АСТРОФИЗИКА

TOM 25 '

ДЕКАБРЬ, 1986

выпуск з

УДК: 524.7—355

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ КВАЗАРОВ ВТОРОГО БЮРАКАНСКОГО ОБЗОРА СЕВЕРНОГО НЕБА. I. КВАЗАРЫ SBS 0953+549, SBS 1116+603 И SBS 1138+584

С. А. ЛЕВШАКОВ, Д. А. ВАРШАЛОВИЧ, Е. А. НАЗАРОВ Поступила 7 марта 1986 Принята к печати 30 июня 1986

На 6-м телескопе с помощью сканера (IPCS) и спектрографа СП-124 исследованы с разрешеннем ~3.5 А три новых квазара SBS 0953+549 (z_e =2.560), SBS 1116+603 (z_e =2.628) и SBS 1138+584 (z_e =1.699). Приведен анализ спектров этих квазаров. Обсуждается возможная двухкомпонентная структура эмиссионной линии L_e в квазаре SBS 1115+603: узкий пик (FWHM~3000 км/с) и пирокий пъедестал (FWHM~19 400 км/с). В квазаре SBS 0953+549 профиль эмиссионной линии L_e в квазаре SBS 1116+603: узкий пик (FWHM~3000 км/с) и пирокий пъедестал (FWHM~19 400 км/с). В квазаре SBS 0953+549 профиль эмиссионной линии L_z напоминает профили линий типа P Cyg, которые наблюдаются в спектрах звезд с расширяющимися оболочками: обнаружены две сильные ($\tau \sim 1$) и широкие (FWHM $\simeq \simeq 1700$ и 1000 км/с) абсорбционные линии с z_a =2.451 и 2.503, которые отождествлены как линии L_a . Симметричные профили этих элементов, найденных при z_a =0.3800 (SBS 0953+ +549) и при z_a =1.4082 (SBS 1138+584). Сравниваются плотности абсорбциенных деталей в этих и других известных квазарах.

1. Введение. Выполняя программу исследования абсорбционных спектров далеких квазаров на 6-м телескопе АН СССР с помощью сканера, мы включили в нее несколько новых квазаров, открытых недавно в результате Второго Бюраканского обзора (SBS) северного неба с объективной призмой [1—4]. В настоящей работе приведены результаты спектральных наблюдений трех таких объектов: SBS 0953+549, SBS 1116+603 и SBS 1138+584. Ранее для них были получены в прямом фокусе БТА щелевые спектры с разрешением 8—10 А с помощью спектрографа UAGS и ЭОП УМ-92, которые позволили отождествить основные вмиссионные линии и определить красные смещения втих квазаров [1—3]. Нами получены спектры с разрешением 3.5—4.0 А, которые позволяют проанализировать не только вмиссионные линии, но и основные детали абсорбционных спектров этих квазаров. 2. Наблюдения. Спектральные наблюдения квазаров SBS 0953+549, SBS 1116+603 и SBS 1138+584 проводились в 1984/85 гг. с помощью спектрографа СП-124, установленного в фокусе Нэсмита 6-м телескопа АН СССР. Дифракционная решетка 650 штрихов/мм обеспечивала в первом порядке обратную дисперсию 100 А/мм и концентрацию света вблизи $\lambda = 4400$ А. В качестве светоприемной аппаратуры использовался 1024-канальный счетчик фотонов (сканер). Результирующее спектральное разрешение FWHM (полная ширина аппаратной функции на половине интенсивности) в этих наблюдениях составляло 3.5—4.0 А, при этом спектральная ширина одного канала была равна \approx 1.7 А. Основные данные о проведенных наблюдениях приведены в табл. 1.

Таблица 1

Объект SBS	z.	B	Дата	Спектральный двапазон (А)	Т _{экс.} (мин.)	Качество изображений
0953+549	2.580	17.5	25/26.01.84	3500 5200	60	ADMER,
· · · ·	* _ * *	1075	· and	5100-6800	60	β≃2″−4″
124. 7	-		5/6.02.84	3500-5200	85	β ≃2 *
1116+603	2.628	16.5	23/24.01.85	3500-5200	62	ANMES. 8~3"-4"
1138+584	1.699	18	27/28.01.84	3500-5200 5100-6800	60 147	β≃4″

СПЕКТРАЛЬНЫЕ НАБЛЮДЕНИЯ КВАЗАРОВ

Для одновременной регистрации сигнала от объекта и фона неба использовались две входные щели размером $(1''-2'') \times 4''$, разнесенные друг от друга на 40''. В окончательные спектры введены поправки, учитывающие как монотонное изменение чувствительности регистрирующей системы с длиной волны, так и флуктуации чувствительности отдельных каналов.

Для калибровки шкалы длин волн использовались линии He, Ne и Аг, которые записывались до и после каждой экспозиции. После приведения спектральных данных в шкалу длин волн отдельные спектры складывались для увеличения отношения «сигнал/шум». Вся первичная редукция данных проводилась на мини-ЭВМ СМ-4 с помощью специализированного языка СИПРАН, разработанного в САО АН СССР [5]. Полученные спектры представлены на рис. 1—3, на которых по оси абсцисс отложены наблюдаемые длины воли в A, а по оси ординат — относительные интенсивности N регистрируемых потоков излучения, пересчитанные на интервал Δ . = 3 A в случае SBS 0953+549 и SBS 1138+584, либо на интервал $\Delta\lambda = 1.5$ A в случае SBS 1116+603.

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ КВАЗАРОВ ИЗ SBS. I 497

3. 1) Эмиссионные линии. Согласно современной точке эрения [6], широкие эмиссионные линии в спектрах квазаров возникают в облаках газа, окружающих центральный источник непрерывного излучения, имеющего нетепловую природу. Газ в облаках возбуждается за счет процессов фотоионизации [7]. Типичные средние значения ширин эмиссионных линий $FWHM \simeq 5000$ км/с. Считается, что такие большие ширины линий возникают в результате крупномасштабного движения газа в оболочке квазара, повтому формы профилей эмиссионных линий дают представление об общей картине пространственного и динамического распределения газа вокруг центрального источника [8].

Эмиссионные линии, обнаруженные в спектрах квазаров SBS 0953+ +549, SBS 1116+603 и SBS 1138+584, сильно различаются по своим параметрам. Для каждого квазара основные характеристики вмиссионных линий представлены в табл. 2 в следующих столбцах: 1 — название объекта;

Таблица 2

O6bert SBS	ī	Ион	2 ₀ (A)	λ _{obs} (A)	Wλ (A)	FWHM (RM/C)	Zc
0953+549	2.580	L ₃ /O VI	1030	3685	70	6080	2.578
Sec. 22		La	1216	4354	300	4090	2.581
		NV	1240	4442	. 39	4050	2.582
1.4		Si II	1264	4526	7	3000	2.581
		01	1304	4674	6	3900	2.584
160,044		Si IV/O IV]	1400	5010	38	7200	2.579
	2.5.1	CIV	1549	5532	130 •	6500	2.571
		N III]?	1750	6275	5	720	2.586
1116+603	2.628	L _β /O VI	1030	3740	23 ·	4700	2.631
		La	1216	4408	n 88 w 400	3060 19400	2.625
1138+584	1.699	Si IV/O IV]	1400	3773	19	7100	1.695
		CIV	1549	4196	53	4300	1.709
	100	СШ]	1909	5142	38	6100	1.694

ХАРАКТЕРИСТИКИ ЭМИССИОННЫХ ЛИНИЙ

Примечание. *— для блонд взяты средние значения длин воли; п — узвий компонент L₂, w — широкий компонент L₄; значения эквивалентных ширии W₁ приводятся в единицах непрерывного спектра.

2 — среднее значение красного смещения; 3 и 4 — нон или атом и лабораторная длина волны эмиссионной линии; 5 и 6 — наблюдаемые значения длины волны и эквивалентной ширины эмиссионной линии; 7 — полная ширина линии на половине интенсивности; 8 — красные смещения, определенные по центрам тяжести эмиссионных линий.

С. А. ЛЕВШАКОВ И ДР.

2) Индивидуальные особенности спектров. SBS 0953+549. Оптический спектр этого квазара (рис. 1) типичен для спектров далеких квазаров: на фоне почти плоского континуума видны две сильные эмиссионные детали, которые однозначно отождествляются с линиями L_a и C IV, и ряд более слабых эмиссионных линий. С коротковолновой стороны L_z в спектре наблюдается большое число узких абсорбционных деталей. В голубом крыле L_z обнаружены две очень сильные ($z \sim 1$) абсорбционные линии, смещенные относительно пика L_a на 6600 и 11200 км/с.

Рис. 1. Спектр квазара SBS 6953+549

Профили обнаруженных эмиссионных линий симметричны в пределах ошибок измерений. Линин L₁ и L₃/O VI сильно блендированы абсорбционными деталями, что затрудняет анализ. Однако профили L₂, C IV и L₃/O VI качественно подобны, что свидетельствует о том, что они формировались в одной и той же области. Наряду с интенсивными линиями ионов высокой стадии ионизации (C IV, Si IV, N V, O VI) в спектре наблюдаются слабые линии иона Si II λ_0 1264 и O I λ_0 1304 A.

SBS 1116+603. В спектре данного квазара наблюдаются две эмиссионные детали, которые отождествляются с линиями L₂ и L₃/O VI (рис. 2). Как и в других далеких квазарах, с коротковолновой стороны L₂ обнаружено множество абсорбционных деталей, которые сильно искажают про-

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ КВАЗАРОВ ИЗ SBS. I

филь Бленды L₃/O VI и голубое крыло L₂. В красном крыле L₂ сильных абсорбционных деталей не зафиксировано. Повтому, если предположить, что линия L₂ симметрична, можно восстановить ее профиль, который, по-видимому, состоит из двух компонентов: широкого пъедестала и узкого пика. Полуширина узкого компонента L₂ (FWHM = 3060 км/с) несколько меньше среднего значения $\langle FWHM \rangle = 5000$ км/с для квазаров, в то время как полуширина широкого компонента (FWHM = 19400 км/с) почти в 4 раза превышает эту величину.

Рис. 2. Спектр квазара SBS 1116-603

Линия NV λ_0 1240, которая обычно наблюдается в красном крыле L_a , в спектре данного квазара отсутствует.

SBS 1138+584. В спектре этого объекта обнаружены три эмиссионные детали, которые одновначно отождествляются с линиями Si IV/O IV], C IV и C III] (рис. 3). На основе этого отождествления мы опредслили красное смещение квазара SBS 1138+584 $z_s = 1.699$. Отметим, что первоначально авторы SBS определили красное смещение этого квазара, как $z_e = 2.402$ [2], хотя в последующей публикации [4] отметили, что данное эначение z_e нуждается в уточнении.

Обнаруженные вмиссионные линии симметричны в пределах ошибок измерений. В голубом крыле линии С III], возможно, присутствует слабая

вмиссионная деталь, соответствующая линиям Al III λ₀ 1858 и/или Fe II λ₀ 1860 A.

В спектре наблюдается также несколько узких абсорбционных линий.

Рис. 3. Спектр квазара SBS 1138+584

4. 1) Абсорбционные слектры. В оптических спектрах далеких квазаров ($z_o > 1$), как правило, присутствует большое число уэких (FWHM ≤ 150 км/с) абсорбционных деталей. Их распределение по спектру неравномерно: с коротковолновой стороны от вмиссионной линии водорода HI L₄ — плотность абсорбционных деталей обычно в несколько раз выте, чем в длинноволновой.

Подобные спектры наблюдаются и в исследованных нами квазарах SBS 0953+549 и SBS 1116+603 (для квазара SBS 1138+584 линия L_z не попадает в оптический диапазон).

Резкое увеличение числа абсорбционных деталей в диапазоне $\lambda < \lambda_{L^*}$ связывают с поглощением в резонансной линии водорода HI L_e в веществе, физически не связанном с квазаром и расположенном на луче эрения между наблюдателем и квазаром [9], хотя, по-видимому, большая часть абсорбционных линий, которые наблюдаются в голубом крыле эмиссионной линии L_e в диапазоне — 20000 км/с $\leq \Delta \upsilon \leq 0$ км/с образуется в холодном газе, кинематически связанном с квазаром [12].

Основные абсорбционные детали, которые были обнаружены в квазарах SBS 0953+549, SBS 1116+603 и SBS 1138+584 перечислены в табл. 3-5, соответственно. В этих таблицах в вертикальных столбцах расположены: 1 — вакуумные значения наблюдаемых длин солн абсорбционных линий; 2 — эквивалентные ширины линий; 3 — название химического элемента; 4 — вакуумные значения лабораторных длин волн (взяты из работы [10]); 5 — соответствующие красные смещения отождествленных линий (латинскими буквами отмечены предполагаемые абсорбционные системы); 6 — абсолютные ошибки отождествлений. Следует отметить, что значения длин волн абсорбционных линий, которые наблюдались в диапазоне $\Lambda < 3800$ А, могут содержать систематические ошибки, связанные с отсутствием в наших калибровочных спектрах достаточного числа надежных реперных линий в указанном диапазоне. Эти линии отмечены в табл. 3—5 знаком «: ».

Кроме перечисленных в этих таблицах абсорбционных линий в спектрах квазаров SBS 0953+549 и SBS 1116+603 в области $\lambda < \lambda_{L_2}$ присутствует большое число более слабых абсорбционных деталей с эквивалентными ширинами $W_{\lambda} \lesssim 1$ А, уровень обнаружимости которых не превышает З³ на наших спектрах.

2) Абсорбционные системы. SBS 0953+549. В спектре этого квазара в диапазоне 3500—6500 А уверенно выделяются 22 абсорбционных детали, причем все они лежат в области $\lambda < \lambda_{La}$. В области $\lambda > \lambda_{La}$ сильных абсорбционных деталей нет. Из обнаруженных 22 абсорбционных деталей 9 удается отождествить с линиями тяжелых элементов (C IV, Mg I, Mg II и Fe II) и 4—с линиями водорода Н I L₂ и/или L₃. Отождествленные линии объединены в абсорбционные системы А, В, С и D по параметру z_a . При этом контролировалось выполнение условия $|\lambda_{obs} - \lambda_0 (1 + z_a)| < R$, где R-ширина канала в А, а z_a — среднее значение 2 для всех линий, входящих в систему.

Среди этих систем только система A с $z_a = 0.3800$ имеет достаточно высокую статистическую значимость: среднее число M (метод расчета см. в работе [11]) ложных систем, подобных системе A, которые можно обнаружить в результате случайного совпадения длин волн в дамном спектреквазара, равно $4 \cdot 10^{-3}$, в то время как для систем B, C и D значение $M \sim 1$.

В состав системы А входят линии Fe II λ_0 2600, 2587 A, дублет Mg II λ_0 2804, 2796 A и линия Mg I λ_0 2853 A, являющиеся основными опорными линиями в абсорбционных системах с $0.2 \leq z_a \leq 1.5$ в хорошо изученных квазарах, как например, PHL 938: $z_e = 1.95$ и $z_a =$ = 0.613 [13]; Q 0453-423: $z_e = 2.659$ и $z_a = 1.149$ [14]; S5 0014 + 81: $z_e = 3.38$ и $z_a = 1.112$ [15, 16] и др.

Существенно, что для рассматриваемой системы также $z_a \ll z_e$. Для абсорбционных систем такого типа, красное смещение которых. z_a значительно отличается от z_e ($\Delta v \ge 0.5$ с) и в которых наблюда-

С. А. ЛЕВШАКОВ И ДР.

ются линии ионов низкой степени ионизации, было предположено [17, 18], что они образуются в межзвездном газе далеких галактик, случайно попавших на луч зрения между наблюдателем и квазаром. По атим причинам, по-видимому, система А в квазаре SBS 0953 + 549 должна иметь подобное происхождение. Оценка лучевых концентраций Fe II, Mg II и Mg I в поглощающей области с Zg = 0.3800 привоит к следующим значениям: $N(\text{Fe II}) \leq 10^{15} \text{ см}^{-2}$, $N(\text{Mg II}) \simeq 10^{14} \text{ см}^{-2}$ $M N(Mg I) > 10^{13} cm^{-2}$.

	N						
	Наблюдение		Man	Отождествление			
	$\lambda_{obs}^{vac}(A)$	17). (A)	NOR). ₀ (A)	za	Δκ (A)
1	3533:	8.3					- 1
2	3569:	2.0	Fell	2586.7	0.380 (A)	-0.9	
3	3584:	8.4	Fe II	2600.2	(A)		бленда
4	3666:	1.8	HI L3	1025.7	2.574 (D)	-1.2	
5	3709:	6.0				100	
6	3794.2	6.9	1 40		- //		
7	3859.1	4.6	MgII	2796.4	0.3800 A	-0.2	
8	3869.3	3.0	Mg II	2803.6	0,3801 A	0.1	
9	3879.8	2.0					
10	3937.7	4.0	MgI	2853.0	0.3802 A	0.3	
11	3964.8	2.2	1.00			1.	
12	4004.9	7.5	Mg II	2796.4	0.4322 B	-1.1	
13	4017.4	6.0	MgII	2803.6	0.4329 B	.1.1	
- 14	4043.8	2.4	CIV	1548.2	1.6119 C	0.2	
15	4050.3	1.7	CIV	1550.8	1.6117 C	-0.1	
16	4075.4	5.1			1	×	
17	4115.2	7.7			1 (9)		
18	4143.9	2.5				1	
19	4165.4	2.6			- 7	- C	
20	4195.9	25.0	HI L2	1215.7	2.4514		
21	4259.1	17.0	HI La	1215.7	2.5034	-	
22	4348.1	3.0	HI La	1215.7	2.5766 D	1.6	

АБСОРБИИОННЫЕ ЛИНИИ В СПЕКТРЕ КВАЗАРА SBS 0953+549

Таблица З

Примечание. $\Delta \lambda = \lambda_{obs}^{vac} - \lambda_0 (1 + z_n).$

Кроме системы А в спектре SBS 0953-+549 обращают на себя внимание две сильные ($\tau \sim 1$) абсорбционные линии с $\lambda = 4196$ и 4259 А, экви-.валентные ширины 🕅 которых соответственно равны 25 и 17 А, что однозначно указывает на природу этих линий — резонансное поглощение з линии L₂ атомарного водорода H I. Каждая из линий имеет симметричный профиль. Обе они расположены в голубом крыле эмиссионной линии L и смещены относительно ее пика на 11200 км/с и 6600 км/с, соответственно. Полуширины этих линий в несколько раз превышают полуширину инструментального контура, поэтому имеет смысл оценка дисперсии скоростей газа, в кстором образовались данные линии: для линии 4196 A *FWHM* = = 1700 км/с, а для линии 4259 A *FWHM* = 1000 км/с. Эти ширины значительно превосходят средние значения ширин узких абсорбционных деталей в квазарных спектрах, для которых *FWHM* ≤ 150 км/с, но, в то же время, почти в 20 раз меньше ширин широких абсорбционных деталей, которые наблюдаются в BAL-квазарах, где *FWHM* = 20000-30000 км/с [12]. Значения сопутствующих эквивалентных ширин ($W_{\perp} = W_{\lambda}/(1 + z_{e})$) линий 4196 и 4259 A соответствуют лучевым концентрациям водорода N (H I) $\simeq 10^{30}$ см⁻² и $5 \cdot 10^{19}$ см⁻².

Отметим также, что на длине волны $\lambda = 4604$ А наблюдается слабая абсорбционная деталь, ширина и положение которой соответствует линиям С II λ_0 1334.5 и С II* λ_0 1335.7 А, имеющим такое же красное смещение $z_{\alpha} = 2.451$, как и линия L_x λ 4196 А. К этой же системе могла бы принадлежать и линия $\lambda = 4348$ А, отождествляемая с линией Si II λ_0 1260 А. Дальнейшие наблюдения с более высоким спектральным разрешением позволили бы уточнить природу этих абсорбционных деталей.

SBS 1116+603. В спектре этого квазара в диапазоне 3600-4850 А обнаружено 27 абсорбционных деталей. Из них 26 лежат в области $\lambda < \lambda_{L_a}$ и 1 — в области $\lambda > \lambda_{L_a}$. Среднее расстояние между абсорбционными деталями в спектральном диапазоне $\lambda < \lambda_{1}$ в этом квазаре примерно такое же, как и в квазаре SBS 0953+549, имеющем близкое значение г.. Среди перечисленных в табл. 4 абсорбционных ливий удается отождествить лишь дублет C IV (система Е) и четыре пары L₂/L₆ линий (системы A, B, C, D). Ближайшая к эмиссионной области пара А смещена относительно пика эмиссионной линии L_z на $\Delta v \simeq$ 2 — 80 км/с, а самая удаленная — на Δυ 2 — 4400 км/с. Повтому системы А, В, С, D являются, с большой вероятностью, системами "внутреннего" происхождения, т. е. образуются в оболочке квазара. Что касается системы Е, в которой линии дублета С IV смещены относительно эмиссионной линии L_z на $\Delta v \simeq - 81~000$ км/с, то она могла бы относиться к системам "внешнего" происхождения, однако данная система должна рассматриваться как возможная, поскольку мы не можем сейчас проверить, имеется ли в этой системе абсорбционная линия La (даба. = 3351 A), так как она не попадает в исследованный нами спектральный диапазон.

С. А. ЛЕВШАКОВ И ДР.

SBS 1138+584. Среди трех исследованных в этой работе квазаровданный объект имеет наименьшее красное смещение эмиссионных линий $z_e = 1.699$, при котором эмиссионная линия L_{a} не попадает в оптический диапазон. Поэтому все абсорбционные детали, которые обнаружены в спек-

10	Наблюдение			Отоща			
	λ _{obs} (A)	₩ \ (A)	Ион	$\lambda_0(A)$	Za	Δ/. (Α)	
1	3658:	5.7	4	1,700.01		-	
2	3669:	2.1	HI L3	1025.7	2.578 (D)	9.5	
3	3685:	1.4	HI Ls	1025.7	2.593 (C)	-0.4	
4	3699:	2.4	HI L _β	1025.7	2.607 (B)	-0.7	
5	3707:	1.7		1	1.00		
6	3724:	1.1	HI Lø	1025.7	2.631 (A)	1.7	
7	3748:	0.6			3-		
8	3771:	2.4					
9	3795.2	6.0		1.			
10	3823.3	7.0					
11	3944.5	4.8					
12	4054.4	6.1	1 - 20				
13	4073.4	2.4			20 I I X	1	
14	4172.8	8.2					
15	4191.1	3.9		4.12			
16	4200.0	2.0	1. 1				
17	4222.4	2.7					
18	4241.9	5.7		1.20	-		
19	4266.6	3.5	C IV	1548.2	1.7558 E	-0.2	
20	4274.3	2.4	CIV	1550.8	1.7562 E	0.3	
21	4303.5	4.7		14			
22	4346.2	2.5	HI La	1215.7	2.5751 D	-1.8	
23	4368.2	1.1	HI La	1215.7	2.5932 C	0.1	
24	4374.6	1.6					
25.	4385.0	2.3	HI La	1215.7	2.6070 B	0.0	
26	4409.5	3.2	HI La	1215.7	2.6271 A	-2.3	
27	4697.8	2.0	1			1-24	

Таблица 4 БСОРБЦИОННЫЕ ЛИНИИ В СПЕКТРЕ КВАЗАРА SBS 1116+603

Примечание. $\Delta \lambda = \lambda_{obs}^{vac} - \lambda_0 (1 + \overline{z}_a).$

тре этого квазара, лежат в диапазоне $\lambda > \lambda_{L_x}$. В этом случае, в отличие от первых двух квазаров, в диапазоне $\lambda > \lambda_{L_x}$ наблюдается б сильных абсорбщионных деталей. Три из них уверенно отождествляются с линиями

СПЕКТРАЛЬНЫЕ ИССЛЕДОВАНИЯ КВАЗАРОВ ИЗ SBS. I

Fe II, входящими в систему A с $z_a = 1.4082$. В диапазоне 3600—6300 A самая интенсивная абсорбционная липия с длиной волны $\lambda = 3742$ A ($W_{\lambda} = 8$ A) является, по-видимому, блендой линий дублета C IV из системы A (табл. 5). Величина M, характеризующая статистическую значи-

1	Набли	оденяе	Ион	Отожа	43.745	
	λ ^{vac} (A)	₩. (A)		λ ₀ (A)	za	47. (A)
1	3683:	1.9			A - 1	
2	3741:	8.0	C IV?	1549	1.41 (A)	
3	4178.1	3.5	CIV	1549	1.6973 B	0.0
4	5646.1	1.2	Fe II	2344.3	1.4084 A	0.6
5	5739.5	2.4	Fe II	2382.8	1.4087 A	1.2
6	6260.0	2.5	Fe II	2600.2	1.4075 A	-1.8

АБСОРБЦИОННЫЕ ЛИНИИ В СПЕКТРЕ КВАЗАРА SBS 1138+584

Πρимечание. $\Delta \lambda = \lambda_{obs}^{var} - \lambda_0 (1+\overline{z}_a).$

мость системы A, равна в этом случае 10^{-3} . Отношение эквивалентных ширин линий Fe II примерно пропорционально отношению сил осцилляторов, т. е. линии лежат на линейной части кривой роста, где $W_{1} \sim N$. При этом концентрация на луче зрения ионов железа в системе A оказывается равной N (Fe II) $\simeq 10^{14}$ см⁻².

Авторы благодарны Комиссии по тематике 6-м телескопа АН СССР за предоставленное время для проведения этих наблюдений и искренне признательны сотрудникам САО АН СССР В. А. Липовецкому, В. П. Михайлову и В. Л. Афанасьеву за помощь в организации и проведении наблюдений на БТА.

Физико-технический ин-т им. А. Ф. Иоффе

Специальная астрофизическая обсерватория АН СССР

SPECTRAL STUDY OF QUASARS FROM THE SECOND BYURAKAN SURVEY OF THE NORTH HEMISPHERE. I. THE QUASARS SBS 0953 + 549, SBS 1116 + 603 AND SBS 1138 + 584

S. A. LEVSHAKOV, D. A. VARSHALOVICH, E. A. NAZAROV

Three new optically-selected quasars, SBS 0953 + 549 ($z_e = 2.580$), SBS 1116 + 603 ($z_e = 2.628$) and SBS 1138 + 584 ($z_e = 1.699$), have

505

Таблица 5

been studied at ~ 3.5 A resolution using the image photon counting system (IPCS) mounted on the SP-124 spectrograph of the 6-m telescope. Spectra of these quasars are described and briefly discussed .. presented for the twocomponent A tentative evidence is strucline in the SBS 1116 + 603: ture of the L_e emission a narrow spike (FWHM $\simeq 3000$ km/s) and broad pedestal (FWHM $\simeq 19400$ km/s). The profile of the L_s emission line in the SBS 0953 + 549 is similar to the P-Cygni profiles from expanding stellar envelopes: there are twodeep $(\tau \sim 1)$ and broad (FWHM $\simeq 1700$ and 1000 km/s) absorption features at $z_a = 2.451$ and 2.503 which are identified as L_a absorption lines. Symmetric profiles of these lines correspond to $N(\text{Hl}) \simeq 10^{20}$ and 5.1019 atom cm⁻² respectively. Column densities have also been estimated for heavy elements found at $z_a = 0.3800$ (SBS 0953 + 549) and at $z_a = 1.4082$ (SBS 1138 + 584). Absorption line densities in these and other quasars are compared.

ЛИТЕРАТУРА

- 1. Б. Е. Маркарян, Дж. А. Степанян, В. А. Липовецкий, Астрон. циркуляр. № 1141, 1, 1980.
- 2. Б. Е. Маркарян, Дж. А. Степанян, В. А. Липовецкий, Астрон. циркуляр, № 1142. 1, 1980.
- 3. Б. Е. Маркарян, Дж. А. Степанян, В. А. Липовецкий, Астрон. Цыркуляр. № 1265. 1. 1983.
- 4. Б. Е. Маркарян, Дж. А. Степанян, В. А. Липовецкий, Астрофизика, 19, 29, 1983.
- 5. Н. Н. Сомов, Изв. Спец. астрофия. обсерв. СССР, 22, 73, 1986.
- 6. K. Davidson, H. Netzer, Rev. Mod. Phys., 51, 715, 1979.
- 7. J. Kwan, J. H. Krolik, Astrophys. J., 250, 478, 1981.
- 8. J. Kwan, T. J. Carroll, Astrophys. J., 261, 25, 1982.
- W. L. W. Sargent, P. J. Young, A. Boksenberg, D. Tytler, Astrophys. J. Suppl., Sor., 42, 41, 1980.
- 10. D. C. Morton, Astrophys. J., 222, 863, 1978.
- 11. С. А. Левшаков, Д. А. Варшалович, Астрофензника, 18, 49, 1982.
- R. J. Weymann, R. F. Carswell, M. G. Smith, Ann. Rev. Astron. and Astrophys., 19, 41, 1981.
- 13. E. M. Burbidge, C. R. Lynds, A. Stockton, Astrophys. J., 152, 1077, 1968.
- 14. R. F. Carswell, M. G. Smith, J. A. J. Whelan, Astrophys. J., 216, 351, 1977.
- 15. С. А. Левшаков, Аспрон. цвркуляр, № 1430, 1, 1986.
- 16. С. А. Левшаков, Д. А. Варшалович, Е. А. Назаров, А. Ф. Фоменко, Астрон. ж., 63, 111, 1986.
- 17. J. N. Bahcall, Astron. J., 76, 283, 1971.
- 18. B. M. Peterson, P. Strittmatter, Astrophys. J., 226, 21, 1978.