АСТРОФИЗИКА

TOM 27

АВГУСТ, 1987

выпуск 1

УДК: 524.318-76

ИНФРАКРАСНАЯ ФОТОМЕТРИЯ ДВУХ УГЛЕРОДНЫХ ЗВЕЗД

Ο. Γ. ΤΑΡΑΗΟΒΑ

Поступила 1 октября 1986 Принята к печати 30 марта 1987

Проанализированы *IHKLM*-наблюдения утлеродных звезд UV Aur и RW LMI. По интегральному потоку в диапазоне 0.5—5 мкм в максимуме блеска UV Aur эффективная температура эвезды составляет 2700 К, светимость 6.5 · 10³⁷ эрг/с и радиус \sim 600 R_{\odot} (при расстоянии до звезды 1.35 кпк). Наблюдаемые изменения ИК-блеска UV Aur проанализированы в рамках моделей переменной звезды и постоянной звезды с пылевой оболочкой. Отмечена асимметрия фазовой зависимости распределения энергии в спектре UV Aur в диапазоне 0.7—5 мкм. Наблюдаемое излучение RW LMI в диапазоне 1.25—5 мкм соответствует сумме излучений двух чернотельных источников с температурами \sim 1200 К и \sim 650 К, утловые радиусы этих источников составлянот \sim 0"013 и \sim 0"21.

1. Введение. Углеродные звезды UV Aur и RW LMi, несмотря на существенно различные фотометрические и спектральные характеристики, имеют одну особенность, выделяющую их из соответствующего класса углеродных звезд. Эта особенность состоит в том, что в оптических спектрах этих объектов, кроме эмиссионных водородных линий, иногда наблюдаются эмиссионные линии, типичные для газовых туманностей [1—3]. На основании этого объект UV Aur отнесен Боярчуком [4] к классу симбиотических звезд.

Фотометрические, поляриметрические и телевизионные наблюдения объекта RW LMI привели ряд авторов [5—7] к выводу, что данный объект является тесной двойной системой, содержащей, кроме углеродной звезды, звезду раннего спектрального класса. Не исключено, что присутствие горячего компонента в системе RW LMI, повышение активности которого, возможно, уже отмечалось в конце 60-х и в начале 70-х годов [8—9], приведет к тому, что RW LMI разделит судьбу двух других объектов — HM Sge и V 1016 Cyg. При вспышке торячего компонента в этих системах значительная часть их пылевых оболочек под действием УФ-излучения вспыхнувшего горячего компонента испарилась и рассеялась, и в настоящее время в ИК-излучении (1-2.5 мкм) этих систем хорошо видно излучение их холодных компонентов.

Объект RW LMi (= CIT 6 = IRC + 30219 = AFGL 1403) обнаружен при 2-микронном обзоре неба [10], в настоящее время представляет собой углеродную звезду, погруженную в оптически толстую пылевую оболочку, которая перерабатывает излучение эвезды в тепловое излучение пылевой оболочки.

Углеродная эвезда UV Aur — главный компонент визуально двойной системы ADS 3934, вторым компонентом которой является звезда (B9—A0) V, и ее визуальная звездная величина составляет ~ 11². Вклад излучения этой звезды в излучение всей системы не превышает нескольких десятых процента на $\lambda \ge 0.55$ мкм и его можно не учитывать при обработке фотометрических наблюдений.

2. Наблюдения. ИК-фотометрия UV Aur и RW LMi проводилась на 1.25-м телескопе Крымской станции ГАИШ в 1983—86 гг. (UV Aur) и в апреле и июне 1986 г. (RW LMi) при помощи фотометров с PbS-фотосопротивлением и Ge+Ga-болометром (до 1985 г.) и InSb — приемником (1985—86 гг.).

Фотометрическими стандартами служили эвезды BS 1791 (для UV Aur) и BS 4069 (для RW LMi). *JKL*-величины стандарта BS 1791 брались из каталога Джонсона и др. [11], *HM*-величины определялись на основании показателей цвета для соответствующего спектрального класса, приведенных в работе Курниефа [12]. *JHKLM*-величины стандарта BS 4069 оценивались по наблюдениям а Lyr. Эвездные величины стандартов приведены в табл. 1.

12.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Таблица 1			
Фильтр	BS 1791	BS 4069			
J	1.96	0.12			
Н	1.98	-0.65			
K	2.00	-0.90			
L	1.98	0.99			
М	2.11	-0.69			

Угловой диаметр выходной диафрагмы при фотометрии составлял 12", пространственное разделение пучков при модуляции 30" в направлении восток-запад. Так как объект RW LMi не виден в оптический подсмотр телескопа, его фотометрия проводилась по максимуму сигнала в каждом ИК-фильтре. Использовалась поисковая карта окрестностей RW LMi, предоставленная автору А. Алксиисом. Кроме ИК-фотометрии, в 1983—84 гг. для объекта UV Aur на том же телескопе проводилась и UBVR-фотометрия.

В табл. 2 и 3 приведены результаты нашей фотометрии UV Aur и RW LMi. Стандартные отклонения одного измерения в фильтрах *M* и *N*. не превышали 0^m05, в остальных — 0.^m03.

		_		_	10	олица	2
JD	0		0	В	V	R	
2445368	8 0.0	0 11	.36	10.16	7.70	0. 6.0	
418	3 0.1	3 11	.05	10.69	8.31	6.3	7
780	0.0	5 11	.08	10.36	7.88	6.1	7
. 789	0.0	7 10	.98	10.37	8.13	6.1	7
6409	0.6	4 11	.00	10.99	9.89	7,4	9
ID	Φ	1	H	K		M	N
	-	-				1	••
2445368	0.00	3.48	2.63	1.81		1 33	
418	0.13	3.40	2.59	1.72	1 53		
780	0.05	3.46	2.72	1.89		L	
789	0.07	3.54	2.69	1.91	n	•	1
951	0.49	4.27	3.21	2.25			
952	0.49		-		1.73	1.12	0.22
954	0.49				1.55	1.22	0.15
6162	0.02	3.35	2.54	1.87	1.21	1.31	
360	0.53	4.12	2.98	2.06	1.42	1.63	2
407	0.64	4.47	3.27	2.39	1.84	1.91	
450	0.75	4.35	3.12	2.34	1.62	1.53	
691	0.37	4.09	2.83	1.99	1.30	1.33	42
715	0.43	4.22	3.02	2.09	1.36	1.37	
774	0.58	4.59	3.43	2.40	1.87	1.59	- 5
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			a Carl		1.00

В сводке наблюдений RW LMi(табл. 3) приведены фазы ее переменности (Ф), рассчитанные с элементами (Алкснис, частное сообщение): JD MAX = 2441880 + $604 \cdot E$.

3. Обсуждение результатов наблюдений. UV Aur. Как следует из табл. 2, в ИК-диапазоне наблюдается значительная переменность UV Aur. Например, в фильтре J изменения блеска за наблюдаемый период достигали 1^m2. Характерное время изменений ИК-блеска, которое можно отметить на основании нашего ряда наблюдений, составляет ~ 400^d и это зна-

Ο. Γ. ΤΑΡΑΗΟΒΑ

чение согласуется с периодом изменений оптического блеска звезды. В табл. 2 приведены значения фаз переменности Φ , а на рис. 1 представлены фазовые зависимости величин J, (J - H), (J - K), (K - L) и (K - M). Фазы переменности UV Aur рассчитывались с элементами (13): JD max = 2444186 + 393.4 $\cdot E$. На рис. 1 точки, соединенные сплошными линиями, относятся к значениям, полученным в пределах одного периода.

	_				donaga S
Φ	J	H	K	L	М
0.73	6.64	4.60	2.34	-0.61	-1.65
	6.79	4.73	2.44	0.88	-1.80
	6.82	4.67	2.38	-0.92	-1.80
	6.64	4.56	2.18	-0.87	-1.85
	-	4.67	2.43	-0.76	-1.87
0.81	6.40	4.40	2.08	-1.09	-1.85
	ó.08	3.74	1.64	-1.43	-2.04
	6.43	4.04	1.90	-1.29	-1.71
	Ф 0.73 " " " 0.81 "	D J 0.73 6.64 - 6.79 - 6.64 - 6.64 - 0.81 0.81 6.40 - 6.08 - 6.43	Φ J H 0.73 6.64 4.60 6.79 4.73 6.82 4.67 6.64 4.56 - 4.67 0.81 6.40 4.40 6.08 3.74 6.43 4.04	Φ J H K 0.73 6.64 4.60 2.34 6.79 4.73 2.44 6.82 4.67 2.38 6.64 4.56 2.18 4.67 2.43 0.81 6.49 4.40 2.08 6.08 3.74 1.64 6.43 4.04 1.90	

Проанализируем излучение UV Аиг вблизи максимума блеска. На рис. 2 (кривая 1) точками показано наблюдаемое распределение энергии в спектре UV Аиг в максимуме блеска и его аппроксимация излучением абсолютно черного тела (АЧТ) с температурой T (АЧТ) = 2700 К. Поток в фильтре I определялся на основании *I*-величины UV Аиг в максимуме блеска, взятой из работы Худяковой [13]. Межзвездное поглощение учитывалось с $E(B-V) = 0^m 2$ [14]. Из приведенного рисунка видно, что в максимуме блеска UV Аиг распределение энергии в диапазоне 0.5—5 мкм с точностью не хуже 10% по потоку можно представить излучением АЧТ с T (АЧТ) = 2700 К. Для значений T (АЧТ) \simeq 2000—3000 К в диапазоне 0.5—5 мкм сосредоточено более 90% (в данном случае \sim 95%) полного излучения источника и поэтому можно считать, что значение полученной чернотельной температуры близко к значению эффективной температуры фотосферы звезды в максимуме блеска.

Интегральный поток от UV Aur в максимуме блеска, посчитанный по наблюдаемым звездным величинам при $E(B-V) = 0^m 2$, составляет $F_n(0) = 1.05 \cdot \sum F_{\lambda}(0) \cdot \lambda \approx 3 \cdot 10^{-7}$ врг/с см³.

Угловой раднус эвезды

$$\theta_{.0}(0) = \left(\frac{F_{n}(0)}{2T_{sop}^{4}}\right)^{0.5} \approx 9.98 \cdot 10^{-9} \text{ радиан} \approx 2.05 \cdot 10^{-3^{\circ}}.$$

При расстоянии до UV Aur r = 1.35 кпк [14], радиус звезды в максимуме блеска $R(0) \approx 4.2 \cdot 10^{13}$ см $\approx 600 R_{\odot}$.

Светимость $L(0) = 4\pi r^2 F_{\pi}(0) \approx 6.5 \cdot 10^{37}$ эрг/с $\approx 1.7 \cdot 10^4 L_{\odot}$ и абсолютная болометрическая звездная величива $M_{60A} \approx -5^m 84$.

Рис. 1. Фазовые зарисимости J-блеска и ИК-показателей цвета UV Aur.

Таким образом, по параметрам $T_{3\phi\phi}$ и $M_{6o\lambda}$ углеродная звезда UV Aur в максимуме блеска близка к переменным типа M ([15], стр. 188).

Перейдем к анализу параметров UV Aur при изменениях ее блеска. Качественно фотометрическое поведение UV Aur в диапазоне 1.25—5 мкм можно описать следующим образом:

1. Амплитуда изменений блеска в среднем уменьшается с ростом длины волны.

2. Показатели цвета (J-H), (H-K) и (J-K) соответствуют более низким значениям цветовых температур, чем показатели цвета (K-L) и (L-M). На рис. 1 справа на оси ординат нанесены значения цветовых температур, определенные по наблюдаемым значениям показателей цвета (указаны на оси ординат слева). При уменьшении ИК-блеска звезда становится краснее по всем ИК-показателям цвета. 3-431 3. Из рис. 1 и табл. 2 видно, что падение JHK-блеска при фазах переменности $\mathcal{D} = 0.37 - 0.58$ происходит без заметных изменений показателей цвета (I-H) и (J-K) и это указывает на возможные изменения раднуса самой звезды.

Рис. 2. Распределение энергии в спектре UV Aur при разных фазах переменности. Точки — наблюдаемые значения. Сплошные линия — распределения энергии в спектре абсолютно черного тела с температурой, полученной по показателю цвета [(R + 1) = -(I + K)]. Цифры слева — величны $\lg F_R$ (\mathcal{O}) [Вт/см²мкм]. Кривые 1—5 соответствуют значениям фаз переменности, последовательно 0.0, 0.37, 0.43, 0.58, 0.64.

4. Наблюдения UV Aur на $\lambda > 5$ мкм (табл. 2 и (16) показывают, что в излучении звезды на $\lambda > 5$ мкм присутствует избыточное излучение, которое принадлежит околозвездной пылевой оболочке.

Таким образом, качественный анализ ИК-наблюдений UV Aur показывает, что изменения ИК-блеска звезды могут быть связаны как с переменностью самой звезды, так и с существованием пылевой оболочки вокруг нее.

Рассмотрим два предельных случая:

1. Наблюдаемая ИК-переменность блеска UV Анг является следствием переменности самой звезды (модель с переменной звездой). 2. Углеродная звезда UV Анг постоянна, но меняется оптическая толщина пылевой оболочки, что приводит к изменениям наблюдаемого блеска звезды (модель с пылевой оболочкой).

Модель с переменной звездой. Согласно Скейло [17], для углеродных звезд хорошим приближением при оценках эффективных температур являются цветовые температуры, определенные по показателям цвета [(I+R) - (J+K)] и (I-L). В работе Худяковой [13] приведены R и I кривые блеска UV Aur. Воспользуемся результатами этой работы вместе с данными табл. 2 для оценок эффективной температуры UV Aur при разных фазах переменности ее блеска.

Таблица 4

Φ	$\left[\begin{array}{c} (I+R)-\\ (J+K)\end{array}\right]$	(<i>I</i> — <i>L</i>)	$T_{t}(\Phi) K$	$T_{c}^{\prime}(\mathbf{\Phi}) K$	$F_{\Xi}(\Phi) \cdot 10^7$ spr/c cm ²	8(Ф)-103 сек дуги	L(Φ)·10 ⁻³⁷ spr/c	Мбол
0.00	4.74	3.00	2700	2650	3.00	2.04	6.5	-5 ^m 84
0.37	6.00	3.94	2300	2250	2.00	2.41	4.3	-5.40
0.43	6.20	4.13	2250	2200	1.78	2.37	3.8	-5.27
0.49	6.20	3.82	2250	2250	1.58	2.20	3.4	-5.27
0.53	6.68	4.12	2150	2200	1.74	2.35	3.8	-5.14
0.58	5.82	3.62	2350	2400	1.32	1.79	2.9	-4.95
0.64	5.35	3.40	2500	2500	1.45	1.67	3.1	- 5.05
0.75	4.97	3.36	2650	2500	1.66	1.65	3.6	-5.20

В табл. 4 приведены значения показателей цвета [(I+R) - (J+K)]и (I — L) для разных фаз переменности и соответствующие им цветовые температуры T_c (Ф) и T' (Ф). Из сравнения значений этих температур следует, что различия не превышают 100 К для одной и той же фазы переменности блеска звезды. На рис. 2 (кривые 1-5) локазаны распределения энергии в спектре UV Aur в диапазоне 0.7—5 мкм для некоторых фаз переменности. Сплошными линиями проведены распределения энергии з спектре АЧТ с соответствующей температурой Т. (Ф). Из рис. 2 видно, что при совмещении наблюдаемого и чернотельного распределений энергии на $\lambda = 2.2$ мкм (фильто K), как это сделано на онс. 2, почти на всех остальных длинах волн наблюдаются более или менее заметные депрессии, которые для углеродных звезд можно объяснить присутствием в этом диапазоне молекулярных (CO, CN, C, и др.) полос поглощения. Обращает на себя внимание одна особенность в распределении внергии на нисходящей и восходящей ветвях фазовой конвой блеска. Как видно из рис. 2, на восхо дящей ветви ($\mathcal{O} = 0.58$ и 0.64) значительно увеличиваются депрессии на $\lambda > 0.9$ мкм и особенно этот эффект заметен на $\lambda = 1.25$ мкм, где расположена (00) полоса Филлипса. Кооме тото, цветовые температуры на восходящей ветви фазовой кривой несколько выше, чем на нисходящей (см. табл. 4).

В рамках модели переменной звезды оценим некоторые параметры UV Aur на разных фазах ее переменности. В табл. 4 призедены интегральные потоки F_n (\mathcal{O}), вычисленные по *RIJHKLM*-величинам (*RI*-величины брались из работы [13], остальные — из табл. 2) UV Aur с учетом вклада диапазона 0.7—5 мкм в полное излучение при *T* (AЧT) = 2200—2700 К. В остальных столбцах табл. 4 содержатся значения угловых радиусов — θ (\mathcal{O}), светимостей — *L* (\mathcal{O}) и абсолютных болометрических звездных величин — M_{69A} (\mathcal{O}).

Из табл. 4 следует, что в модели переменной звезды наблюдаемые изменения блеска UV Aur в диапазоне 0.7—5 мкм можно объяснить изменениями эффективной температуры звезды в пределах 2200—2700 К, светимости почти в два раза и радиуса на $\pm 20\%$. Детальный анализ фазовых зависимостей указанных величин требует более длительных и систематических наблюдений в широком спектральном диапазоне.

Следует отметить, что фазовые изменения величин $T_e(\Phi)$ и $M_{60\lambda}(\Phi)$ перемещают звезду на диаграмме температура — абсолютная звездная болометрическая величина (см. [15], стр. 188) вдоль линии переменных звезд типа М.

Модель с пылевой оболочкой. Если наблюдаемые изменения блеска UV Ашг связать только с пылевой оболочкой, которая периодически появляется/образуется вокруг звезды, то наблюдаемый поток от звезды в спектральном диалазоне, где еще не проявляется излучение самой оболочки будет: $F_{\lambda}(\Phi) = F_{\lambda}(0) \cdot \exp(-\tau_{\lambda}(\Phi)), F_{\lambda}(0)$ — поток от звезды в отсутствие пылевой оболочки (в данном случае предполагается, что $F_{\lambda}(0)$ это наблюдаемые потоки в максимуме блеска UV Aur), $\tau_{\lambda}(\Phi)$ — оптическая толщина оболочки. Переходя к звездным величинам, имеем: $\Delta m_{\lambda}(\Phi) = m_{\lambda}(\Phi) - m_{\lambda}(0) = 1.086 \cdot \tau_{\lambda}(\Phi)$. Оптическая толщина пылеьой оболочки, состоящей из частиц радиусом *a*, определяется выражением $\tau_{\lambda}(\Phi) = Q_{\lambda} \cdot \pi a^{2} \cdot N_{g}(\Phi)$, где Q_{λ} — фактор эффективности поглоцения пылевых частиц, $N_{g}(\Phi)$ — число поглощающих пылевых частиц в столбе сечением 1 см². При $a \ll \lambda$ величину Q_{λ} можно аппроксимировать выражением $Q_{\lambda} \propto \lambda^{-2}$, где значение параметра а зависит от сорта пылевых частиц; при $a \gg \lambda Q_{\lambda} = \text{const.}$

Итак, в модели постоянной звезды с пылевой оболочкой изменения блеска звезды можно представить в виде: $\lg \Delta m_{\lambda} (\Phi) = -\alpha \lg \lambda +$ $+ C(\Phi)$, если $Q_{\lambda} \propto \lambda^{-\alpha}$ и $\lg \Delta m_{\lambda}(\Phi) = C_1(\Phi)$, если $Q_{\lambda} = \text{const.}$ Следовательно, из спектральных зависимостей величин $\Delta m_{\lambda} (\Phi)$ можно попытаться определить сорт пылевых частиц в оболочке.

ИК-ФОТОМЕТРИЯ УГЛЕРОДНЫХ ЗВЕЗД

На рис. З показана зависимость величин Δm ; (Ф) от длины волны. Точки относятся к средним значениям Δm ; (Ф) для $\Phi = 0.37 - 0.53$, кружки — для $\Phi = 0.58 - 0.75$. Из рис. З видно, что в диапазоне 1—2.2 мкм зависимость lg Δm ; (Ф) от lg λ близка к линейной и параметр $\alpha \simeq 2$. Такое значение параметра α типично для пылевых частиц типа графитовых.

Для восходящей ветви фазовой кривой блеска в диапазоне $\lambda > 0.9$ мхм фактор вффективности поглощения скачкообразно увеличивается (рис. 3) и это отражает факт появления в спектре UV Aur в этом диапазоне молекулярных полос поглощения. Следует заметить, что оценка параметра а носит приблизительный характер, так как молекулярные полосы поглощения, которые попадают в кривые реакций *RIJHKLM*-фильтров, могут существенно исказить зависимость Δm_{λ} (Ф) от длины волны.

На рис. 4 показаны фазовые зависимости оптической толщины пылевой оболочки на $\lambda = 2.2$ мкм (точки) и "средней" оптической толщины $\tau_n (\Phi) = -\ln [F_n (\Phi)/F_n (0)]$ (кружки). Как видно из рис. 4, зависимости $\tau_{2,2}(\Phi)$ и $\tau_n (\Phi)$ асимметричны, и максимум поглощения в пылевой оболочке, приходится на $\Phi \sim 0.6$, где поглощается почти. 50% полного излучения звезды.

Если оптическая толщина пылевой оболочки меньше, чем в рассмотренной модели, то отсюда неизбежно следует, что сама звезда UV Ашг переменная. Расчеты показывают, что, например, если оптическая толщина пылевой оболочки $\tau_{\lambda}(\Phi) = 0.5 \cdot \tau_{\lambda}(\Phi)$ и $Q_{\lambda} \propto \lambda^{-2}$, то в минимуме блеска эффективная (цветовая) температура звезды будет ~ 2400—2500 К, ^a R(мин) ~ 1.04 · R(0). Представление о реальных значениях т, можно получить на основании наблюдений UV Aur в диапазоне $\lambda > 5$ мкм, где проявляется излучение пылевой оболочки. Из данных уже упомянутой работы Вульфа [16] следует, что чернотельная температура пылевых частиц в оболочке $T_{\pi} \sim$ ~ 400 К и полный поток от нее не поевышает 2.10⁻⁸ эрг/с см²; Если эта пылевая оболочка нагревается излучением углеродной звезды UV Aur, то ее «средняя» оптическая толщина для излучения звезды будет 🚛 ~ 0.06. а 5, ≤ 0.06. Дата наблюдений UV Аиг в работе Вульфа не указана, поэтому неизвестно, в какой фазе переменности звезды они проводились. Исходя из приведенного автором [16] значения К-величны UV Aur $(K = 2^{m}2)$, эти наблюдения относятся к значениям фаз $0.5 < \mathcal{O} < 0.75$ (табл. 4). Следовательно, из наблюдений UV Aur в сбласти $\lambda > 5$ мкм следует, что пылевая оболочка, даже вблизи минимума блеска звезды, остается оптически тонкой, и наблюдаемые изменения ИК-блеска звезды з днапазоне 0.7—5 мкм обусловлены в основном переменностью самой звезды (см. модель переменной звезды).

Рис. 4. Фазовые зависимости $\tau_{2,2}(\Phi) = \overline{\tau_n}(\Phi)$ для UV Aur. Точки — значемия $\tau_{2,2}(\Phi)$. Крушки — значения $\tau_n(\Phi)$.

Однако окончательный вывод о природе переменности блеска UV Aut делать пока преждевременно, так как оценка оптической толщины пылевой оболочки получена по единственному наблюдению звезды в диапазоне $\lambda > 5$ мкм. Следует также отметить, что *N*-величина UV Aur, полученная интерполяцией между потоками на $\lambda\lambda$ 8.6 и 11.3 мкм [16], составляет примерно — 0^m3, по нашим наблюдениям $N \approx 0^m2$ (табл. 4), т. е. не исключено, что пылевая оболочка вокрут UV Aur не является стационарной и ее параметры могут существенно меняться, что, в свою очередь, может: отражаться на излучении звезды в сбласти $\lambda < 5$ мкм. Поэтому для решения вопроса о природе переменности UV Aur наиболее перспективными являются набаюдения звезды одногременно в ближнем ИК-диапазоне и на $\lambda > .5$ мкм.

RWLMi. Основные фотометрические особенности поведения RWLMi з ближней ИК-области спектра, которые можно отметить при анализе данных табл. 3, заключаются в следующем:

1. Вместо ожидаемого падения ИК-блеска RW LMi в июне 1986 г. ($\mathcal{O} \sim 0.81$), по сравнению с блеском объекта в апреле 1986 г. ($\mathcal{O} \sim 0.73$), наблюдалось увеличение блеска во зсех фильтрах, кроме M. примерно на -0^m4-0^m6. В фильтре M (4.7 мкм) средний блеск увеличился не более, чем на 0^m1.

2. Значения показателей цзета (I-K), (H-K) и (I-H) соответствуют значениям цветовых температур ~ 1000—1200 К, а значения показателя цвета (K-L) приводят к значениям цветовых температур ~ 650—750 К. Показатель цвета (L-M) менялся в пределах $1.^{m}1-0.^{m}4$, и эти значения соответствуют цветовым температурам от 800 К до 1500 К. Для цветовых температур 650—750 К значения показателя цвета (L-M)должны быть в пределах $1^{m}6-1^{m}3$, и наблюдаемая депрессия в *M*-блеске, вероятно, связана с селективным поглощением пылевых частиц вблизи 4.6 мкм. Средняя оптическая толщина пылевой сболочки в полосе *M* (относительно чернотельного излучения с $T \sim 650$ К) составляет т $(M) \sim \sim 0.5-1.0$,

3. Угловые диаметры чернотельных источников с температурамя 1200 К и 650 К, определенные по средним наблюдаемым потокам в фильтрах J и L, составляют ~ 0,"013 и ~ 0."21.

Автор выражает благодарность В. И. Шенаврину за помещь при наблюдениях и.А. К. Алхснису за обсуждение программы наблюдений объекта RW LMi.

Государственный астрокомический кнститут.нм..П..К. Штеркберга

INFRARED PHOTOMETRY OF TWO CARBON STARS

O. G. TARANOVA

The JHKLM observations of the carbon stars UV Aur and RW LMi are analysed. From the integrated flux in $0.5-5 \ \mu m$ range, the effective temperature in the maximum brightness is found to be 2700 K, the lu-

minosity $6.5 \cdot 10^{27}$ erg/s and the radius ~ 600 R_{\odot} (at the star's distance 1.35 kpc). The observed IR brightness variations of UV Aur are analysed in the framework of the models of a variable star and of a constant star with a dust shell. The asymmetry of the phase dependence of the energy distribution is noted in the spectrum of UV Aur in the range $0.7-5 \ \mu m$. The measurements of the RW LMi in the range of 1.25—5 μm correspond to the sum of radiation of two black body sources with T = 1200 K and 650 K, the angular dimensions of these sources are 0"013 and 0"21 respectively.

ЛИТЕРАТУРА

- 1. R. F. Sandford, Publ. Astron. Soc. Pacif., 61, 261, 1949.
- 2. R. F. Sandford, Astrophys. J., 111, 270, 1950.
- 3. M. Cohen, Astrophys. J., 238, L81, 1980.
- A. A. Bogarchyk, Non-periodic Phenemena in Variable Stars, Budapest, 1969, p. 395.
- W. Z. Wintewski, R. F. Wing, H. Spinrad, H. L. Johnson, Astrophys. J., 148, L29, 1967.
- 6. A. Kruszewski, G. V. Cogne, Astron. J., 81, 641, 1976.
- 7. M. T. Sandford II, Ch. E. Gow, Publ. Astron. Soc. Pacif., 89, 33, 1977.
- 8. H. M. Dyck, F. F. Forbes, S. J. Shawl, Astron. J., 76, 901, 1971.
- 9. А. К. Алкснис, Г. В. Хозов, Письма в Астрон. ж., 1, 144, 1975.
- G. Neugebauer, R. B. Leighton, Two-Micron Sky Servey: A. Preliminary Cataloque (NASA SP-3047), 1969.
- 11. H. L. Johnson, R. I. Mitchel, B. Iriarte, W. Z. Wisniewski, Comm. Lunar and Planet. Lab., 4, 99, 1966.
- 12. J. Koornneef, Astron. and Astrophys., 128, 84, 1983.
- 13. Т. Н. Худякова, Науч. виф. Астрон. сов. АН СССР, Рига: Зинатие, вып: 56, 139, 1984.
- 14. D. Reimers, D. Groote, Astron. and Astrophys., 123, 257, 1983.
- 15. З. Алксне, А. Алкснис, У. Двервитис, в кн. «Характерыстяки углеродных звезд Галактики», Рига, Зинатие, 1983, стр. 188.
- 16. N. J. Woolf, Astrophys. J., 285, 229, 1973.
- 17. J. M. Scalo, Astrophys. J., 206, 474, 1976.