

□ E Ū D □ X U M U J T. 4, № 4, 1985

УДК 577.153

ФИЗИКО-ХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА РАСТВОРИМОЙ Н+-АТРазы МИТОХОНДРИЙ ГОЛОВНОГО МОЗГА БЫКА

КОРЯГИН А. С.

Кафедра биохимии Горьковского медицинского института

Характерной особенностью мозговой ткани является постоянный и высокий уровень энергетического обмена с интенсивным потреблением глюкозы и кислорода. По активности окислительных процессов мозг занимает ведущее место среди других органов и тканей, потребляя до 20-25% всего кислорода, поступающего в организм [1]. Основное количество АТР мозг получает в процессе окислительного фосфорилирования. Ферментной системой, осуществляющей синтез АТР в этом процессе, является митохондриальная АТР-синтетаза ($F_0 \cdot F_1$ —АТРаза или H^+ -АТРаза). Осуществление АТР-синтетазной и АТР-гидролазной реакций связывают с самым высокомолекулярным белковым компонентом H^+ -АТРазного комплекса—растворимой H^\pm -АТРазой (сопрягающий фактор F_1 или F_1 -АТРаза) [2]. F_1 -АТРаза различных организмов имеет сложную олигомерную структуру и состоит из пяти типов субъединиц: α , β , γ , δ , ϵ [3].

Большинство работ по изучению физико-химических характеристик, кинетики и регуляторных свойств этого фермента выполнены на препаратах сердца и печени. Данные о сопрягающем факторе F_1 из головного мозга отсутствуют, хотя эти сведения для нервной ткани имеют особое значение.

Целью настоящего исследования явилось изучение физико-химических характеристик растворимой H+-ATPазы, выделенной из головного мозга.

Растворимую Н+ -ATPазу (КФ 3.6.1.3) выделяли из митохондрий головного мозга быка по методу Horstman, Racker [4] в нашей модификации [5]. Для оценки гомогенности препарата применяли метод электрофореза в 5%-ном ПААГ, приготовленном на буфере трис-HCl, pH 7,5 [6]. Окраску гелей проводили 0,25%-ным. раствором Кумасси R-250. Величину М, субъединиц определяли опремента пригодом электрофореза по Laemmli [7]. Активность фермента оценивали pH-метрическим методом [8]. Инкубационная смесь содержала (в мм): ATP—2, MgSO₄—2, трис-HCl—3, pH 8,3. В пробу конечным объемом 7 мл вносили 10—15 мкг белка. ATPазную реакцию регистрировали в течение 1—2 мин.

При исследовании влияния одигомищина на активность фермента его добавляля и инкубационную среду в конечной концентрации 1,5 мкг/мл. Реакцию регистрировали через 2 мин йосле введения в ячейку одигомицина. Изучение действия водорастворимого карбодинмида (ЦМКД) проводили методом врешкубации фермента в среде следующего состава: 0,25 М сахароза, 0,25 мМ ЦМКД, 10 мМ трис-HCl, pH 7,0 при 20°. Количество инкубируемого белка соответствовало 0,5 мг в объеме 0,5 мл. Активность регистрировали через 20, 40, 60 мин после пачала преинкубации. Влияние 2,1-динитрофенола (ДНФ) исследовали в инкубационной среде, содержащей (в мМ): ДНФ—2, ATP—2, MgSO₄—2, трис-HCl—3, pH 7,5.

Оценивая чистоту полученного препарата, определяли его гомогенность по наличию в геле одной полосы. Степень очистки фермента по сравнению с первичным неочищенным препаратом равна ~ 11 . У. А. фермента составила 16-24 мкмоль Р #мян на мг белка.

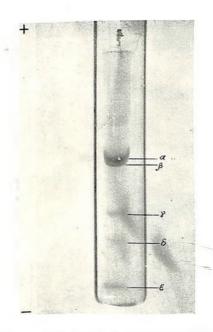

Установлено, что митохондриальная F_1 -ATPаза мозга имеет олигомерную структуру и содержит иять типов субъединиц; α , β , γ , δ , ϵ (рис. 1) с M_r 53, 50, 29, 19, 11,8 кД соответствению. Из данных денентометрии выявлено количественное соотношение субъединиц α : β : γ : δ : ϵ как 3:3:1:1:1. Учитывая полученные данные по величине M_r и стехнометрии субъединиц, рассчитана M_r исследуемого фермента, которая составила 370 кД. Подобная величина приводится для M_r F_t -ATPазы из митохондрий сердца быка [9].

Рис. 2. Зависимость АТРазной активности фактора F_1 от рН среды (а) и температуры среды (б). По оси ординат—активность в мкмоль P_1 /мин/мг белка

Проведенные исследования показали, что митохондриальная растворимая Н +-АТРаза не чувствительна к олигомиципу и ингибируется ЦМКД. Водорастворимый карбодиимид вызывает к 60 мин после начала преинкубации ингибирование АТРазной активности примерно на 40%. Близкая степень ингибирования ферментативной активности ЦМКД показана для АТРазы из сердца быка [10].

Изучение влияния ДНФ на F₁-ATPазу мозга показало отчетливую (до 67%) стимуляцию начальной скорости ATPазной реакции. До

Puc 1. Электрофорез растворимой $H \div$ -АТРазы в ПААГ в присутствии ДДС-Na

сих пор не ясен механизм этого увеличения каталитической активности, обнаруженного также в отношении фермента из других тканей. По мнению Акименко и соавт. [11], стимулирующее действие ДНФ не связано с истинной активацией фермента, а обусловлено снятием торможения, вызываемого ADP—продуктом ATPазной реакции.

Исследование влияния рН среды на активность фермента показало, что смещение рН в щелочную сторону до 8,5 повышает АТРазную активность. Дальнейшее увеличение рН приводит к быстрому снижению активности фермента (рис. 2, а). Полученные результаты соответствуют подобным данным для фактора F₁ из других тканей [12, 13].

При определении зависимости активности фермента от температуры выявлено уменьшение активности в интервале от 20 до 25°. Максимальную активность наблюдали при 37°. Дальнейшее повышение температуры до 50° приводит к уменьшению активности фермента (рис. 2, 6). Аналогичную двухфазную температурную зависимость имеет растворимая АТРаза из сердца быка [14].

Приведённая физико-химическая характеристика растворимой митохондриальной H^+ -ATPазы головного мозга быка—олигомерная организация, субъединичный состав, величина M_{τ} , температурный и рН оптимумы ферментативной активности—позволяют сделать заключение о сходстве её свойств с F_1 -ATPазами, выделенными из других тканей.

PHYSICO-CHEMICAL CHARACTERISTIC OF SOLUBLE H+-ATPase FROM BRAIN MITOCHONDRIA

KORYAGIN A. S.

Chair of Biochemistry, Medical School, Gorky

The soluble H+-ATPase from bovine brain has been investigated. Judged by SDS-PAAG electrophoresis the purified ATPase contained α , β , γ , δ and ϵ subunits. The dependence of the ATPase activity from pH and temperature is established. The properties of the soluble H+-ATPase from bovine brain are similar with those of ATPase from other tissues.

ЛИТЕРАТУРА

- 1. Нейрохимия (под ред. М. И. Прохоровой), Л., ЛГУ, 1979.
- 2. Козлов И. А., Черняк Б. В.—В кн.: Успехи биологической химии. т. 24, с. 65—82, М., Наука, 1983.
- Kagawa Y., Sone N., Hirata H., Yosida M. J. Bioenerg. and Biomembr. 11, No. 3/4, p. 39-78, 1979.
- 4. Horstman L. L., Racker E. J. Biol. Chem., v. 245, p. 1336-1344, 1970.
- 5. Хватова Е. М., Новикови Н. Л., Корягин А. С. Автор. свид. на изобрет. № 1070479, кл. G 01 N 38/50.
- 6. Маурер Г. Диск-электрофорез. Теория и практика электрофореза в полиакриламидном геле. М., Мир, 1971.
- 7. Laemmil U. K. Nature, v. 227, p. 114-125, 1970.

- 8. Болдирев А. А., Лебедев А. В., Ритов В. Б. Вопр. мел. химин, т. 15, с. 622—626, 1969.
- 9. Knowles A. F., Penefsky H. S. J. Biol. Chem., v. 247, p. 6624 6630, 1972.
- 10 Имедидзе Э. А., Козлов И. А., Метельская В. А., Мильгром Я. М. Биохимия, т. 43, с. 1404—1412, 1978.
- Акименко В. К., Минков И. Б., Виноградов А. Д. Биохимия, т. 36, с. 655—658, 1971.
- Акименко В. К., Минков И. Б., Бакееva Л. Е., Виноградов А. Д. Биохчмил, т. 37, с. 348—359, 1972.
- 13. Noustek J., Drahota Z. Biochem. et biophys. acta, v. 484, p. 127 139, 1977.
- Киладзе А. А., Евтодиенко Ю. В., Сухомудренко А. Г. Биофизика, т. 25, с. 232— 233, 1980.

Поступнаа 5. IV 1985

НОВЫЕ КНИГИ

Neurotransmitters in Action (ed. by David Bausfield), Elsevier Biomedical Press, Amsterdam—New York, Oxford, 1985.

В сборнике представлены статын, в которых освещены наиболее выдающиеся успеха последаих лет в понимания химических основ передачи первного импульса. Большинство вз них охватывает механизмы «сосуществования» разлачных вейротрансмиттерных систем, действия субстанции Р — первого пейропередатчика пентидной природы, опиоидных пентидов—семы нейропередатчиков и рецепторов. Ряд статей посвящен роли дофамина в патологии первной системы, фуркции пейропередатчиков в поведенческих реакциях в норме и патологии и т.д.

Aging of the Brain (ed. by W. H. Gispen end S. Traber), Elsevier Science Publishers, Amsterdam, 1984.

Сборник материалов 1-го Международного симпознума по проблемам старения мозга, состоявшегося 16—18 ноября 1982 г. в Кологие. ФРГ. Симпознум освещал вопросы морфологических и нейрохимических коррелятов старения, пластичности и регенерации, циркуляции и метаболических коррелятов в функции мозга, поведенческих коррелятоз у животных и человека, старческих заболеваний.