672775015032

15,20 14.971546348838095097650964554307761107155441
75 05 16.402670239960775259418702056564527058250944781

10 14.97154289318059650158197244640609252173187180
15,20 14.971546348838095097650964554307761107155441

100 05 16.172787459355139190211994543646969560813181439
10 14.97154439717955256111887952830248179390503419

15,20 14.971546348838095097611066133148254587457821

Table 2

NUMERICAL RESULTS OF FIRST ZEROS BY BASIS OF
RB WITH VARIOUS VALUES OF m, N AND ITERATIONS,

ACCURATE DIGITS ARE BOLD
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were first studied by the astrophysicists Jonathan Homer Lane and Robert Emden,
which considered the thermal behavior of a spherical cloud of gas acting under
the mutual attraction of its molecules and subject to the classical laws of
thermodynamics [1]. In the Lane-Emden type equations, the first zero of y(x)
is an important point of the function, so we have computed y(x) to calculate this
zero. In this paper, the equation is solved for m = 1.5, 2, 2.5, 3 and 4, which

m N Iteration EB

1.5 50 05 3.65375373625083916424
10,15,20 3.65375373625083427589

75 05 3.65375373622753501010
10,15,20 3.65375373622753011670

100 05 3.65375373622227432714
10,15,20 3.65375373622226943093

2 50 05 4.352874597893199785338903310594652764
10,15,20 4.35287459594612467776565735834309221

75 05 4.35287459594612467697472244822039342
10,15,20 4.3528745959461246769735701033024306

100 05 4.3528745978931997845468161427747526020
10,15,20 4.3528745959461246769735700615261418

2.5 50 05 5.35529645450764438595
10,15,20 5.3552754590107203902

75 05 5.35529645450764436772
10,15,20 5.3552754590107698447

100 05 5.35529645450764436772
10,15,20 5.3552754590107770840

3 50 05 7.12169371888993111013538427437823
10,15,20 6.896848619376969505160794512467

75 05 7.12169380466912339539903047482119
10,15,20 6.89684861937696037543698467213

100 05 6.89684861937696037791871227973
10,15,20 6.89684861937696037545452817312

4 50 05 16.26491731190237369943385
10 14.9715473275763026931076

15,20 14.9715463522353010587855
75 05 16.05210011924457026115446

10 14.9715472743172097800824
15,20 14.971546348837960854949

100 05 16.03218609785456527010395
10 14.9715472744622920651685

15,20 14.971546348838095104708

Table 3

NUMERICAL RESULTS OF FIRST ZEROS BY BASIS OF
EB WITH VARIOUS VALUES OF m, N AND ITERATIONS,

ACCURATE DIGITS ARE BOLD
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does not have exact solutions.
The comparison of the initial slope  0y  calculated by RB-QLM (N = 75 and

iteration 15) with values obtained by Horedt [2] is given in Table 1.

x y(x) y '(x)

0.1 0.998334582651024 -0.033283374960220
0.2 0.993353288961344 -0.066267995319313
0.3 0.985100745872271 -0.098660068556290
0.4 0.973650509840501 -0.130175582648867
0.5 0.959103856956817 -0.160544891813613
0.6 0.941588132070691 -0.189516931926819
0.7 0.921254699087677 -0.216862968455471
0.8 0.898276543103152 -0.242379797978458
0.9 0.872845582616537 -0.265892334576062
1.0 0.845169755493675 -0.287255540026184
2.0 0.495936764048973 -0.372832141746160
3.0 0.158857608676200 -0.284252727750886
3.6 0.011090994555729 -0.209392664698195

Table 4

OBTAINED VALUES OF y(x) AND y '(x) OF STANDARD
LANE-EMDEN EQUATIONS FOR m = 1.5 BY BASIS OF RB

WITH N = 75 AND ITERATIONS 15

Table 5

OBTAINED VALUES OF y(x) AND y '(x) OF STANDARD
LANE-EMDEN EQUATIONS FOR m = 2.5 BY BASIS OF RB

WITH N = 75 AND ITERATIONS 15

x y(x) y '(x)

0.1 0.998335414189491 -0.033250148555062
0.2 0.993366508668235 -0.066004732702853
0.3 0.985166960607077 -0.097785664864449
0.4 0.973856692696194 -0.128148702313160
0.5 0.959597754464204 -0.156697706048055
0.6 0.942588917282480 -0.183095996800778
0.7 0.923059301998553 -0.207074283925069
0.8 0.901261395554722 -0.228434944738734
0.9 0.877463820286722 -0.247052726803513
1.0 0.851944199128236 -0.262872200779799
2.0 0.558372334987405 -0.290313683599236
3.0 0.306675101717593 -0.208571050779423
4.0 0.137680733022609 -0.134053438395795
5.0 0.029019186649369 -0.087473533084964
5.3 0.004259543533703 -0.077863974396729
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Tables 2 and 3 present some numerical examples to illustrate the accuracy
and convergence of our suggested methods by increasing the number of points and
iterations.

Tables 4-6 show the obtained values of y(x) and  xy  by the approach which
based on RB collocation method, for m = 1.5, 2.5, and 4 with the values of
N = 75 and iteration 15.

The resulting graphs of the standard Lane-Emden equation obtained by the
present methods for m = 1.5, 2, 2.5, 3, and 4 are shown in Fig.1.

Finally, Fig.2-6 show the residual errors for approximation solutions by basis
of the rational and exponential functions with N = 50, 75, and 100. Note that
the residual error decreases with the increase of the collocation points.

6. Conclusion. The fundamental goal of this paper was to introduce novel

Table 6

OBTAINED VALUES OF y(x) AND y '(x) OF STANDARD
LANE-EMDEN EQUATIONS FOR m = 4 BY BASIS OF RB

WITH N = 75 AND ITERATIONS 15

x y(x) y '(x)

0.1 0.99833665953957353917 -0.03320042731101602052
0.2 0.99338621353236887458 -0.06561355430127865539
0.3 0.98526489445824457228 -0.09650144694916813609
0.4 0.97415840895070184085 -0.12521904232653407185
0.5 0.96031090234222125391 -0.15124704523040264218
0.6 0.94401129085560210481 -0.17421139290379387733
0.7 0.92557835269653368985 -0.19388869549916036586
0.8 0.90534592383779093911 -0.21019908106443456806
0.9 0.88364932397603694257 -0.22318930318706216396
1.0 0.86081381220831175185 -0.23300964460615518736
2.0 0.62294077167068319754 -0.21815323531073192916
3.0 0.44005069158766127850 -0.14895436785082222650
4.0 0.31804242903566436744 -0.09886802020831413214
5.0 0.23592273104248679739 -0.06788810347440624083
6.0 0.17838426534298279218 -0.04865643577466167176
7.0 0.13635230535983164961 -0.03626805424834208635
8.0 0.10450408207160914867 -0.02795075318477840998
9.0 0.07961946745395432400 -0.02214833117831084820
10 0.05967274158948932881 -0.01796142023434323612
11 0.04334009538193507922 -0.01485063006054293705
12 0.02972593235798682964 -0.01248033393137584648
13 0.01820540390617142867 -0.01063445527740952134
14 0.00833052669542489543 -0.00916953946501606750

14.9 0.00057641886621354664 -0.00809526559361695336
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hybrid basis of Rational Bessel and Exponential (RB and EB) functions with the
quasilinearization method (QLM) to construct an approximation for solving
nonlinear Lane-Emden type equations. These problems describe a variety of
phenomena in theoretical physics and astrophysics, including aspects of stellar
structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,
and thermionic currents [1]. To achieve this goal at first, a sequence of linear
differential equations is obtained by utilizing the QLM over Lane-Emden equation.
Second, at each iteration of QLM, the linear differential equation is solved by
new RB and EB collocation methods. This paper has been shown that the present
works have provided two acceptable approaches for solving Lane-Emden type
equations caused by the following reasons:

1. Cause of simplicity to solve problems and convergence of approximation

Fig.1. The obtained graphs of solutions of Lane-Emden standard equations by basis of RB and
EB with m = 1.5, 2, 2.5, 3, 4.
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Fig.2. Logarithmic graph of residual error by present works with N = 50, 75, 100 and iteration
15 when m = 1.5.
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functions, we convert the nonlinear problems to a sequence linear equations using
the QLM.

2. Numerical results indicate effectiveness, applicability, and accuracy of the
present approaches.

3. Present paper describes shortly bibliography of different methods utilized
in previous works for solving Lane-Emden-type equations.

4. The approaches applied to solve the problems without reformulating the
equation to bounded domains.

Fig.3. Logarithmic graph of residual error by present works with N = 50, 75, 100 and iteration
15 when m = 2.
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5. The approaches have been displayed converges when increasing the number
of collocation points by tabular reports.

6. At the first time, Rational and Exponential Bessel functions have been to
obtain numerical outcomes of the nonlinear exponent m of the standard Lane-
Emden equations.

7. Moreover, a very good approximation solution of y(x) for Lane-Emden type
equations with the various values of parameter m after only fifteen iterations are

Fig.5. Logarithmic graph of residual error by present works with N = 50, 75, 100 and iteration
15 when m = 3.
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obtained. So, these methods are a good experience and method for the other
sciences.
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ÄÂÀ ÝÔÔÅÊÒÈÂÍÛÕ ÂÛ×ÈÑËÈÒÅËÜÍÛÕ
ÀËÃÎÐÈÒÌÀ ÄËß ÐÅØÅÍÈß ÍÅËÈÍÅÉÍÛÕ

ÑÈÍÃÓËßÐÍÛÕ ÓÐÀÂÍÅÍÈÉ ËÅÉÍÀ-ÝÌÄÅÍÀ

Ê.ÏÀÐÀÍÄ1,2, À.ÃÀÄÅÐÈ-ÊÀÍÃÀÂÀÐÈ2, Ì.ÄÅËÕÎØ3

 Â ñòàòüå ñðàâíèâàþòñÿ äâà ýôôåêòèâíûõ âû÷èñëèòåëüíûõ àëãîðèòìà,
îñíîâàííûå íà ðàöèîíàëüíûõ è ýêñïîíåíöèàëüíûõ ôóíêöèÿõ Áåññåëÿ (RB è
EB), äëÿ ðåøåíèÿ íåêîòîðûõ õîðîøî èçâåñòíûõ êëàññîâ íåëèíåéíûõ ìîäåëåé
òèïà Ëåéíà-Ýìäåíà. Çàäà÷è, êîòîðûå âñòðå÷àþòñÿ â ðÿäå ìîäåëåé íå-íüþòîíîâñêîé
ìåõàíèêè æèäêîñòè è ìàòåìàòè÷åñêîé ôèçèêè, ÿâëÿþòñÿ íåëèíåéíûìè
îáûêíîâåííûìè äèôôåðåíöèàëüíûìè óðàâíåíèÿìè âòîðîãî ïîðÿäêà íà ïîëó-
áåñêîíå÷íîì èíòåðâàëå è èìåþò îñîáåííîñòü ïðè x = 0. Íåëèíåéíûå óðàâíåíèÿ
Ëåéíà-Ýìäåíà ïðåîáðàçóþòñÿ â ïîñëåäîâàòåëüíîñòü ëèíåéíûõ äèôôåðåíöèàëüíûõ
óðàâíåíèé ñ èñïîëüçîâàíèåì ìåòîäà êâàçèëèíåàðèçàöèè (QLM), à çàòåì ýòè
ëèíåéíûå óðàâíåíèÿ ðåøàþòñÿ ìåòîäàìè êîëëîêàöèè RB è EB. Ïîñëå ýòîãî
ïîëó÷åííûå ðåçóëüòàòû ñðàâíèâàþòñÿ ñ ðåøåíèåì äðóãèõ ìåòîäîâ äëÿ
äåìîíñòðàöèè ýôôåêòèâíîñòè è ïðèìåíèìîñòè ïðåäëîæåííûõ ìåòîäîâ.

Êëþ÷åâûå ñëîâà: ðàöèîíàëüíûå ôóíêöèè Áåññåëÿ: ýêñïîíåíöèàëüíûå ôóíêöèè
    Áåññåëÿ: óðàâíåíèÿ òèïà Ëåéíà-Ýìäåíà: íåëèíåéíîå ÎÄÓ:
   ìåòîä êâàçèëèíåàðèçàöèè: ìåòîä êîëëîêàöèè
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