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field of solar-terrestrial relationship to point out the trajectory of different satellites,
locations of boundaries, vector field parameter etc. The requirement of more
coordinate systems is the arisen question here. Possible answers are, rarely different
physical techniques are easy to understand, experimental informatio's are properly
ordered, and also easy to manipulate in one coordinate system related to the other
CS's. Transforming from one CS to others is necessary for these situations.

By the invention of cosmic acceleration, the phenomenon of a black hole (BH)
has become the most interesting illustration with useful physical aspects. Two
important existences of vacuum BH solutions under the field general relativity (GR),
like uncharged Schwarzschild and charged Reissner-Nordstrom black hole.
Schwarzschild's space-time temporary singularity in (t, r) coordinates, when r = 2m
by Kruskal (or Kruskal-Szekeres-like) coordinates are defined to this space-time by
direct substitution of r = 2m in metric's coefficients. After substitution we get a finite
number ( em216 ) henceforth, at horizon, the coordinates become regular [4]. The
Reissner-Nordstrom BH when Q < m is singular at (  rr  , ) in the coordinates
(t, r). An appropriate redefine an analogue to Kruskal-like coordinates helped to
avoid these singularities [5], but unable to vanish both simultaneously. As far as
to use that analogue, two independent coordinate patches are required. Although,
the number of black holes (BHs) is present in Einstein's general relativity, where
the presented case is for non-vacuum [6-13] and needed further illustration.

The presentation order of the research article is as follows. Section 2, consists
brief introduction of important cases of some BH in  Rf  gravity space time.
For a given space time, we also have explained physical as well as curvature
singularities. The proceeding subsections contain non-singular coordinates of the
non-extremal space-time cases. Also possibility of obtaining non-singular Kruskal-
like coordinates for extremal case is explained. Furthermore, we built Carter-like
coordinates for the extremal case of the BH in  Rf  geometry. The last section
is reserved for the final summary and conclusion.

2. Some BH in  Rf  gravity. The action of GR has been reformed to
enlighten the accelerative expansions of space and currently  Rf  gravity stands
among a good plan reform of GR. It is because of the fact that  Rf  gravitational
theory is capable of generating an accelerative expansion in a universe [14]. Besides
this, if a cosmological constant occurs, it does not possess measurable effects of
the most astrophysical phenomena's [15]. Nevertheless, the  Rf  gravity can have
astrophysical significance. Actually, astrophysical significance are used to govern
different types of  Rf  gravitational models. Thus, it became more exciting and
essential to learn astrophysical phenomena by means of  Rf  gravity. Some space-
times in  Rf  gravity models are studied in [15] debated the constancy of  Rf
BH. Additionally, there are numerous claims in  Rf  space-time theory, i.e. active
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equation approach, gravitational waves, LHC trial, brans models etc.
In the last decade, thought-provoking models of  Rf  gravitation are under

study and performances of particles bounded by a BH have been invented. The
Lagrangian essential for such a  Rf  gravity model is,
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where   be a cosmological constant, R
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The limit which is pertinent at the cosmological scale is   


~Rd~R
122 6 ,

resulted    RRf . Using that limit, usually constraints the accelerating devel-
opments.

It is therefore stimulating to present a parameter d  in terms of which
both restrictions of the gravity have been discussed. Under that gravity, BH's
metric, having a mass M, is given by

    , 1 22222  drdr
rf

dtrfds (3)

where  rf  is
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Now, take G = c = 1 and focused on a unique case 0 , describes some BH
in  Rf  gravity. When we put   0rf , we get three horizons of the gravity
and are denoted by r

a
, r

b
 and r

c
. By observing nature of roots, two different cases

will generate and are:
1) Non-extremal BH Space-time (NEBHST) which have 3 distinct, but real

roots i.e. r
a
, r

b
 and r

c

2) Extremal Space-time like (EBHST) having real and repeating roots,
r
a

 = r
b

 = r
c
.

At first, taking non-extremal BH Space-time. The absolute value of 3 roots
of  Rf  are:
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, 
3

cos
3
2 
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grc (6)

where,   is the angle with 0  and r
a
, r

b
 and r

c
 represents the horizons

in  Rf  gravity. Given Ricci scalar "R" of the gravity under consideration is
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confirm that they are physical singularities. Hence, we can try to build non-
singular coordinates of the space-time. By the roots, r

a
, r

b
 and r

c
, we express  rf

as

     
. 
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2.1. Non-singular Kruskal-like coordinates for the non-extremal
BH space-time in  Rf  gravity. For elimination of physical singularities,
we defining r  by

 

     

, 1ln1ln1ln1














 

abcacbbca rrr

c

rrr

b

rrr

a r
r

r
r

r
r~dr

rf
r (10)

where

    . 3

bcacab rrrrrr
~




Then Eddington coordinates are
     

, 1ln1ln1ln













 abcacbbca rrr

c

rrr

b

rrr

a r
r

r
r

r
r~tv (11)

     

. 1ln1ln1ln













 abcacbbca rrr

c

rrr

b

rrr

a r
r

r
r

r
r~tu (12)

Using Eddington coordinates, the usual BH metric takes the form
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Using Kruskal-like coordinates, the usual BH metric will be as
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where

. sin 2222  ddd

It is known that Kruskal-like coordinates [3] can't eliminate all the three
singularities simultaneously. To this gravitation geometry, we need two different
coordinate patches. First for regions 0 < r < r

b
 and  rrb , another for the regions

r
a

 < r < r
c
. For 0 < r < r

c
 region, we define non-singular coordinates similar to

Kruskal's-like coordinates as  vV exp1  and  uU exp1 , where the retarded
coordinates [16] are  rtv  and  rtu , choose cba rrr  and 

~rrr cba2 .
The space-time metric (14), according to these coordinates will be as
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Clearly, singularity exists at r = r
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As arr  or cr ,   0 , 11 UV , although in metric (15) singularity still exists at
r = r

b
. This coordinate system cover regions 0 < r < r

b
 and br  of the whole

manifold. A CS, analogous to Kruskal-like coordinates for r
a

 < r < r
c
 regions are

 vV exp2  and  uU exp2 , where the recent and retarded coordinates are
 rtv  and  rtu , choosing cba rrr  and 

~rrr cba2 . The space-time
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metric (14) then takes the form as
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This is non-singular at r = r
a
 and r = r

c
, where
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As arr  and crr  ,   0 , 22 UV  but singularity still exists at the horizon

brr  in the metric (19). This coordinate system V2, U2 only covers the region
r
a

 < r < r
c
 of the whole manifold.

2.2. Kruskal-Szekeres like coordinates for the non-extremal BH
space-time in  Rf  gravity. Now introducing space-time coordinates for
0 < r < r

b
 and  rrb  regions as in [17]
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These coordinates transforming the metric (15) to

      
     

, 111

19192

2

2
1

222
1

22
2

2










d
r
r

r
r

r
r

dr~dr~
rrr
rfds

baabcaaccbbc rrrr

c

rrrr

b

rrrr

a

cba
(23)

where

 

     

, 111
2

sinh
222

1

baabcaaccbbc rrrr

c

rrrr

b

rrrr

acba
cba r

r
r
r

r
r~

rrr
trrr













 

     

. 111
2

cosh
222

1

baabcaaccbbc rrrr

c

rrrr

b

rrrr

acba
cba r

r
r
r

r
r~

rrr
trrr















113NON-SINGULAR  COORDINATES  OF  BH  IN f(R)  GRAVITY

Their inverse transformation is
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Again, introducing space-time coordinates for r
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 < r < r
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 regions [17].
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Transforming the metric (19) by using above coordinates as:
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2.3. Compactification of Kruskal-Szekeres like coordinates for the non-
extreme BH space-time in  Rf  gravity. Now defining the compactified
coordinates for 0 < r < r

b
 and  rrb  regions [17].
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   . tantan 22
1-

22
1-

2 

They implicitly relate with these coordinates and r as

 
     

2
tan

2
tan

111

1111

22
1

2
1





 baabcaaccbbc rrrr

c

rrrr

b

rrrr

a
cba r

r
r
r

r
rrrr

and

 
     

. 
2

tan
2

tan

111

2222

22
2

2
2





 baabcaaccbbc rrrr

c

rrrr

b

rrrr

a
cba r

r
r
r

r
rrrr

Compactified Kruskal-Szekeres like coordinates shows the geometry of NEBH.

2.4. Non-existence of Kruskal like coordinates for the extreme BH
space-time in  Rf  gravity. For EBHST case, transforming metric (3) to

     , sin1 2222222  ddrdr
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In metric (25), singularity exists at r = 0 and r = r
e
 the former being an essential

and the latter a coordinate singularity. To avoid the coordinate singularity for an
extremal space-time, one defines r  as
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The recent and retarded coordinates [16] are (v, u) as  rtv  and  rtu .
Then, the Kruskal-like coordinates (V, U ) are vexpV  and uexp U
having   ,  be constants. r  for EBHST's geometry will be
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Here, a type of singularity, named as pole divergence, unlikely non-extreme
geometry, and all four are logarithmic divergence there. One more key difference,
namely that for non-extreme geometry. The singularity is at 2 various values of
r, but for extreme case, singularity exists at r = r

e
. For non-extreme space-time

the singular point can be vanish by setting appropriate values of  . But in extreme
space-time, the singular point can't be vanished through ordinary procedures. It
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is because the extreme metric for Kruskal like coordinates (V, U) will be

       , sinexp
3

222223
2

32
2 2





  ddrdVdU
r
rrds ee rrrre (28)

where singularity exists at r = r
e
. Hence, Kruskal like coordinates have no use in

extremal case.

2.5. Non-singular Carter-like coordinates for the extreme BH
space-time in  Rf  gravity. Now introducing Carter-like coordinates for
getting rid of coordinate singularities [18].

, cottan, cottan 1-1-1-1-

t
w

t
v

t
w

t
v



where  rtv , similarly  rtw  having r  as

   
 

.
2

23
3 2

3

e

ee

rr
rrdr

r
rrr







 

The following coordinates (   , , , ) transformed the line element (25) to

     . sin
2

csc
2

sec
12

22222222
32

2 


 ddrdd
r
rrlds e (29)

Here   and   can be relating with radial parameter as

 
 

. 0
23

2
cot

2
tan 3 











e

e

rrl
rr

We can find the determinant of (23) as:

    , 3 2, 1, ,0 ,, sin
2

csc
2

sec
144

244
624




 yxrrrlg e
xy (30)

where

  , 111
2

sec
2

2
2

2

2

2
4 






 










 rt
ll

v
(31)

  . 111
2

csc
2

2
2

2

2

2
4 






 










 rt
ll

w
(32)

We get a finite determinant if err  and  , like the extreme case of BTZ
BH. Also the metric (29) becomes non-singular at r = r

e
. Hence Carter-like

coordinates vanishes the coordinate singularity of the EBHST.

3. Summary and conclusions. In our observation, all the three singularities
can’t be removed at a time by single coordinate patch through Kruskal-like
coordinates. For gravitation geometry, we need 2 distinct coordinate patches. First
is for the regions 0 < r < r

b
 and  rrb . Similarly for the next patch, the region
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is r
a

 < r < r
c
. By compactified Kruskal-Szekeres like coordinates, not only we can

remove coordinate singularities but in future be able for retrieving of space-time
diagram of the whole NEBHST. It also revealed that Kruskal-like coordinates are
unable for removing singularity at r = r

e
 of EBHST's geometry. We try to resolve

Einstein's equations related to this case, but couldn't successful till now. Our efforts
show that EBHST metric can't be transform to a desired form such as in rotating
BTZ BH case [17]. Anyways, that can't be shown formally, hence the results
couldn't be relevant. Although to keep the metric away from physical singularity
of EBHST, we are successful to build non-singular Carter-like coordinates, regular
for extreme case only.
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ÍÅÑÈÍÃÓËßÐÍÛÅ ÊÎÎÐÄÈÍÀÒÛ ÍÅÊÎÒÎÐÛÕ
×ÅÐÍÛÕ ÄÛÐ Â f(R) ÃÐÀÂÈÒÀÖÈÈ

Ñ.Ì.Äæ.ÐÈÀÇ, Ð.ÕÓÑÑÅÉÍ

Â ñòàòüå ïðåäñòàâëåíû íåñèíãóëÿðíûå êîîðäèíàòû òèïà Êðóñêàëà
ïðîñòðàíñòâà-âðåìåíè íåêîòîðûõ ÷åðíûõ äûð â ãðàâèòàöèè  Rf . Ñèíãó-
ëÿðíîñòè êîîðäèíàò ìîãóò áûòü óäàëåíû ïóòåì óñòàíîâëåíèÿ êîîðäèíàò
Êðóñêàëà-Ñåêåðåøà äëÿ íåýêñòðåìàëüíîãî ñëó÷àÿ. Äëÿ ýêñòðåìàëüíîãî ñëó÷àÿ
ìîãóò áûòü ïîñòðîåíû êîîðäèíàòû òèïà Êàðòåðà.

Êëþ÷åâûå ñëîâà: Êîîðäèíàòû Êðóñêàëà: ÷åðíàÿ äûðà â ãðàâèòàöèè  Rf :
      êîîðäèíàòû Êàðòåðà
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