АСТРОФИЗИКА

TOM 26

АПРЕЛЬ, 1987

ВЫПУСК 2

УДК: 524.7-7

ТРЕХМЕРНАЯ ФУНКЦИЯ СВЕТИМОСТИ СЕЙФЕРТОВСКИХ ГАЛАКТИК ПЕРВОГО ТИПА

Р. А. КАНДАЛЯН

Поступила 18 июля 1986 Принята к печати 25 декабря 1986

Построены двумерная (радио, рентген) и трехмерная (радио, рентген, оптика) локальные функции светимости сейфертовских галактик первого типа. На основе частных коэффициентов ранговой корреляции показано существование истичной осорреляции между радио- и рентгеновским излучением галактик Sy 1.

1. Введение. Выполненные до сих пор наблюдения талактик с активными ядрами в рентгеновском диапазоне дали ряд интересных результатов (см., например, обгор Вильсона [1]). В частности выяснилось, что большинство сейфертовских галактик первого типа являются мощными источниками рентгеновского излучения (10⁴¹—10⁴⁵ эрг/с), а среди Sy 2 изредка встречаются рентгеновские источники со светимостью более 10⁴¹ эрг/с. Существуют другие активные галактики, обладающие узкими вмиссионными линиями, которые по спектроскопическим характеристикам близки к Sy 2, но часто являются рентгеновскими источниками (10⁴⁰—10⁴³ эрг/).

Рассматривалась также связь рентгеновского излучения со свойствами в других диапазонах электромагнитного спектра [1—4] и на этой основе выдвигались разные физические модели активности указанных галактик.

Часто при рассмотрении корреляции между светимостями в разных диапазонах, из-за эффекта селекции расстояний, обусловленного ограниченной чувствительностью наблюдений любого обзора, степень корреляции между этими величинами бывает переоценена. Рассмотрение же плотностей потоков в разных диапазонах для выявления корреляции между этими величинами может иногда привести к недооценке или потере истинной корреляции [5]. Рассмотрение корреляций на основе информации о светимостях предпочтительнее, однако при этом нужно учесть возможный эффект-селекции расстояний.

В настоящей работе рассматриваются некоторые особенности сейфертовских галактик первого типа на основе их двумерной (радио, рентген)

и трехмеряой (радио, рентген, оптика) локальных (z < 0.1) функций светимости, построенных для полной выборки Sy1 галактик ярче 14^m2 [6].

2. Выборка сейфертовских галактик первого типа. Выборка сейфертовских галактик ярче 14.2 и метод построения двумерной (радио, оптика) функции светимости подробно описаны в [6], поэтому вдесь мы приведем лишь список 35 Sv1 галактик (табл. 1). В табл. 1 последовательно даны: наименование галактики; красное смещение; фотографическая видимая величина: абсолютная фотографическая величина; логарифм радиосветимости на частоте 1.4 ГГц в единицах Вт/Гц; логарифм рентгеновской светимости в диапазоне 0.5-4.5 КвВ в единицах вог/с (соответствующие $H_0 = 75$ км/с Мпк). Для галактик Маркарян 590, 1048, 618, 509, 926, 530. NGC 4235. II Zw 136, Аракелян 564 по сравнению с [6] использованы ревультаты новых наблюдений этих объектов на 1.4 ГГц [7]. Скобками отмечены значения логарифмов радиосветимостей тех галактик, потоки котооых пересчитаны на 1.4 ГГц с других частот со средним спектральным индексом $\alpha = 0.75$ (S, ~ γ^{-1}). Данные рентгеновских наблюдений в диапавоне 0.5-4.5 КвВ приведены в работах [2, 8-10]. Для галактики Маркарян 1040 плотность потока для диапазона 0.5—4.5 КъВ пересчитана с диапазона 2—10 КвВ со средним спектральным индексом $\alpha = 0.5$.

Выборка галактик Sy1 полностью наблюдалась в радиодиапазоне, а в рентгеновском — только 23 объекта. При построении функции светимости, как и в [6], мы воспользовались методом, предложенным в [11], который наряду с измеренными значениями плотностей потоков использует также значения верхних пределов.

3. Двумерная и трехмерная функции светимости. В табл. 2, 3 приведены интегральные формы двумерной и трехмерной функций светимости соответственно. В скобках указано число объектов с измеренным радио-излучением для данного интервала светимостей. На рис. 1, 2 представлены вависимости интегральной функции радиосветимости $F(\geqslant L_{1.4})$ от $\lg L_{1.4}$ соответственно в двумерном и трехмерном случаях. Чтобы не усложнять рисунки на них не приведены ошибки. $F(\geqslant L_{1.4})$.

Из рис. 1 видно, что чем ярче сейфертовская галактика в рентгеновском диапазоне, тем с большей вероятностью она может быть радиоисточником с $\lg L_{1.4} > 22.5$. Отметим, что выборки $\lg L_x < 43.5$ и $\lg L_x > 43.5$ имеют примерно одинаковые средние значения красного смещения и абсолютной звездной величины. Разность вероятностей $\Delta F (\geqslant L_{1.4})$ относительно сильных ($\lg L_x > 43.5$) и слабых ($\lg L_x < 43.5$) объектов в рентгеновском диапазоне еще сильнее проявляется, когда рассматриваются только те объекты, которые ярче также в оптическом диапа

Таблица 1 ВЫБОРКА СЕЙФЕРТОВСКИХ ГАЛАКТИК

Гелектика	z	m_P	M _p	$\begin{array}{c c} \lg L_{1.4} \\ (B\tau/\Gamma\mathfrak{g}) \end{array}$	lg Lx (apr/e)
Марк 335	0.025	13.76	-21.74	< 22.0	43.7
IZw 1	0.061	14.0	-23.2	22.9	43.9
Марк 590	0.027	13.7	-21.4	22.2	43.5
1040	0.017	13.4	-20.8	<(22.6)	43.1
1044	0.016	14.2	-19.9	<(23.0)	
1048	0.043	13.7	-22.5	22.8	2 4
Марк 609	0.034	14.2	-21.3	<(23.2)	<43.9
3 C 120	0.033	13.7	-21.9	25.1	44.2
Maps 618	0.035	14.1	-21.6	22.6	43.3
Apax 120	0.033	13.9	-21.6	(23.7)	43.7
VII Zw 118	0.079	14.0	-23.5	<(24.3)	-
Maps 79	0.022	12.8	-22.0	22.2	43.3
10	0.029	13.5	-21.8	< 21.8	<43.4
391	0.013	13.5	-20.1	< 21.2	
705	0.028	13.5	-21.7	< 21.5	<43.3
Марк 1243	0.036	14.2	-21.7	<(23.3)	
NGC 3516	0.0093	11.9	-20.9	22.8	
Maps 744	0.010	13.3	-19.7	<(22.2).	14. "
NGC 4051	0.0024	11.2	—18.7	20.8	41.1
4151	0.0033	11.0	-19.6	22.0	42.3
NGC 4235	0.0077	12.9	-19.5	21.0	
Maps 766	0.013	13.5	-20.1	22.1	41.9
231	0.041	13.8	-22.3	23.8	<43.4
Марк 279	0:032	14.2	-21.4	22.6	43.8
NGC 5548	0.017	12.9	-21.3	22.7	43.2
Mapx 471	0.034	14.2	- 21.4	22.1	
817	0.032	14.0	-21.6	22.3	134
841	0.036	13.7	-22.1	< 22.2	V 1 1 1 1 1 1
Мари 509	0.035	12.5	-23.2	22.5	43.9
II Zw 136	0.062	13.8	-23.1	22.9	<44.6
Марк 304	0.065	14.2	-22.9	< 22.5	43.0
Apax 564	0.025	13.8	-21.1	22.5	1 - 1 - 1
NGC 7469	0.017	12.7	-21.5	23.5	43.5
Марк 926	0.048	14.2	-22.2	23.2	44.6
Maps 530	0.029	14.1	-21.2	22.6	<43.7

Таблица 2 ИНТЕГРАЛЬНАЯ ДВУМЕРНАЯ ФУНКЦИЯ СВЕТИМОСТИ

$\lg L_x < 43.5$	$\lg L_x > 43.5$	lg L _{1.4}	
	0.08+0.08	25.2	
		24.8	
	-1-0	24.4	
0.09±0.09	0.16±0.11 (1)	24.0	
	0.33±0.16 (2)	23.6	
	0.52 <u>+</u> 0.21 (2)	23.2	
0.32+0.18	0.80±0.26	22.8	
0.66±0.27 (3)	0.89±0.28	22.4	
<0.93 (0)	<1 (0)	22.0	
<1 (0)		21.6	
1.0 ±0.43		21.2	
1 - 0		20.8	

Таблица З ИНТЕГРАЛЬНАЯ ТРЕХМЕРНАЯ ФУНКЦИЯ СВЕТИМОСТИ

$\lg L_x < 43.5$		lg Lx 3		
$M_P > -21.5$	$M_{P} < -21.5$	$M_P > -21.5$	$M_P < -21.5$	lg L _{1.4}
			0.17±0.17	25.2
		1 - 1		24.8
				24.4
	0.17±0.17 (1)	- 0	0.34+0.24	24.0
		0-17±0.17	0.51±0.29	23.6
	-	<0.34 (0)	0.84+0.37	23.2
0.25±0.25 (1)	0.38±0.27	0.59±0.34	1.0 ±0.41	22.8
0.75 <u>+</u> 0.43 (2)	0.59±0.34 (1)	0.80+0.40		22.4
15-1	<0.92 (0)	(0)		22.0
	<1 (0)			21.6
1.0 ±0.5		1 7		21.2
				20.8

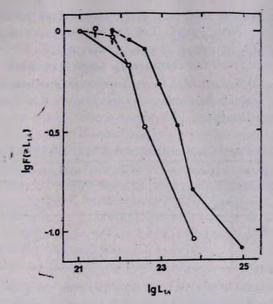


Рис. 1. Интегральная двумерная функция светимости сейфертовских галактих первого типа; • — $\lg L_x > 43.5$; \bigcirc — $\lg L_x < 43.5$.

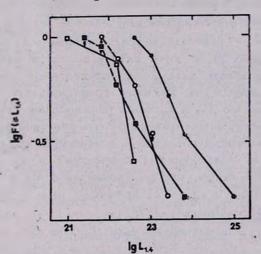


Рис. 2. Интепральная трехмерная функция светимости сейфертовских галактик первого типа; $\bullet - M_P < -21.5$, $\lg L_x > 43.5$; $\bigcirc - M_P > -21.5$, $\lg L_x > 43.5$; $\blacksquare - M_P < -21.5$; $\lg L_x < 4.35$; $\square - M_P > -21.5$; $\lg L_x < 4.35$.

воне $(M_p < -21.5)$ (рис. 2). Разница вероятностей для других пар незначима, как в случае $M_p < -21.5$. Таким образом, среди объектов с $M_p < -21.5$ и $\lg L_x > 43.5$ радиоисточники с $\lg L_{1.4} > 22.5$ встречаются чаще, чем у других групп объектов.

Как было отмечено во введении, при рассмотрении взаимосвязи некоторых параметров в разных диапазонах спектра могут возникать эффекты селекции, искажающие истинные связи параметров. В настоящей работе для учета возможных эффектов селекции, а также для выяснения вопроса, какая из корреляций между M_ρ , $L_{1.4}$, L_x является основной для нашей выборки объектов, мы воспользовались методом частных коэффициентов ранговой корреляции Спирмана [12, 13].

Таблица 4 КОЭФФИЦИЕНТЫ РАНГОВОЙ КОРРЕЛЯЦИИ И ИХ ДОСТОВЕРНОСТИ

Объекты с обнаруженным радио- и рентгеновским излучением			Объекты, наблюдавшиеся в радио- и рентгеновском диапазонах		
n	$\left R_{L_xL_{1,4}(M_{p^s})}\right $	Достовер- ность $\binom{0}{0}$	N	$\left R_{L_xL_{1,4}(M_{p^x})}\right $	Достовер- ность (0/0)
14	0.61	96	23	0.32	84
$7 \\ (M_{\rho} < -21.5)$	0.85	97	$(M_p < -21.5)$	0.40	73

В табл. 4 приведены значения коэффициентов ранговой корреляции Спирмана и их достоверности для объектов с обнаруженным радио- и рентгеновским излучением, а также наблюдавшихся в обоих диапазонах. Число наблюдавшихся галактик обозначено через N, а число галактик с обнаруженным радио- и рентгеновским излучением — через n. $R_{L_xL_1,4}(M_{\rho^x})$ — частный коэффициент ранговой корреляции между L_x и $L_{1.4}$ при фиксированных значениях M_ρ и z. В случае объектов, наблюдавшихся в радио- и рентгеновском диапазонах, приведенные коэффициенты и достоверности являются их нижними границами, так как объекты с верхними границами по $L_{1.4}$ и L_x были ранжированы так, чтобы минимизировать соответствующие коэффициенты ранговой корреляции.

Для остальных групп объектов и комбинаций между M_p , L_x , $L_{1.4}$, z соответствующие коэффициенты корреляции и их достоверности незначимы. Отметим лишь, что для объектов с $M_p \geqslant -21.5$ доминируют связи $M_p - L_{1.4}$ и $M_p - L_x$ при $R_{M_p L_{1.4}(L_x^z)} = R_{M_p L_x(L_{1.4}z)} = 0.7$, котя достоверность невысока ($\sim 77^{\,0}$).

Таким образом, для данной выборки галактик Sy1 связь $L_x - L_{1.4}$ является основной.

Неполнота наблюдений в рентгеновском диапазоне для данной выборки, вероятно, качественно мало изменит основные результаты, вытекающие из функции светимости, так как примерно для одинаковых чисел галактик из групп с $M_p < -21.5$ и $M_p \gg -21.5$ нет данных наблюдений в рентгеновском диапазоне. Кроме того, средние радио- и оптические характеристики галактик, не наблюдавшихся в рентгеновском диапазоне, мало отличаются от таковых для галактик, наблюдавшихся в этом диапазоне. 4. Обсуждение. Попытаемся на основе приведенных выше результатов, а также из ряда известных свойств сейфертовских галактик, представить модель ядер этих галактик, которая качественно в какой-то степени объяснит некоторые наблюдательные факты.

Предположим, что излучение ядерной области (несколько кпк) сейфертовской галактики, обусловленное активностью ядра, наряду с нетепловой составляющей имеет также тепловую составляющую излучения во всем диапазоне спектра. Правда, известно, что основная часть излучения сейфертовских галактик имеет нетепловую природу, хотя в случае галактик Sy 2 или им подобных сбъектов тепловая составляющая излучения в некоторых диапазонах может внести определенный вклад в интегральное излучение или даже быть определяющей (см., например, [14—16]).

В пользу разделения излучения сейфертовских галактик на тепловую и нетепловую составляющие, в частности, в радиодиапазоне, свидетельствует также следующий наблюдательный факт.

Наблюдения ряда сейфертовских галактик в дециметровом и сантиметровом диапазонах с высоким угловым разрешением показали, что они (как, например, Маркарян 3, 6, 348, NGC 1068, 1275 и др.) наряду с ядерными компонентами имеют и протяженные компоненты [16—23]. Протяженные детали, особенно в галактиках Sy 2, хорошо совпадают с областями образований запрещенных линий, которые могут служить источниками тепловото радионэлучения этих галактик. Согласно теоретическим расчетам, приведенным в [16], на частоте 5 ГГц тепловой компонент радионэлучения областей образования узких эмиссионных линий может достигать до 16% интегрального излучения. На более высоких частотах эта доля может быть еще выше. С другой стороны, эти же сбласти на низких частотах могут поглощать синхротронное излучение ядер галактик, что проявляется в виде завалов в спектрах некоторых объектов Sy 2 (Маркарян 6, 463, NGC 1068 [20, 22, 23]).

Естествені:о, что более реальную картину процессов, протекающих в этих галактиках, можно получить только после многочастотных наблюдений этих галактик с высоким угловым разрешением ($\ll 1$ "), когда будет возможным определить спектральные индексы отдельных радиоизлучающих деталей и их связь с окружающими объектами.

В рамках принятой нами модели излучения сейфертовских галактик можно предположить, что относительный вклад того или иного компонента (теплового или нетеплового) в интегральное излучение может проявляться в виде корреляции между наблюдаемыми величинами в разных днапазонах спектра. С этой точки эрения, положительная корреляция между рентгеновским и радноизлучением для сейфертовских галактик первого типа, вероятно, свидетельствует о связи истепловых компонентов излучения.

В заключение отметим, что недостаточное число галактик в отдельных группах по M_p , L_x , а также малочисленность спектроскопических, морфологических и других данных не позволяют проводить уверенные сравнених некоторых параметров для этих групп в различных диапазонах спектра.

- 5. Основные ревультаты и выводы. а) Построены двумерная (радио, рентген) и трехмерная (радио, рентген, оптика) локальные функции светимости сейфертовских галактик первого типа. Показано, что среди галактик Sy 1 с $M_{p} < -21.5$ и $\lg L_{x} \geqslant 43.5$ радиоисточники с $\lg L_{1.4} > 22.5$ встречаются относительно чаще, чем у более слабых объектов по $M_{p},\ L_{x}$.
- б) На основе частных коэффициентов ранговой корреляции Спирмана показано существование истинной корреляции между радио- и рентгеновским излучением галактик Sy 1.
- в) Если предположить, что излучение ядерной области сейфертовской галактики, обусловленное активностью ядра, наряду с нетепловой составляющой имеет также тепловую составляющую во всем диапазоне спектра, то относительный вклад того или иного компонента в интегральное излучение может проявляться в виде корреляции между наблюдаемыми величинами в разных диапазонах спектра. С этой точки зрения, положительная корреляция между рентгеновским и радиоизлучением для сейфертовских галактик первого типа, вероятно, свидетельствует о связи нетепловых компонентов излучения в этих диапазонах.

Автор выражает благодарность А. Р. Петросяну за обсуждение результатов настоящей работы.

Бюраканская астрофизическая обсерватория

THE TRIVARIATE LUMINOSITY FUNCTION OF SEYFERT TYPE 1 GALAXIES

R. A. KANDALIAN

The bivariate (radio, X-ray) and trivariate (radio, X-ray, optical) local luminosity functions for Seyfert type 1 galaxies has been derived. The existence of true correlation between radio and X-ray emission for Seyfert 1 galaxies has been shown on the basis of the partial rank correlation coefficients.

ЛИТЕРАТУРА

- 1. A. S. Wilson, Proc. Roy. Soc. London A, 366, 461, 1979.
- 2, G. A. Kriss, C. R. Canizares, G. R. Rickker, Astrophys. J., 242, 492, 1980.
- 3. E. I. Meurs, A. S. Wilson, Astron. and Astrophys., 136, 206, 1984.
- 4. M. Whittle, Mon. Notic. Roy. Astron. Soc., 213, 1, 33, 1985.
- 5. E. D. Feigelson, C. J. Berg, Astrophys. J., 269, 400, 1983.
- 6. Р. А. Канлалян, Астрофизика, 18, 580, 1982.
- 7. A. S. Wilson, E. J. A. Meurs, Astron. and Astrophys. Suppl. Ser., 50, 217, 1982.
- 8. A. Lawrence, M. Elvis, Astrophys. J., 256, 410, 1982.
- 9. J. E. Steiner, Astrophys. J., 250, 459, 1981.
- M. Elvis, T. Maccacaro, A. S. Wilson, M. J. Ward, M. V. Pentson, R. A. E. Fosbury, G. C. Perola, Mon. Notic. Roy. Astron. Soc., 183, 129, 1978.
- 11. Y. Avni, A. Soltan, H. Tananbaum, G. Zamorani, Astrophys. J., 238, 800, 1980.
- 12. М. Дж. Кендалл, А. Стьюарт, Статистические выводы и связи, Наука, М., 1973.
- 13. J. T. Macklin, Mon. Notic, Roy. Astron. Soc., 199, 1119, 1982.
- 14. R. Terlevich, J. Melnick, Mon. Notic. Roy. Astron. Soc., 213, 841, 1985.
- 15. G. H. Ricke, Astrophys. J., 226, 550, 1978.
- 16. J. S. Ulvestad, A. S. Wilson, R. A. Sramek, Astrophys. J., 247, 419, 1981.
- 17. J. S. Ulvestad, A. S. Wilson, Astrophys. J., 278, 544, 1984.
- 18. J. S. Ulvestad, A. S. Wilson, Astrophys. J., 285, 439, 1984.
- R. V. Booler, A. Padlar, R. D. Davies, Mon. Notic. Roy. Astron. Soc., 199, 229
 1982.
- A. Padlar, R. V. Booler, R. E. Spencer, O. J. Stewart, Mon. Notic. Roy. Astron. Soc., 202, 647, 1983.
- 21. S. G. Neff, A. S. de Bruyn, Astron. and Astrophys., 128, 318, 1983.
- 22. В. С. Артюх, Р. А. Кандалян, М. А. Оганнисян, В. А. Санамян, Астрофигика, 18, 215, 1982.
- В. С. Артюх, Р. А. Кандалян, М. А. Оганнисян, В. А. Санамян, Астрофизика, 23. 29, 1985.