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Optically thin bremsstrahlung accretion disks, calculated in the bimetric theory 
of gravitation, are compared with the .corresponding ones in Einstein’s theory. The 
sensibility of the inner disk edge located in the strong gravity region of the suffi­
ciently compact central object suggests arguments for the confirmation that the ac­
cretion disk as a whole could be determined by strong gravity effects.

Introduction. Accretion disks, widely accepted to drive a great 
variety of galactic compact sources [1—4]. are very sensitive with re­
spect to the inner boundary, behaviour and conditions, (already demon­
strated in the basic works on accretion disk theory by Von Weizsaecker 
[5] and Lust [6]). These conditions, determining energetic efficiency and 
the structure of the -whole disk, are located in the strong gravity region 
of the highly compact central object. Therefore, there seems to be a 
hope to find strong gravity affected processes which dominate in an 
astronomical phenomena as a whole [7, 8]. Unfortunately, in the rela­
tivistic standard disk models [9—11] an inner boundary value problem 
obstructs the clean physical understanding of the inner disk edge. This 
problem was attacked by Stoeger in [12, 13] neglecting pure hydrody­
namical effects but illuminating possibilities for a solution in the frame­
work of thin accretion disks. Another approach [14—17] is yielded 
from the thick accretion disk theory [18, 20]. A type of slender tourus 
approximation can be used for the inner edge region of the standard 
disk; interesting aspects of the thick disk theory arise from the insta­
bility investigations [21—23].

In recent years an innermost abnormal temperature profile was 
found by the refinement of the relativistic standard model [23, 24]. The 
temperature behaviour nearby the marginally stable test particle orbit 
r.„„ offers a possibility to solve the inner boundary value problem and 
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to obtain some essentials of both approaches, previously mentioned 
8]. Models using the condition of nondissipation in the supersonic 
stream region with the no angular momentum transport are the only 
consistent ones in the inner disk region up to now. But on the other 
hand, if the highly compact central body’s radius R is less than the 
radius of the marginally bound test particle’s orbit r.m„ or the radius 
of the marginally stable particle orbit a neccessary condition for the 
existence of this region appears in the refinement of the standard mo­
del [24, 7, 8].

The behaviour of this innermost cooling region visualizes the sen­
sibility of the essentials of the whole disk from the strong gravitatio­
nal field region [7]. Therefore the purpose of this paper is to give an 
example for this sensibility by the constriction of an optically thin 
bremsstrahlung disk [25, 26] in an alternative theory of gravitation 
with the following comparison of the inner edge with the correspond­
ing one in Einstein’s theory. The bimetric theory of gravitation [27, 
28] is used here. .For this theory the external static and stationary 
solutions are known [27—30]. Also, compact massive objects were dis­
cussed in the limits of this theory [31, 32]. The “weak case“ of the 
bimetric gravitation theory (both masses in the line element (1) are 
equal, 1) suggests strong gravity sensibility of accretion
disks which is demonstrated by the existence of more massive, compact 
and softer radiating “bimetric disks“ here than the corresponding ones 
in Einstein’s theory. These different appearances of “bimetric“ and 
“Einstein“ disksjmust be strengthened, first, in the “strong" bimetric 
case $ = M‘M'^>1. and second in the case of the rotating central body.. 
The first suggestion is proved in this paper.

2. The equations of structure. A thin accretion disk (thickness 
h <s radii R) without substantial self-gravitation orbits a compact, non­
rotating object near and in the equational plane (18 — z/21 <£ 1). The 
external static spherical symmetric sp^ce-time of the central body is 
described by Line elements [27, 28, 34].

do2 = — dt2 + dR2 4- + dz\
ds2 = - A2 (R) dt2 -|- B2 (R) dR2 -f- R2d<?2 + dz2, (

/ M'\~2with A2 = e~M,r, B2 = ( 1---------) and the isotropic radius r— Re.~Mir.
\ r /

We follow closely the general methods developed for relativistic, 
thin accretion disks [9] and use the theoretical framework to calculate 
optically thin bremsstrahlung disks in general spherical symmetric 
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space—time. The disk matter is described by the energy momentum 
tensor

K* = Po (1 4- ") UuU, 4- fp, + q^u. + - (2)
with .

= 0, fp-. u' = 0, f£ = 0.

and p0 rest mass density, " internal specific energy, fp, pressure tensor 
and q heat flow.

First of all, the symmetric tensor Zp, can be decomposed unarbi- 
trarily with respect to a timelike unit vector in (2) plus a pressure 
term P-h.^ = P(g„4-UpU,) [35, 36] (Ap-, is the projection tensor). This 
pressure term falls out during the integration of the equation of motion 
in the axial symmetric stationary case and with the matter assumptions 
considered here.

Second, in the standard theory of accretion disks the internal 
energy in Zp, is neglected which is questionable at low temperatures. 
Temperature gradiants which follows from k in the equations of motion 
changes the type of differential equations qualitatively. Therefore, this 
neglection is not carried out here.

The disk matter orbiting the central body on nearly axial-sym­
metric paths with the velocity of orbit v¥ in the effective field

I/’(Is, R) =/4sfl + (3)

possesses specific angular momentum L =------- f, specific energy E=A^r
. E

1 , A2 \
and angular velocity 2s =---------- I Ts = (1 — =----------D ) -* • ZRdR V c A2_

2 dR 
Using the disk structure equations for a completely ionized hydrogen 
plasma with viscosity [7, 8] and bremsstrahlung cooling [26], in a gene­
ral spherical symmetric spice time and substituting the strong gravity 
case of bimetric theory we obtain (in specified CGSE units) for the 
vertical energy flux

„• V) = 8.180740" ՝ (4)

for thickness
ri/2 M.

*(,) = 0.1899-^—^. (5>
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for rest mass density and surface density 
r ox 11/2

P0(r) = 4.1980-10՜“ VVV2 ’ E (') = 2po*. (6)
. ri J J

for pressure and radial accretion flow velocity in orbiting reference
P(r) = 1.6508- 10s •p0-7', 

v7= 1.7964 -1010 ’
M.R.A^h

(7)

and for temperature profile

— = 3.6294 10՛2 
dr.

T։/?.81/2։(r.) 
r.A'B

[ PV2«> R + 8.7269• • (8)
1 1 -R ՛ M.^A^R.'R2 '

We have expressed the accretion rate Mo, masses and the radii r, R 
in units typical for galactic X-ray sources;

Af17=Afo/lO” -%-= Mu/10՜9 M. M/3Mq = $M.f,
X s yr

r. = r/M', R. = R/M՛ = r.e՜1''-,
with this normalization

B» = r?/(r.—1)», ֊ • ' ’

and the integral

. _ ? “_ Mr.-2 +w i

J I r. 2 (r. -l)w(r.֊2)J 
r0

Which means that . the algebraic functions describing the space time 
structure are only functions of the isotropic radius r. independent on 
the parameter of structure a, Mu, M for the accretion disk; the physi­
cal quantities from (4) up to (8) depend explicitly on T and r.. In­

tegral (10) changes its sign caused, by Z.,^^0 for R.^R.m„ R.m, is 

the radius of marginally stable test particle orbit in V1 (3) and can 
be found from

R.m. = r.m.ellr,m*, r.m, = 2 + ₽ + |/2 + 2p + ₽s

(following the conditions dV2/dR = (PV^/dR2 = 0, Fig. 1).
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Thus the temperature gradient (8) possesses an innermost positive va­
lue leading to a cooling behaviour for decreasing r. (T.r.^>0) and the 
usually negative outer value (T.,. <^0). The integration of equation (8) 
can be started from the radius of marginally bound test particle orbit 

__ 1
R.mb = r mbe 'mb being the last possible bound motion of the disk

/ dV2 \
matter ( ------- ) = 0 and ( V). . = 1 obtained from

\ aK /r.mb

_2L
l)-e rm4 -l-₽.

Of course this boundary condition is chosen only with respect to strong 
gravity effect’s.

Fig. 1. The dependence of rm։. r mi on “obsorption“ parameter ji.

In 
dition

order to fix the inner edge r.i„ of the disk the boundary con-

(r,) = 3L. = i,

a? =
(11)

is assumed which separates the hydrodynamically different super — 
and subsonic regions (a։ is the velocity of sound in the completely 
ionized hydrogen plasma). Condition (11) is based on the hydrodyna­
mical fact that the turbulent viscosity causing the angular momentum 
transport breaks down by shock effects in the supersonic region 

(dissipation of the turbulent cells in the first approximation).
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But this angular momentum transport is needed for disks with 
gravitational potential energy release (not only for disks with a domi­
nance of this release assumed here).

To find the inner disk edge behaviour we substitute power series

T = Ar.7 (6։ + 6։Ar. +•••)» Ar. = r. — r.mb, (12)

in the equations of structure (4)—(8) and calculate q3, h, p0... in the 
neighbourhood of r.mt at r. . By means of (11) one obtains Ar. ,

Ar.— 6.80-10'՜2 -l7A4p52]13/Jr-) (13)
M. J

and r./„ = r.„b + Ar.. Where

11

f e (/•■^-lpr.?„7(r.n,6-2)34________
4 {2(r.mi — l)a (r.m6 -2)-r.iU? -2+r.^))43"

Solving the equations of structure at the inner disk boundary we 
get:

9« =9.2940»’| ^.7^,1 

J

1/3
/,('■). (14)

Am = 1.51-10* M.Wnal 
p 1

1/3 •

(15)

?om = 1.1740”’
■

MW
1W
J 4(-)’ (16)

PM = 1.22101; (17)

s‘-=35-33[jfe. 1/3
P/*(r.)/p(r.), (18)

<£. = 3.4040՜’
m. J

w . ' 
/o(r.). (19)

and
՛ M a3a I*3Tln = 6.29 10’ I /r(r.). (20)

Using the abbreviation g = 12 (r.mj — 1)J (r։wj — 2) + r.2„b (P — 2 4֊ r.„*) |, 
algebraic functions f(r.) will be written in the form:
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P depends on the equation of state for the matter of the central body. 
On the other hand M' represents the sum of rest masses of the par­
ticles of the central body, while M is the mass weighed by circular 
orbiting test particles. This means P measures the absorption (positive 
and negative, respectively) effect of gravitation. In order to visualize 
the influence of the absorption parameter on the inner disk edge be­
haviour the quantities (14 up to 20) are normalized on the value with­

out absorption (P = 1):

A7. (P) = 2.69 ps 7i։ P՜ „ (P) = 2.81 ps%

Tln (P) = 0.48 p-2 3A, q'H (P) = 14.16?“ 7,, ' (21)

Pm (P) = 32.36 p•>/„, vl (?) = 3.40 p2 3fv,

Tln (?) = 11.48 p43/r.

In order to compare the inner boundary behaviour of the bimetric 
•■disk with the corresponding one in Einstein’s theory we have written 
•down the quantities (14 up 'to 20) in units of the corresponding values 
found for the “Einstein disk“:

(fy՞) — 45 in. fl103 f (hi*) _ n no.q—

—-s-l-«’-?"/,. = (22)
APqm) (Pm)
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K)g
K)£

11.90-p2'^, = 141.59(Tin)E 1T

(5 and E stand for functions calculated in bimetric and Eihstein theo­
ries, respectively). The inner disk edge reflecting quantities (14 up to 
22) were calculated '.by assuming the condition Ar..< 1 or Ar < M' 
respectively. This condition is fulfilled for a. wide class of astrophysical' 
objects

MyP> „ 3103
Af. /a3?5'2 (23)-

(At the Eddington limit we have Af17« 10 Af.; a<l).
Of course, the deduced properties of the inner disk boundary are 

necessary conditions for the functions of structure (4)—(8), only, and 
valid under the condition (23). In the next higher order of Ar. (12), 
(13) the values of the structure functions on the inner disk edge have 
to be corrected in the next higher approximation. With, respect to the 
parameter of structure the class of accretion disks taken ..-into consi­
deration is certainly enlarged.

Besides the boundary properties, for a detailed comparison of the 
“bimetric disk“ and the “Einstein disk“ the equations of structure 
(4)—(8) must be integrated in the innermost՜ disk region. This will be 
carried out later. Strong restrictions, hounding the region of validity 
of the model used here, came from the thin disk assumption h R 
and the subsonic condition ft-On the inner edge, the-first condition 
leads to

M17g z/ .2,5 104
M. " p-/A3 (24)

(with (15), (13)) while the second condition is fulfilled by, the. definition. 
From the thin disk assumption (A R) it follows that

23

r<(5.4-10li—--------₽; (25)

This is fulfilled in the inner edge region (r.«-.։ <ni»-4n.<z,։«1).
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3. Discussion. With the increase of mass of the central body, mas-- 
sivity pressure P,„, temperature Tin, and energy flux q*ln decrease, 
because the inner gap h,„ of the accretion disk opens with the corres­
ponding decrease of radial accretion flow vr.n in this case. The inner 
gap hin widens with the increase of the accretion rate Mllt too. But 
in this case the accretion flow velocity grows and the inner disk edge 
becomes hotter and hardly radiates with- the corresponding growth of 
massivity, pressure and compactness. With the increase of “viscosity“ 
(parameter) the inner disk boundary becomes hotter but radiates wea­
ker. This can be understood through the growth of the accretion flow 
velocity on the one hand, and on the falling off of massivity and the 
compactness on the other.

Fig. 2. The dependence of vertical 
energy flux, rest mass density, tem­
perature on “obsorption“ parame­

ter p.

Fig. 3. The dependence of pressure, 
thickness and surface density on 

“obsorption“ parameter (I.

This behaviour of the inner edge known already for the weak bi­
metric case p = 1, is modified by the absorption parameter P = M/M'.. 
Large P represents the strong gravity case in .bimetric theories. It is 
interesting to note that with the growth of gravity P< 10) qualitati­
vely the same effect can be observed as with increasing accretion rate. 
Although, in this case, the gap is much more closed. This means the 
inner disk edge radiates stronger and harder from a more massive, but 
less compact inner disk boundary r.,„ at growing gravity p. In addition, 
the absorption parameter from 2 up to 3 orders of magnitude is stronger 
than the accretion rate and the “viscosity“. Thereby, an important con­
clusion can be drawn that the theory depending effects determine 
stronger the appearance, of the disk rather than the internal parameters 
of structure (Mia) of the disk. This conclusion is supported by com­
parison of the inner boundary behaviour of corresponding disks in bi­
metric and Einstein’s theory.

From (22) one can conclude that the “bimetric disk" radiates har­
der and stronger from a more massive and less compact inner edge 
than the “Einstein disk“ (P 1). Independently from the disk parame­
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ters M|7, M and a this appearance is strengthened by the increasing 
gravity (increasing “absorption parameter“) in the bimetric case.

The existence of a more massive and compact “bimetric disk“, 
which radiates softer with higher luminosity from the innermost region, 
can be considered as a hint that accumulating accretion disk can be 
used to test gravitation theories.

Yerevan State University
Central Institute of Astrophysics.
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АККРЕЦИОННЫЕ ДИСКИ В БИМЕТРИЧЕСКОЙ ТЕОРИИ 
ГРАВИТАЦИИ: СИЛЬНАЯ ГРАВИТАЦИОННАЯ

ЧУВСТВИТЕЛЬНОСТЬ ВНУТРЕННЕЙ ГРАНИЦЫ ДИСКА '

Э. В. ЧУБАРЯН, X. Г. ПАУЛЬ, А. В. САРКИСЯН

В рамках Биметрической теории гравитации рассчитаны оптически 
тонкие аккреционные диски с тормозным излучением. Проведено сравне­
ние полученных результатов с соответствующими в эйнштейновской тео­
рии. Гравитационная чувствительность расположенной в сильном поле 
центрального компактного объекта внутренней границы диска является ар­
гументом в пользу утверждения, что аккреционный диск возможно в целом 

‘определяется сильными гравитационными эффектами.
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