АСТРОФИЗИКА

TOM 64

ФЕВРАЛЬ, 2021

ВЫПУСК 1

ЭВОЛЮЦИЯ СТРУКТУРЫ ВИДИМЫХ С РЕБРА СПИРАЛЬНЫХ ГАЛАКТИК

В.П.РЕШЕТНИКОВ^{1,2}, П.А.УСАЧЕВ^{1,2}

Поступила 15 ноября 2020

Обсуждаются результаты фотометрического анализа видимых с ребра спиральных галактик в трех глубоких полях космического телескопа Хаббл (HDF-N, HDF-S, HUDF). Показано, что галактики на $z \approx 0.5$ демонстрируют меньшие значения радиальных экспоненциальных масштабов h_r звездных дисков по сравнению с близкими галактиками. Наблюдаемое изменение масштабов дисков галактик согласуется с законом $h_r \propto (1+z)^{-n}$, где $n \approx 1$. Получено указание на заметное уменьшение доли галактик с B/PS балджами от $z = 0 \kappa z = 1$.

Ключевые слова: эволюция структуры: спиральные галактики

1. Введение. Фотометрическое изучение видимых с ребра (edge-on) спиральных галактик в окружающей нас области Вселенной ведется уже много лет (см., например, [1-4] и ссылки там же). Накоплен значительный наблюдательный материал о радиальной и вертикальной структуре звездных дисков, получены данные о характеристиках и распределении пыли в галактиках, о свойствах их темных гало (например, [5-7]). С другой стороны, характеристики далеких спиральных галактик, видимых в ориентации с ребра, изучены пока мало. В первую очередь это связано со сложностью их исследования - угловое разрешение наземных оптических телескопов не позволяет изучать вертикальное распределение яркости в таких объектах.

Эту проблему удается решить при использовании данных космического телескопа Хаббл (HST). В ряде работ было продемонстрировано, что угловое разрешение снимков HST ($\leq 0''.1$) дает возможность анализировать распределение яркости у видимых с ребра галактик на красном смещении $z \sim 1$ [8-11]. Исследование галактик в нескольких глубоких полях HST показало, что для далеких спиральных галактик характерна повышенная относительная толщина звездных дисков [8,11]. Кроме того, диски ярких галактик на $z \sim 1$ выглядят укороченными по сравнению с близкими объектами [11].

Целью нашей работы является совместный анализ данных о структуре видимых с ребра спиральных галактик в трех глубоких полях HST: Hubble Deep Field North (HDF-N), Hubble Deep Field South (HDF-S) и Hubble Ultra Deep Field (HUDF).

В.П.РЕШЕТНИКОВ, П.А.УСАЧЕВ

Все числовые величины в статье приведены для космологической модели с постоянной Хаббла 70 км с⁻¹ Мпк⁻¹ и $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$.

2. Выборка галактик. Наша выборка видимых с ребра галактик основана на опубликованных результатах двух работ. В первой работе были рассмотрены объекты в Северном и Южном глубоких полях HST (HDF-N и HDF-S) [8], во второй - галактики из Сверхглубокого поля HST (HUDF) [11]. В HDF-N и HDF-S галактики были отобраны на основе визуального просмотра оригинальных кадров (табл.1 и 2 в [8]). В HUDF предварительный отбор объектов был осуществлен с помощью пакета SExtractor [12], окончательная выборка была сформирована на основе фотометрического моделирования (табл.1 в [11]). Выборки из обеих работ относительно полны для больших и ярких $M(B) \le -18^m$ галактик (см. обсуждение в оригинальных работах).

Из HUDF были взяты 22 галактики, которые согласно [11] с большой вероятностью видны в ориентации с ребра (eon = 1, 2) и их наблюдаемые распределения яркости хорошо описываются моделью видимого с ребра экспоненциального диска (fit = 1, 2). Из HDF-N и HDF-S были отобраны 15 галактик, имеющих экспоненциальное распределение яркости. Все галактики из итогового списка находятся на красном смещении z < 1.2.

Таким образом, изучаемая в настоящей работе итоговая выборка объектов состоит из 37 видимых с ребра галактик, для которых известны значения радиальных h_r и вертикальных h_z экспоненциальных масштабов их звездных дисков. Данные в разных полях были получены в близких цветовых полосах (F775W (средняя длина волны 775 нм) для HUDF, F814W (средняя длина волны 814 нм) для HDF-N и HDF-S) и в дальнейшем мы пренебрегаем небольшим различием этих фильтров.

На рис.1а показано распределение изучаемых галактик по z. Для большинства галактик (28 из 37) известны спектроскопические красные смещения, для 9 использовались фотометрические оценки z. Как видно на рисунке, основная часть галактик расположена на $z \sim 0.5$ (среднее значение $\langle z \rangle = 0.53 \pm 0.23$). Отметим, что эпоха, соответствующая z = 0.5, удалена от нашего времени примерно на 5 млрд. лет.

На рис.1b изображено распределение объектов выборки по абсолютной звездной величине в фильтре B, найденное с использованием *k*-поправки для галактик типа Sc согласно [13]. Изучаемые галактики являются относительно яркими: их наблюдаемые светимости составляют $\approx -19^{\text{m}}$. Если учесть поправку за внутреннее поглощение в видимых с ребра дисках (она может достигать значений $\approx 1^{\text{m}} - 1^{\text{m}}.5$), то светимости галактик становятся сравнимыми со светимостью Млечного Пути.

Средние значения экспоненциальных масштабов галактик составляют $\langle h_r \rangle = 2.73 \pm 1.03$ кпк и $\langle h_z \rangle = 0.53 \pm 0.23$ кпк. Эти значения типичны для ярких галактик, подобных Млечному Пути [5].

Рис.1. Распределение галактик по красному смещению (а) и по абсолютной звездной величине в фильтре B - M(B) (b).

3. Результаты и обсуждение.

3.1. Отношение h_r/h_z . Распределения отношения h_r/h_z для близких и далеких галактик сравниваются на рис.2. Как видно на этом рисунке, у галактик из глубоких полей $h_r/h_z \le 10$, в то время как галактики из обзора SDSS рапределены более широко. Отметим, что на рис.2 мы сравниваем характеристики далеких галактик на длине волны $\lambda \approx 8000$ Å с характеристиками близких объектов в фильтре g ($\lambda \approx 4600$ Å). С учетом космоло-

Рис.2. Нормированные распределения отношений масштабов дисков галактик h_r/h_z для выборки далеких галактик (штриховая линия) и для близких галактик из обзора SDSS в фильтре *g* (непрерывная линия) [5].

В.П.РЕШЕТНИКОВ, П.А.УСАЧЕВ

гического красного смещения, данные для галактик из глубоких полей соответствуют длине волны ~ 8000 Å/1.53 = 5200 Å, что не слишком сильно отличается от соответствующего диапазона для галактик на $z \approx 0$. Кроме того, экспоненциальные масштабы звездных дисков в близких спектральных диапазонах также близки. Например, согласно данным [14], среднее отношение радиальных шкал видимых с ребра спиральных галактик в фильтрах *B* и *R* составляет $\langle h_r(B)/h_r(R) \rangle = 1.11 \pm 0.07$. Следовательно, отличие спектральных диапазонов при сравнении характеристик галактик на $z \approx 0$ и $z \approx 0.5$ не играет заметной роли.

Для сравнения показанных на рис.2 эмпирических распределений мы использовали критерий Колмогорова-Смирнова. Оказалось, что гипотеза о том, что выборки далеких и близких галактик извлечены из одного и того же распределения по h_r/h_z отвергается на уровне 99.9%. С другой стороны, из данных [5] следует, что у 23% галактик на $z \approx 0$ отношение h_r/h_z превышает 10. Следовательно, вероятность случайного выбора 37 галактик с $h_r/h_z \leq 10$, как в нашей выборке далеких объектов, очень мала и составляет $(1-0.23)^{37} \approx 10^{-4}$. Таким образом, можно заключить, что звездные диски с $h_r/h_z > 10$ очень редки среди галактик на $z \approx 0.5$. Ранее аналогичный вывод по данным только для одного поля (HUDF) был сделан для галактик на $z \sim 1$ [11].

3.2. Радиальная структура галактик. На рис.3 сравниваются величины радиальных масштабов галактик на $z \approx 0.5$ с параметрами близких галактик. Как видно на рисунке, относительно слабые галактики с $M(B) \ge -18^{\text{m}}.5$ располагаются на этой плоскости примерно вдоль зависимости для близких объектов. Более яркие галактики демонстрируют укороченные звездные диски по сравнению с дисками объектов на $z \approx 0$. Примечательно, что это заключение подтверждается данными для разных глубоких полей.

Стрелками на рис.3 показаны примеры ожидаемой эволюции спиральных галактик по данным численных расчетов в рамках CDM модели формирования галактик [15,16]. Начало верхней стрелки соответствует средним характеристикам модельной галактики на z = 0.9, конец - на z = 0 (см. табл.2 в [15]). Нижняя стрелка (ее начало соответствует z = 1, конец - z = 0) демонстрирует изменение характеристик модели спиральной галактики "h986" согласно табл.3 в [16]. Как видно на рисунке, в процессе своей эволюции галактики должны расти в радиальном направлении. При этом наблюдаемое изменение светимости связано с более высоким темпом звездообразования в эпоху $z \ge 1$ [15].

Если принять, что экспоненциальный масштаб звездных дисков меняется с красным смещением по закону $h_r \propto (1+z)^{-n}$, то из наших данных можно оценить значение *n*, минимизирующее отклонение далеких галактик от средней

зависимости для близких объектов. Для галактик с $M(B) \le -18^{\text{m}}$ получается значение $n = 1.22 \pm 0.36$, для более ярких галактик с $M(B) \le -18^{\text{m}}.5$ $n = 1.53 \pm 0.39$. Приведенные выше оценки получены без учета возможной эволюции светимостей галактик. Учет умеренной эволюции (на $0^{\text{m}}.5 - 1^{\text{m}}$ между z = 0и z = 1) уменьшает значение n до ≈ 1 . Эти значения находятся в согласии с оценками других авторов, изучавших изменение размеров галактик с z(например, [17]).

Рис.3. Распределение галактик из HUDF (открытые кружки), HDF-N и HDF-S (черные кружки) на плоскости M(B) - $\log h_r$. Непрерывной прямой линией показана средняя зависимость для близких галактик в фильтре g, согласно [5], линии из точек иллюстрируют $\pm 2\sigma$ разброс этой зависимости. Стрелками изображена эволюция характеристик модельных галактик, согласно [15] (верхняя стрелка) и [16] (нижняя стрелка).

Что же касается вертикального масштаба распределения яркости h_z , то, согласно [11], он не показывает признаков существенной эволюции при z < 1.

3.3. Встречаемость Х-структур. Одной из интересных особенностей видимых с ребра дисков галактик являются так называемые Х-структуры, представляющие собой локальные уярчения внутри B/PS (boxy/peanut shaped) балджей, которые, в свою очередь, связаны с ориентированными с ребра барами (см., например, [18] и ссылки там же). B/PS балджи встречаются довольно часто - среди ярких близких галактик их доля может достигать ~50% [19]. С другой стороны, численные расчеты показывают, что с ростом z доля галактик с барами и, соответственно, с B/PS балджами, должна уменьшаться [20]. Наблюдательные данные, по-видимому, подтверждают это заключение - при $z \approx 1$ доля галактик с B/PS балджами в обзоре HST

COSMOS близка к нулю [21]. Рассмотрим, что можно сказать о встречаемости Х-структур (и, соответственно, B/PS балджей) по выборке далеких галактик, видимых в ориентации с ребра.

Мы проанализировали изображения 58 видимых с ребра галактик в HUDF из работы [11]. Как оригинальные кадры галактик в фильтрах F606W и F775W, так и их разностные изображения (оригинальный кадр - фотометрическая модель) не показали признаков присутствия X-структур ни в одной из галактик. Разрешение кадров HUDF на $z \approx 1$ превышает 1 кпк, так что X-структуры, типичный размер которых достигает нескольких кпк (например, [22,23]), должны обнаруживаться.

Рассматриваемые галактики находятся на $z \approx 1$, их средняя наблюдаемая абсолютная звездная величина составляет $M(B) = -18^{m}.5$ [11]. С учетом поправки за внутреннее поглощение светимости галактик в положении "плашмя" будут находиться в диапазоне от -19^{m} до -20^{m} . Следовательно, при стандартных калибровках типичные звездные массы галактик этой выборки $M_{*} \sim 10^{10} M_{\odot}$. Для близких галактик с такой звездной массой доля B/PS балджей составляет примерно 20% [19]. Если принять, что среди галактик на z = 1 B/PS балджи (и X-структуры) встречаются с такой же частотой, как и среди близких объектов, то вероятность не обнаружить ни одной такой структуры среди 58 галактик составляет $p \approx 2 \cdot 10^{-6}$. Если же предположить, что частота X-структур на z = 1 равна 1%, то вероятность p > 0.5. Таким образом, данные о морфологии видимых с ребра галактик в HUDF свидетельствуют о заметном уменьшении доли галактик с B/PS балджами к z = 1. Бары и B/PS балджи галактик формируются преимущественно при z < 1.

Ранее подобное заключение было сделано на основе анализа большой выборки видимых не с ребра галактик в обзоре HST COSMOS [21]. Для галактик в ориентации с ребра этот вывод сделан впервые.

4. Заключение. На основе анализа фотометрической структуры 37 видимых с ребра галактик в трех глубоких полях HST (HDF-N, HDF-S, HUDF) были получены следующие результаты:

- Обнаружены признаки эволюции радиальной структуры галактик: яркие спиральные галактики на $z \approx 0.5$ демонстрируют более короткие звездные диски по сравнению с близкими объектами, относительно слабые галактики с $M(B) \ge -18^{\text{m}}.5$ не показывают заметной эволюции.

- Галактики с тонкими звездными дисками с $h_r/h_z > 10$ на красном смещении $z \approx 0.5$ встречаются реже, чем в окружающей части Вселенной.

- Наблюдаемый темп изменения радиального экспоненциального масштаба дисков ярких галактик при $z \le 0.5$ составляет $h_r \propto (1+z)^{-n}$, где $n \approx 1$.

Кроме того, детальный анализ изображений 58 видимых с ребра галактик

10

в HUDF привел к выводу о быстром падении доли спиральных галактик с B/PS балджами от современной эпохи к z = 1.

Эти результаты получены на основе относительно небольшого числа объектов и, кроме того, они могут быть искажены сложно формализуемыми эффектами наблюдательной селекции. Дальнейшее изучение далеких спиральных галактик, видимых в ориентации с ребра, очень важно для понимания образования и эволюции окружающих нас спиральных галактик.

Работа выполнена при поддержке грантов РФФИ 19-02-00249 (исследование характеристик Х-структур далеких галактик) и РНФ 19-12-00145 (изучение характеристик дисков, видимых с ребра).

- 1 Санкт-Петербургский государственный университет, Санкт-Петербург,
- Россия, e-mail: v.reshetnikov@spbu.ru

² Специальная астрофизическая обсерватория РАН, Нижний Архыз, Россия

EVOLUTION OF THE STRUCTURE OF EDGE-ON SPIRAL GALAXIES

V.P.RESHETNIKOV^{1,2}, P.A.USACHEV^{1,2}

The results of photometric analysis of edge-on spiral galaxies in the three deep fields of the Hubble Space Telescope (HDF-N, HDF-S, HUDF) are discussed. It is shown that galaxies at $z \approx 0.5$ demonstrate shortened stellar disks in comparison with nearby galaxies. The observed evolution of the exponential scale lengths is approximately consistent with the law $h_r \propto (1+z)^{-n}$, where $n \approx 1$. Evidence was obtained in favor of a noticeable decrease in the proportion of galaxies with B/PS bulges from z = 0 to z = 1.

Keywords: structure evolution: spiral galaxies

ЛИТЕРАТУРА

1. P.C. van der Kruit, L.Searle, Astron. Astrophys., 95, 105, 1981.

2. A. Barteldrees, R.-J. Dettmar, Astron. Astrophys. Suppl., 103, 475, 1994.

3. V. Reshetnikov, F. Combes, Astron. Astrophys., 324, 80, 1997.

В.П.РЕШЕТНИКОВ, П.А.УСАЧЕВ

- 4. R. de Grijs, Mon. Not. Roy. Astron. Soc., 299, 595, 1998.
- 5. D.V.Bizyaev, S.J.Kautsch, A.V.Mosenkov et al., Astrophys. J., 787, 24, 2014.
- 6. A.V.Mosenkov, F.Allaert, M.Baes et al., Astron. Astrophys., 592, A71, 2016.
- 7. J.C.O'Brien, K.C.Freeman, P.C. van der Kruit, Astron. Astrophys., 515, A62, 2010.
- 8. V.P.Reshetnikov, R.-J.Dettmar, F.Combes, Astron. Astrophys., 399, 879, 2003.
- 9. D.M.Elmegreen, B.G.Elmegreen, D.S.Rubin et al., Astrophys. J., 631, 85, 2005.
- 10. B.G.Elmegeen, D.M.Elmegreen, Astrophys. J., 650, 644, 2006.
- 11. В.П.Решетников, П.А.Усачев, С.С.Савченко, Письма в Астрон. ж., **45**, 607, 2019.
- 12. E.Bertin, S.Arnouts, Astron. Astrophys. Suppl., 117, 393, 1996.
- J.Bicker, U.Fritze-v. Alvensleben, C.S.Möller et al., Astron. Astrophys., 413, 37, 2004.
- 14. P.Yoachim, J.J.Dalcanton, Astron. J., 131, 226, 2006.
- 15. Ch.B.Brook, D.Kawata, H.Martel et al., Astrophys. J., 639, 126, 2006.
- 16. A.M.Brooks, A.R.Solomon, F.Governato et al., Astrophys. J., 725, 51, 2011.
- 17. T.Shibuya, M.Ouchi, Y.Harikane, Astrophys. J. Suppl., 219, 15, 2015.
- 18. H.D.Parul, A.A.Smirnov, N.Ya.Sotnikova, Astrophys. J., 895, 12, 2020.
- 19. P.Erwin, V.P.Debattista, Mon. Not. Roy. Astron. Soc., 468, 2058, 2017.
- 20. K.Kraljic, F.Bournaud, M.Martig, Astrophys. J., 757, 60, 2012.
- 21. S.J.Kruk, P.Erwin, V.P.Debattista et al., Mon. Not. Roy. Astron. Soc., 490, 4721, 2019.
- 22. S.S.Savchenko, N.Ya.Sotnikova, A.V.Mosenkov et al., Mon. Not. Roy. Astron. Soc., 471, 3261, 2017.
- 23. В.П.Решетников, П.А.Тараканов, М.В.Костина, Астрофизика, 63, 21, 2020.