TOM 28

АПРЕЛЬ, 1988

ВЫПУСК 2

УДК: 524.31.01—36

ЭФФЕКТЫ ОТКЛОНЕНИЙ ОТ ЛТР В АТМОСФЕРАХ F-CBEPXГИГАНТОВ. II. АНАЛИЗ ЛИНИЙ № I (МЕТОД ВЫЧИСЛЕНИЙ)

А. А. БОЯРЧУК, И. ГУБЕНЫ, И. КУБАТ, Л. С. ЛЮБИМКОВ, Н. А. САХИБУЛЛИН Поступила 24 нюня 1987

Описан метод вычисления линий Na I при отказе от гипотезы АТР. Целью расчетов было выявление возможной связи между наблюдаемым у F—К свергигантов избытком натрия и отклонниями от АТР в используемых при анализе линиях Na I. Особое виимание уделено субординатным линиям, в связи с этим принятая модель атома Na I включает 19 уровней, а и 7—9, как в предшествующих исследованиях [3—6]. Список звезд, для которых были выполнены расчеты, состоит из шести F-сверхгигантов и трех кврликов (табл. 1). Приведены данные относительно исследованных линий (табл. 2).

1. Наблюдаемый избыток натрия. Исследования химического состава атмосфер желтых сверхгигантов, выполненные с помощью моделей атмосфер, привели к обнаружению двух общих аномалий — дефицита углерода и избытка азота. Как известно, эти два элемента участвуют в СNO-цикле, который обеспечивает энергетику достаточно массивных звезд ($M \gtrsim 2M_{\odot}$) на стадии главной последовательности. Эволюционные расчеты показывают, что при переходе в фазу сверхгиганта такие звезды испытывают глубокое перемешивание, в результате которого продукты CNO-цикла выносятся из звездных недр на поверхность. Именно этим сбъясняют аномальное содержание С и N в атмосферах сверхгигантов спектральных типов F, G и K.

Неожиданно у рассматриваемых звезд обнаружилась еще одна общая аномалия — избыток натрия. Этот влемент не участвует в CNO-цикле, и теория не предсказывала каких-либо изменений в его содержании ни на стадни главной последовательности, ни в фазе сверхгиганта. Между тем наблюдаемые у F-, G- и ранних К-сверхгигантов избытки натрия, как показвано в [1], достигают порядка величины. Кроме того, в [1] обнаружена связь с ускорением силы тяжести g: в среднем содержание Na тем больше, чем меньше g, т. е. чем выше светимость.

Подчеркнем, что все оценки содержания Na, которые обсуждались в [1] и о которых будет говориться в настоящей работе, получены из анализа субординатных линий Na I. Резонансные линии D₁ и D₂ в спектрах сверхгигантов F-K слишком сильны, и найденные по ним результаты весьма чувствительны к ошибкам в принятой скорости микротурбулентности ξ_i . Имеется и другая неприятная особенность: из-за большой удаленности многих сверхгигантов их линии D₁ и D₂ могут быть значительно усилены за счет поглощения межзвездным натрием (дополнительное поглощение в D₁ и D₂ может возникать также в оболочках, обнаруженных около некоторых особенно ярких сверхгигантов). По этим причинам при определении содержания Na следует исключить из рассмотрения резонансные линии D₁ и D₂.

Вывод о повышенном содержании Na был получен на основе расчетов, выполненных при условии ΛTP (локальное термодинамическое равновесие). В [1] было отмечено, что прежде чем говорить о реальности избытка Na у сверхгигантов классов F—K, необходимо оценить для них роль отклонений от ΛTP .

Как известно, отклонения от ЛТР могут повлиять на результаты анализа спектров двумя путями: 1) они могут изменить модель атмосферы, например, распределение температуры; 2) у некоторых влементов они могут сказаться на степени ионизации и на населенностях атомных уровней. Каждая из этих причин может привести к изменениям в вычисленных вквивалентных ширинах и, следовательно, в определяемом содержании элемента.

Нужно отметить, что корректные расчеты моделей атмосфер желтых сверхгитантов при отказе от ΛTP пока не выполнены, тем не менее уже сейчас можно утверждать, что наблюдаємый избыток Na вряд ли связан с неучтенными отклонениями от ΛTP в моделях атмосфер. Действительно, такие отклонения, если бы они были существенными, неизбежно сказались бы не только на содержании натрия, но и на содержании многих других элементов. Поскольку этото не наблюдается, мы приходим к заключению, что обнаруженный избыток Na скорее может объясняться второй из указанных выше причин, т. е. неучтенными отклонениями от ΛTP в степени ионизации и в населенностях уровней Na I. Возможность такого эффекта была продемонстрирована при решении не- ΛTP задачи для железа в предыдущей работе настоящего цикла [2], где было показано, что отказ от ΛTP приводит к сильному повышению степени ионизации атомов Fe I в. верхних слоях атмосфер F-сверхгигантов.

Целью нашей работы были детальные не-ЛТР расчеты населенностей уровней Na I для ряда F-сверхгигантов, вычисление эквивалентных ширин: используемых на практике линий Na I и последующее уточнение содержания натрия при отказе от гипотезы ЛТР.

2. Модель атома и метод вычислений. К настоящему времени опубликованы результаты не-ЛТР расчетов линий Na I только для Солнца [3, 4] и Арктура [5, 6]. Принятая в этих работах модель атома Na I включала 7—9 уровней. Поскольку нас интересуют прежде всего субординатные линии Na I, в модели атома необходимо учесть дополнительные состояния с достаточно большими главными квантовыми числами. После некоторых пробных расчетов нами была принята модель атома, представленная на рис. 1. Она включает 19 уровней Na I вплоть до $7f^2F^0$ и основное состояние Na II, причем 9 нижних уровней совпадают с рассмотренными в [3].

Сечения фотомонизации для уровней 1—9 взяты из [3], а для остальных уровней было принято водородоподобное приближение. Как показали наши тестовые вычисления, такое приближение практически не сказывается на интенсивностях линий. Ударная ионизация из основного состояния рассчитывалась по формулам, приведенным в книге Вайнштейна и др. [7], а для ионизации с возбужденных уровней использовалась формула Ситона [8]. Ударное возбуждение для связанно-связанных переходов рассматривалось на основе данных из работ [9—12]. Силы осцилляторов для переходов, указанных на рис. 1, брались из [13—15]. Отметим, что .для переходов на высокие уровни особенно важными оказались данные [14].

Совместное решение уравнений переноса и статистического равновесия, как и в предыдущей статье [2], проводилось на основе метода полной линеаризации. Его описание можно найти, например, в книге Михаласа [16]. Были использованы две программные версии этого метода, разработанные независимо в обсерватории Онджейов (Астрономический институт АН ЧССР) и в Казанском университете [17]. Результаты вычислений по этим двум программам показали хорошее согласие друг с другом. Применялись и другие формы контроля: были повторены некоторые расчеты из упомянутых выше работ [3—6], а для ряда линий Na I было проведено сравнение вычисленных профилей со спектрами Солнца, Арктура и Проциона. Во всех случаях имело место хорошее согласие.

Все переходы между уровнями были разбиты на две группы. В первую группу вошли наиболее важные переходы, которые подвергались линеаризации (толстые линии на рис. 1). Ко второй группе были отнесены все оставшиеся переходы, имеющие меньшее значение; они полагались фиксированными в процессе итераций (тонкие линии на рис. 1). Отметим, что после 4—5 итераций достигалась необходимая сходимость результатов, при которой относительные изменения в насэленностях не превышали 0.001.

В предыдущей работе [2] при решении не- Λ TP задачи для Fe I было показано, что вычисляемые населенности уровней Fe I существенно зависят от знания поля излучения в частотах изинзации с. нижних уровней. Учитывая это, мы, как и з [2], применили два подхода. В первом из них поле излучения в связанно-свободных переходах определялось теоретически, из решения уравнения переноса для заданной модели атмосферы. Во втором, эмпирическом подходе использовались наблюдаемые потоки излучения для конкретных звезд, откуда находилась температура излучения T_{rad} , после чего средняя интенсивность J_{λ} приравнивалась функции Планка B_{λ} (T_{rad}). Методика определения эмпирических значений T_{rad} подробно описана в [2].

3. Список звевд и модели атмосфер. Учитывая индивидуальный характер температур T_{rad} и скоростей микротурбулентности ξ_i у разных сверхгигантов, мы провели расчеты для ряда конкретных звезд. Их список представлен в табл. 1, где указаны спектральный класс, эффективная температура $T_{вф\phi}$ и ускорение силы тяжести lg g (источники см. в [2]). В трех

АТМОСФЕРЫ F-СВЕРХГИГАНТОВ. II

последних столбцах призедены значения T_{rad} для частот ионизации с первых трех уровней Na I, которым соответствуют длины волн $\lambda_1 = 2413$ A, $\lambda_2 = 4048$ A и $\lambda_3 = 6365$ A. При определении $T_{rad}(\lambda_1)$ для γ Cyg и ρ Cas были использованы наблюдаемые ультрафиолетовые потоки, полученные на станции "Астрон".

Таблица 1

Тип	Звезда	Sp	Т _{эфф} , К	lg g	$T_{rad}(\lambda_i)$		
38094					2413 A	4084 A	6365 A
Ранние	2 Car	F0 lb—II	7400	1.9	6250	7840	7060
F-сверх-	2 Lep	F0 lb	7300	1.75	6090	7680	6960
гиганты	1 Car	F0 lab	7300	1.4	6100	7700	6970
Поздние	α UMi	F8 Ib — II	6050	1.95	5000	6010	5940
F-сверх-	γ Cyg	F8 Ib	6050	1.2	4700	5940	5810
гиганты	ρ Cas	F8 Iap	6000	0.25	4100	5680	6040
Карлики	8 АqІ	F0 IV	7400	4.0	6670	7390	7330
	2 СМі	F5 IV—V	6650	4.0	5930	6660	6550
	Солнце	G2 V	5770	4.44	4933	5846	5817

СПИСОК ИССЛЕДОВАННЫХ ЗВЕЗД И ИХ ХАРАКТЕРИСТИКИ

Список исследованных звезд в основном совпадает с тем, который был расомотрен в [2]. Он включает три сверхгиганта подкласса F0 и три сверхгиганта подкласса F8; для сравнения расчеты проведены также для трех карликов разных подклассов (δ Aql, Процион и Солнце). Новым в этом списке является сверхгигант ρ Cas, который в [2] не рассматривался. Эта звезда, обладая довольно низким значением lg g (табл. 1) и значительным избытком натрия (почти на порядок величины, см. [1]), представляет особый интерес с точки зрения упомянутой выше корреляции между содержанием натрия и ускорением g. Исследование ρ Cas поможет выяснить, сохраняется ли названная корреляция после отказа от гипотезы Λ TP.

Модели атмосфер, в основном, совпадают с принятыми в [2]. Для большинства рассмотренных звезд они получены параболической интерполяцией по моделям Куруца [18] в соответствии с принятыми значениями T_{spp} и lgg. Модель солнечной атмосферы взята непосредственно из [18]. Случай р Саз примечателен тем, что найденное для этой звезды в [1] значение lg g = 0.25 оказалось ниже наименьшего значения lg g=0.5в моделях Куруца [18]. В данном случае мы воспользовались известным свойством F- и G-звезд: в их атмосферах зависимость температуры T от оптической глубины т практически не зависит от lgg (в втом легко убедиться на основе [18]). Мы приняли в качестве начального приближения содержащуюся в [18] модель с параметрами $T_{spp} = 6000$ K и lg g = 0.5, зафиксировали соответствующее ей распреде-

339

ление $T(\tau)$, а затем пересчитали распределение газового давления $P_{g}(\tau)$ и электронной концентрации $N_{e}(\tau)$ при $\lg g = 0.25$ и при том турбулентном давлении, которое соответствует микротурбулентности $\xi_{l}(\tau)$, найденной для р Cas в [1]. Отметим, что турбулентное давление было учтено и в моделях атмосфер других сверхгигантов. Вся работа по интерполяции и пересчету моделей была выполнена в Крымской астрофизической обсерватории.

4. Список исследованных линий. После определения населенностей уровней, представленных на рис. 1, вычислялись профили и эквивалентные ширины индивидуальных линий Na I. Если при этом из какого-либо *i*-ого уровня требовалось выделить отдельный подуровень (например, в случае дублета), использовалось следующее соотношение:

$$N_i^{\rm \Pi y} = \frac{g_i^{\rm \Pi y}}{g_i^{\rm y}} \cdot N_i^{\rm y},$$

где населенность N_i и статистический вес g_i с индексом «У« относятся ко всему уровню, а с индексом «ПУ» — к подуровню.

В табл. 2 приведен список линий, для которых были выполнены не-ЛТР расчеты эквивалентных ширин W_{λ} . Были рассмотрены линии Na I в видимой области спектра, представляющие астрофизический интерес. Наряду с длиной волны λ в табл. 2 для каждой линии указан переход в соответствии с [13], а в скобках — в соответствии с принятой нумерацией уровней (см. рис. 1). Каждый переход в табл. 2 представлен двумя спектральными линиями. Потенциалы возбуждения нижнего уровня χ и силы осцилляторов gf взяты из [13].

Полная величина затухания $\tilde{\gamma}$, как обычно. складывалась из трех составляющих, обусловленных излучением ($\tilde{\gamma}_{,}$), өффектом Штарка ($\tilde{\gamma}_{st}$) и силами Ван-дер-Ваальса ($\tilde{\gamma}_{vdw}$). Постоянная $\tilde{\gamma}_{,}$ вычислена нами через вероятности переходов A_{ik} , соответствующие принятым силам осцилляторов. Константа C_i , через которую выражается $\tilde{\gamma}_{st}$, для переходов 1—2, 2—6 и 2—7 взята из работы [3], а для остальных линий принято lg $C_4 = -13.4$. Значения $\tilde{\gamma}_{,}$ и lg C_4 приведены в двух последних столбцах табл. 2. Что касается величины $\tilde{\gamma}_{vdw}$, то ее вклад в полное затухание $\tilde{\gamma}$ в случае сверхгигантов очень мал; при вычислении $\tilde{\gamma}_{vdw}$ мы воспользовались известной приближенной формулой (см. [19]), введя для всех линий одинаковый поправочный множитель 1.85. Именно на такую среднюю поправку к приближенным значениям $\tilde{\gamma}_{vdw}$ указывают данные по линиям NaI λ 5889.95 [20] и λ 6154.23 [21] при температурах, соответствующих F-сверхгигантам.

Отметим, что вычисления эквивалентных ширин W, были выполнены для нескольких содержаний Na, чтобы впоследствии иметь возможность определить содержание, соответствующее наблюдаемым значениям W.

СПИСОК ИССЛЕДОВАННЫХ ЛИНИЙ Na I									
1., A	Переход	7., sB	lg gf	$\gamma_r, 10^{3} e^{-1}$	lg C ₄				
6160.75	3p ² P ⁰ -5s ² S (2-6)	2.10	-1.26	0.758	-13.04				
6154.23	3p ² P ⁰ —5s ² S (2—6)	2.10	-1.56	0.754	-13.04				
5895.92 (D ₁)	3s ² S-3p ² P ⁰ (12)	0.00	-0.18	0.630	-14.90				
5889.95 (D ₂)	3s ² S-3p ² P ⁰ (1-2)	0.00	+0.12	0.629					
5688.20	3p ² P ⁰ -4d ² D (2-7)	2.10	-0.42	0.820	-11.31				
5682.63	3p ² P ⁰ -4d ² D (2-7)	2.10	-0.67	- 0.816	-11.31				
4982.81	3p ² P ⁰ -5d ² D (2-11)	2.10	-0.95	0.775	-13.40				
4978.54	3p ² P ⁰ -5d ² D (2-11)	2.10	-1.21	0.806	-13.40				
4668.56	3p ² P ⁰ -6d ² D (2-15)	2.10	-1.30	0.682	-13.40				
4664.81	$3p^{2} p^{0} - 6d^{2}D$ (2-15)	2.10	-1.55	0.733	-13.40				
4497.66	3p ² P ⁰ -7d ² D (2-18)	2.10	-1.56	0.678	-13.40				
4494.18	3 ² P ⁰ - 7d ² D (2-18)	2.10	-1.82	0.671	-13.40				

Результаты вычислений и выполненного на их основе анализа линий Na I в спектрах перечисленных выше сверхгигантов будут рассмотрены в следующей статье.

Крымская астрофизическая обсерватория Астрономический институт АН ЧССР Казанский государственный университет

Таблица 2

А. А. БОЯРЧУК И ДР.

NON-LTE EFFECTS IN THE ATMOSPHERES OF F-TYPE SUPERGIANTS II. ANALYSIS OF Na I LINES (THE METHOD OF COMPUTATIONS

A. A. BOYARCHUK, I. HUBENY, J. KUBAT, L. S. LYUBIMKOV, N. A. SAKHIBULLIN

The method of non-LTE computations of Na I lines is described. The calculations were aimed to reveal a probable connection between the observed sodium overabundance in F-K supergiants and departures from LTE in Na I lines used for the analysis. Special attention is given to subordinate lines, therefore the accepted model of Na I atom includes 19 levels instead of 7-9 levels as in the previous investigations [3-6]. A list of stars for which the lines are computed compiles six F-supergiants and three dwarfs (table 1). The data on the studied Na I lines are adduced (table 2).

ЛИТЕРАТУРА

1. А. А. Боярчук, Л. С. Любимков, Изв. Крымской астрофиз. обсерв., 66, 130, 1983.

- 2. А. А. Боярчук, Л. С. Любимков, Н. А. Сахибуллин, Астрофизика, 22, 339, 1985.
- 3. T. Gehren, Astron. and. Astrophys., 38, 289, 1975.
- 4. B Caccin, M. T. Gomez, G. Roberti, Astron. and Astrophys., 92, 63, 1980.
- 5. W. L. Kelch, Astrophys. J., 195, 679, 1975.
- 6. W. L. Kelch, R. W. Milkey, Astrophys. J., 208, 428, 1976.
- 7. Л.А. Вайнштейн, И. И. Собельман, Е. А. Юков, Сеченыя возбуждения атомов ы. нонов электронами, Наука, М., 1973.
- 8. М. В. Ситон, Атомные и молекулярные процессы, Мир, М., 1963.
- 9. D. H. Crandall, G. H. Dunn, A. Gallagher, D. G. Hummer, C. V. Kunacz, D. Leep, P. O. Taylor, Astrophys. J., 191, 789, 1974.
- 10. R. Mc Eachran, G. Tull, M. Gohen, Canad. J. Phys., 47, 835, 1968.
- 11. C. Park, J. Quant. Spectrosc. and Radiat. Transfer., 11, 7, 1971.
- 12. H. van Regemorter, Astrophys. J., 136, 906, 1962.
- W. L. Wiese, M. W. Smith, B. M. Miles, Atomic Transition Probabilities, vol. II, NSRDS-NBS 22, 1969.
- 14. E. Biémont, Astron. and Astrophys. Suppl. Ser., 31, 285, 1978.
- 15. D. Norcross, J. Phys. B, Molecul. Phys., 4, 1458, 1971.
- 16. Д. Михалас, Звездные атмосферы, Мир. М., 1982.
- 17. Н. А. Сахибуллин, Тр. Казан. гор. астрон. обсерв., 48, 9, 1983.
- 18. R. L. Karacz, Astrophys. J. Suppl. Ser., 40, 1, 1979.
- 19. Д. Грей, Наблюдения и анализ звездных фотосфер, Мир. М., 1980.
- 20. W. Fullerton, C. W. Cowley, Astrophys. J., 165, 643, 1971.
- 21. E. Roueff. Astron. and Astrophys., 46, 149, 1976.