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Non-singular Kruskal-like coordinates of some black holes space-times in f(R) gravity are
presented in this research paper, and are also removed by establishing Kruskal-Szekeres coordinates
for Non-extremal case. Carter-like coordinates can also be built for its extreme case.
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1. Introduction. In practical sciences, it is well-thought-out that physics is
the science of dimension. Thus, the position possesses the fundamental standing
in the centre of all the quantities. For this purpose, to calculate precisely the exact
place of some particles in space-time, a coordinate system (CS8) is chosen. After
selecting a CS, a tag is given to all points in space-time geometry. As physics'
laws are invariant, selection of any CS will not create any issue, thus, to compare
quantities amongst the two different CS's, we required a collection of equations
related to the two different points assigned to a like point physically. These types
of connections are so-called coordinate transformations which use in two coor-
dinate systems. In physics, a very famous, simple and the popular CS is Cartesian
CS, with three axes which are 90° to each other, familiarized as x-axis, y-axis
and z-axis. Though, it is not our best choice every time. Generally, it is the most
appropriate to select a CS that has alike symmetries with the model under
discussion. Hence, for the spherically symmetric models of physics, spherical
coordinate-system will be preferred selection. In that condition, again a point is
categorized by three tags (quantities), one shows the locus of a point from the
centre (distance) and the rest 2 are angular coordinates. Again the set of
conversions accorded and narrate as the indicators of a mark of one CS to the
indicators of the same mark in another CS.

General relativity (GR), cosmology and astrophysics envisage amazing
phenomena’s like neutron stars, black holes and gravitational waves. Vast CS's are
implemented in the black hole physics for the purpose of removing physical
singularity. This is for the purpose to find various geometrical shapes of black
holes, see [1-3]. Not theoretically, the number of CS's is also used during practical
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field of solar-terrestrial relationship to point out the trajectory of different satellites,
locations of boundaries, vector field parameter etc. The requirement of more
coordinate systems is the arisen question here. Possible answers are, rarely different
physical techniques are easy to understand, experimental informatio's are properly
ordered, and also easy to manipulate in one coordinate system related to the other
CS's. Transforming from one CS to others is necessary for these situations.

By the invention of cosmic acceleration, the phenomenon of a black hole (BH)
has become the most interesting illustration with useful physical aspects. Two
important existences of vacuum BH solutions under the field general relativity (GR),
like uncharged Schwarzschild and charged Reissner-Nordstrom black hole.
Schwarzschild's space-time temporary singularity in (¢, ) coordinates, when r=2m
by Kruskal (or Kruskal-Szekeres-like) coordinates are defined to this space-time by
direct substitution of #=2m in metric's coefficients. After substitution we get a finite
number (+16m* / e) henceforth, at horizon, the coordinates become regular [4]. The
Reissner-Nordstrom BH when Q<m is singular at (»_,r ) in the coordinates
(¢, r). An appropriate redefine an analogue to Kruskal-like coordinates helped to
avoid these singularities [5], but unable to vanish both simultaneously. As far as
to use that analogue, two independent coordinate patches are required. Although,
the number of black holes (BHs) is present in Einstein's general relativity, where
the presented case is for non-vacuum [6-13] and needed further illustration.

The presentation order of the research article is as follows. Section 2, consists
brief introduction of important cases of some BH in f (R) gravity space time.
For a given space time, we also have explained physical as well as curvature
singularities. The proceeding subsections contain non-singular coordinates of the
non-extremal space-time cases. Also possibility of obtaining non-singular Kruskal-
like coordinates for extremal case is explained. Furthermore, we built Carter-like
coordinates for the extremal case of the BH in f(R) geometry. The last section
is reserved for the final summary and conclusion.

2. Some BH in f(R) gravity. The action of GR has been reformed to
enlighten the accelerative expansions of space and currently f (R) gravity stands
among a good plan reform of GR. It is because of the fact that f (R) gravitational
theory is capable of generating an accelerative expansion in a universe [14]. Besides
this, if a cosmological constant occurs, it does not possess measurable effects of
the most astrophysical phenomena's [15]. Nevertheless, the f (R) gravity can have
astrophysical significance. Actually, astrophysical significance are used to govern
different types of f (R) gravitational models. Thus, it became more exciting and
essential to learn astrophysical phenomena by means of f° (R) gravity. Some space-
times in f (R) gravity models are studied in [15] debated the constancy of f (R)
BH. Additionally, there are numerous claims in f (R) space-time theory, i.e. active
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equation approach, gravitational waves, LHC trial, brans models etc.

In the last decade, thought-provoking models of f (R) gravitation are under
study and performances of particles bounded by a BH have been invented. The
Lagrangian essential for such a f (R) gravity model is,

d? (6oc2 )71 R+20." R,
where A be a cosmological constant, R is integration constant and o and d
are unrestricted constraints for the model under consideration. The condition
required at the astronomical scale agrees to R >> A and d 2(6(12)_1 R >>2a.. Using
these limits, we have

f(R):R+A+d2(6oc2)_lRlnR£. 2
The limit which is pertinent at the cosmological scale is R~d2<6(x2)_1R~A,
resulted f(R)=R+A. Using that limit, usually constraints the accelerating devel-
opments.

It is therefore stimulating to present a parameter 3=a/d in terms of which
both restrictions of the gravity have been discussed. Under that gravity, BH's
metric, having a mass M, is given by
1

ds* =— f(r)dt*+ f(r)dr2+ rdQ?, )
where f(r) is
f(r):l—z—MJr[Br— Ar? |
r 3

Now, take G=c=1 and focused on a unique case A # 0, describes some BH
in f (R) gravity. When we put f (r):O, we get three horizons of the gravity
and are denoted by r, r, and r.. By observing nature of roots, two different cases
will generate and are:

1) Non-extremal BH Space-time (NEBHST) which have 3 distinct, but real
roots i.e. r, r, and r,

2) Extremal Space-time like (EBHST) having real and repeating roots,
r=r=r.

At first, taking non-extremal BH Space-time. The absolute value of 3 roots

of f(R) are:
_ /82 m-n
r, 3 cos 3 4)

/ T+
= %cosTn, 5)
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_ 820067
e =y 5083 (6)

where, m is the angle with 0<n<n and r, r, and r, represents the horizons
in f (R) gravity. Given Ricci scalar "R" of the gravity under consideration is

R=5%_4n.
r
Clearly it shows that r, r, and r, can be physical singularities. Now constructing

the 2™ curvature invariants

_2[sp> —6rpA+2r2A°)

I, =R} > ™)
r
and
48M* 8% 8BA  8A?
L=R——+—F ———+—, (®)

r r r 8
confirm that they are physical singularities. Hence, we can try to build non-
singular coordinates of the space-time. By the roots, r, r, and r,, we express f (r)
as

I"—I”a r—r I”—I”c
i) = e=r) o
r
2.1. Non-singular Kruskal-like coordinates for the non-extremal
BH space-time in f(R) gravity. For elimination of physical singularities,
we defining »* by

1 _ P (r.=r) . (r.=r) P (ry=ra)
r*=|——dr=35|Inl—-1 +In|—-1 +In|— -1 ,
=2 ; (0
where
5= & .
(rb_ra)(rc_ra)(rc_rb)
Then Eddington coordinates are
- ’ Ta (l‘cirb) ’ 7 (rciru) r e (rb 7ru)
v=t+9 lnz—l +1HZ—1 +an—1 , (ll)
_ P (= .o (r.=r) .l (rp=r2)
u=t—9|Inj—-1 +Inj—-1 +In|—-1 .
r, 7 ., (12)

Using Eddington coordinates, the usual BH metric takes the form

f(r) 972 972
as” =20 1= (@v2+du?)+2 L [dvd | + 0 2. (13)
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Using Kruskal-like coordinates, the usual BH metric will be as

2
)

(14)

) 21, 80,1, )/B ~21,8(r, -1, /B 21,31, /B
a0, ENZ%——l KA KA dVdU+r2d Q7 ,
4 A8 a|r, r, r,
where

dQ* =d6” +sin0* d ¢ .

It is known that Kruskal-like coordinates [3] can't eliminate all the three
singularities simultaneously. To this gravitation geometry, we need two different
coordinate patches. First for regions 0<r<r, and r, <r <o, another for the regions
r <r<r. For 0<r<r, region, we define non-singular coordinates similar to
Kruskal's-like coordinates as ¥, = —aexp™? and U, = aexp?, where the retarded
coordinates [16] are v=r+r" and u=r—r", choose a=rnrr, and B=2rrr3 .
The space-time metric (14), according to these coordinates will be as

=I5 o \avpav?)-2aviau ]

(’h"’a)/"a’b (15)
+d Q.

(re =13 )/ ~(re=r )/

X L—l

rC

r
——1
Ty

R

ra

Clearly, singularity exists at r=r,, where

o= )rar (5 =ra)/rars

("c ) )/’h"c

Vi==rnr. exp't/zrﬂrb"fgL—l 1 =1 , (16)
Va rb rc

|, (re=ry )7 . ~(re=ry )rar. . (1 =ra )framsy

U, =r, . exp!23| L -1 : (17)
ra rb Vc

. 2r.=ny )frie . 2Are=r,)rar . 2ry=ra ety

VlUl =_(rarbrc)2{__1J (__lj {__IJ (18)
Va rb Vc
and
t=2r,nr. Stanh ™! M
-,

As r—r, or r,, (VI,UI)—> 0, although in metric (15) singularity still exists at
r=r,. This coordinate system cover regions 0 <r<r, and 7, <o of the whole
manifold. A CS, analogous to Kruskal-like coordinates for » <r<r regions are
v, = aexp”? and U, =—aexp ?, where the recent and retarded coordinates are
v=r+r" and u=¢-r", choosing a=rnrr, and B=2rrr. 5. The space-time
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metric (14) then takes the form as

ds” = %[(AZSZ +9r2 \avi+ du?)-2av,au, |x
~(re=n 1. (ro=r)frare

(5= /ray
1
R +2d Q. (1)

rL’

,
——1
Ty

R

r[l

X

This is non-singular at r=r, and r=r, where
(o= )rar ~(ry=ra s

) (20)

~ —(’c Ty )/"b’c
t/2r”rbrc 3 L _ 1

T

,
——1
Ty

L

T

V, =r,nr.exp

(o= )/ (re=r /rar (=7, )/ramy

U, ==rnr. expft/zrﬂrb"fgl—l S - , (21)
Ty Ty e
- =2, =1 )y, p 21,7, ) p =2y =1, )rums
VU, =—(rarbrc)2[——1j [——1J (——lj (22)
ra rb rc
and
t=2rnr, Stanh ™ M
,—U,

As r—r, and r—>r., (V,,U,)—0 but singularity still exists at the horizon
r — 1, in the metric (19). This coordinate system V), U, only covers the region
r <r<r, of the whole manifold.

2.2. Kruskal-Szekeres like coordinates for the non-extremal BH
space-time in f (R) gravity. Now introducing space-time coordinates for
0<r<r, and r,<r<o regions as in [17]

& =V+U,, n=N-U,.

These coordinates transforming the metric (15) to

ds? = _L(r)z[(yg —or2-1)ag? + (A5 —9r2-1)a nf] X
vt A
(=r )t (23)

(re=r /1. (o= )/

LA +dQ?,

T

,
-1
Ty

R

T

X

where

¢ - (rc ) )/2 Tple 7(rc T )/2 Tale r (rb T )/2 Talp
) ——1

r,

c

r
RA
Ty

R

ra

&, =r,nr,sinh [2

TalpTe

(rc ) )/2 Tple 7(rc T )/2 Tale (rb T )/2 Talp
r

KA

I

c

r
RAN
Ty

t ~
M, =r,7,r. cosh 5 |I--1
2r,nr, ,

a
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Their inverse transformation is

t=2rnr, Stanh™ i
Ui
g, and m, are relating to r by
r (rL‘ 7rb )/ rb rf r 7("( 7"0 )/ r(l rf r (rb 7"0 )/ rﬂ r[?
— =\r,nr.) |—-— — — — -
é]z n12 ( a'b 0)2 1 1 1

7, 7,

a c

Again, introducing space-time coordinates for r, <r<r, regions [17].
& =n+U,, n,=V-U,.

Transforming the metric (19) by using above coordinates as:

ds* = _L(V)z[(Azg - 9r2—1)d 2+ (Azg - 9r2—1)d n%]x

rnr, A
- (=1 )/ - (re =7 )frar. - ~r=r)fran, (24)
x|——1 ——1 ——1 +dQ?,
Ta Ty e
where
T R I O L I R T
&, =r,nr.sinh S |l—-1 ——1 ——1 ,
21,17, r, 7, r,
t - r 7("( ) )/2 Tple r (rc T )/2 Tale r 7(rb T )/2 Talp
M, = r,17, cosh o |—-1 ——1 — —1
2r,nr, r, 7, r,

Their inverse transformation is

t=2rnr, Stanh™ &_2
M2

€, and n, are relating to r by

- (rf - rb )/ rb rL‘ (rf - rﬂ )/ rﬂ rL‘ - (rb - r(l )/ r(l rb
KA

rC

r
RANE
Ty

Z:é _Tlg :(rarbrc)ZL_l

a

2.3. Compactification of Kruskal-Szekeres like coordinates for the non-
extreme BH space-time in f(R) gravity. Now defining the compactified
coordinates for 0 <r<r, and r, <r<oo regions [17].

G = tan” (E.:l +mn )+ tan”! (‘31 - ),

%, = tan” (‘31 M )_ tan_l(‘il - )
and for the region r <r<r, are defined as

G, = tan'l(?;z +nz)+tan'l(§z _le)»
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A2 = tan'l(ﬁz + T]z)_ tan'l(§2 - nz)-
They implicitly relate with these coordinates and r as

r (r( 7"[7 )/ rb rL‘ r 7("( 7"” )/ ru rL‘ r (rb 7r(1 )/ r(l rb
2o =(rrr Fl—-1 ——1 ——1 =
1 m a'b'c
a Ty e
_tan Ci+x tan G — %
2
and
p ~(re=n, )ryre - (re=ra)rare - ~(ry=ra }rars
-n; =\rnr)—- — — — — =
% n% a'b'c ’ 1 1 1
a ) e

_tan S+ tan S — %2 ‘

Compactified Kruskal-Szekeres like coordinates shows the geometry of NEBH.

2.4. Non-existence of Kruskal like coordinates for the extreme BH
space-time in f(R) gravity. For EBHST case, transforming metric (3) to
1

(r)

ds* = —h(r)de*+ dr2+r2(d 0” +5sind’ d(pz), (25)

where A(r) is

3r
In metric (25), singularity exists at »=0 and r=r, the former being an essential
and the latter a coordinate singularity. To avoid the coordinate singularity for an
extremal space-time, one defines " as

rt= J‘ﬁdr. (26)
The recent and retarded coordinates [16] are (v, u) as v=t+r" and u=t—r".
Then, the Kruskal-like coordinates (¥, U) are V =oexp” and U =-aexp ™
having o,B be constants. r* for EBHST's geometry will be
. = 3(2 r— re)
Ty @)

r

Here, a type of singularity, named as pole divergence, unlikely non-extreme
geometry, and all four are logarithmic divergence there. One more key difference,
namely that for non-extreme geometry. The singularity is at 2 various values of
r, but for extreme case, singularity exists at »=r. For non-extreme space-time
the singular point can be vanish by setting appropriate values of . But in extreme
space-time, the singular point can't be vanished through ordinary procedures. It
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is because the extreme metric for Kruskal like coordinates (V, U) will be

2 Br=n) ey 2(702 2402
ds =—3—zeexp rer )/ Blr=re dvdU+r (de +sin0” d ¢ ), (28)
o r
where singularity exists at = r,. Hence, Kruskal like coordinates have no use in
extremal case.

2.5. Non-singular Carter-like coordinates for the extreme BH
space-time in f(R) gravity. Now introducing Carter-like coordinates for
getting rid of coordinate singularities [18].

a1V aqw aqV aqaw
\VZtal’ll?-f'COtl?, éztanl?—cotl—,

t
where v=t+r", similarly w=—¢+r" having r* as

. (r— 7, )3 — 3(2 r— re)
r :I 3, dr = 2(r—re)2 .

The following coordinates (y,&,0,¢) transformed the line element (25) to

2 3
as? == 2wl "’f[dqﬂ —dg? (a0 +sin0 do?).  (29)

127 2
Here v and & can be relating with radial parameter as
tanw+§+cot\u—é+3(2r_r‘;)=0.
2 2 l(r—re)
We can find the determinant of (23) as:
4.2 6
2. __Ir 1(24%) sec’ W;écsc“ "’2 S sin%6, (x,y=0,1,2,3), (30)
where
22 2
sect Y5 _ 1+ =[1+i2(z+r*)2) : (31)
2 / [
2\? 2
csc? W2§:{1+7—2J :(1+li2<—t+r*)zj } (32)

We get a finite determinant if » -7, and y — &, like the extreme case of BTZ
BH. Also the metric (29) becomes non-singular at r=r, Hence Carter-like
coordinates vanishes the coordinate singularity of the EBHST.

3. Summary and conclusions. In our observation, all the three singularities
can’t be removed at a time by single coordinate patch through Kruskal-like
coordinates. For gravitation geometry, we need 2 distinct coordinate patches. First
is for the regions 0<r<r, and r, <r<oo. Similarly for the next patch, the region
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is r <r<r. By compactified Kruskal-Szekeres like coordinates, not only we can
remove coordinate singularities but in future be able for retrieving of space-time
diagram of the whole NEBHST. It also revealed that Kruskal-like coordinates are
unable for removing singularity at r=r, of EBHST's geometry. We try to resolve
Einstein's equations related to this case, but couldn't successful till now. Our efforts
show that EBHST metric can't be transform to a desired form such as in rotating
BTZ BH case [17]. Anyways, that can't be shown formally, hence the results
couldn't be relevant. Although to keep the metric away from physical singularity
of EBHST, we are successful to build non-singular Carter-like coordinates, regular
for extreme case only.

Department of Mathematics, COMSATS University Islamabad, Wah Campus,
G.T. Road, Wah Cantt. 47040, Pakistan, e-mail: jawwadriaz@yahoo.com

HECUHIVIAPHBIE KOOPAWMHATBI HEKOTOPbBIX
YEPHbIX AbIP B f(R) TPABUTALIMN

C.M.Ix.PUA3, P.XYCCEVH

B crarbe mpencTtaBieHbl HECHMHTIYISIpHbIE KoopaumHaThl Tuma Kpyckana
MIPOCTPAHCTBA-BPEMEHN HEKOTOPBIX YePHBIX IBIP B TpaBUTAIIAMA [ (R) CuHry-
JIIPHOCTU KOOPAMHAT MOIYT OBbITh YHaJeHbl IyTeM YCTaHOBJEHMSI KOOPAMHAT
Kpyckana-Cekepela s HEOKCTpeMaJIbHOIO ciydast. i1 SKCTpeMaJIbHOTO Cityvast
MOTYT OBITh TTOCTPOCHBI KOOpIMHATH THIa Kaprepa.

KitoueBnie cinoBa: Koopduname: Kpyckana:uepnas ovipa 6 epagumayuu | (R)
Koopounamsi Kapmepa
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