А-СТРОФИЗИКА

TOM 25

ОКТЯБРЬ, 1986

ВЫПУСК 2

УДК: 524.3—355.36

ОБ ИНТЕНСИВНОСТЯХ РЕЗОНАНСНЫХ ЛИНИЙ НЕЙТРАЛЬНОГО И ИОНИЗОВАННОГО МАГНИЯ В ЗВЕЗДНЫХ СПЕКТРАХ

В. Г. ЧОЛАКЯН

Поступила 26 февраля 1985 Принята к печати 15 мая 1986

Построены эмпирические кривые зависимости эквивалентных ширин дублета 2800 Mg II и линии 2852 Mg I от спектрального класса. Проанализированы некоторые закономерности, касающиеся поведения этих линий в спектрах звезд спектральных классов А.-К. С помощью линий 2795 Mg II и 2852 Mg I определена величина средней электронной концентрации n_e (Mg) в атмосферах 87 звезд спектральных классов B8-K4.

1. Введение. К одному из наиболее выдающихся достижений внеатмосферной астрономии следует отнести открытие и дальнейшее исследование резонансного дублета ионизованного магния 2800 Mg II в спектрах звезд почти всех спектральных классов. Широкий диапазон появления и многообразие форм позволяет выделить этот дублет в качестве одного из мощных средств изучения физической природы звезд, туманностей, межввездной среды и т. п. [1].

Определенный интерес может также представить и исследование резонансной линии нейтрального магния 2852 Mg I, которая изучена в меньшей степени, нежели дублет 2800 Mg II.

Исходя из этого, в настоящей работе нами предпринята попытка проследить за поведением дублета 2800 Mg II и линии 2852 Mg I в спектрах более ста звезд спектральных классов В—К и сделать некоторые выводы качественного характера, на основе обработки однородного наблюдательного материала, полученного внеатмосферной обсерваторией IUE [2].

2. Наблюдательный материал и его обработка. Эквивалентные ширины W (2800 Mg II) и W (2852 Mg I) для выбранной группы звезд спектральных классов ВО—МО были найдены нами путем непосредственных измерений IUE записей спектров этих звезд, полученных со спектральным разрешением около 7 A [2]; они приведены в табл. 1 (исправленные за 6—798

В. Г. ЧОЛАКЯН

Таблица 1'

СВОДКА ДАННЫХ ОБ ИССЛЕДОВАННЫХ ЗВЕЗДАХ. НАБЛЮДАЕМЫХ ЗНАЧЕНИЯХ IV (2852 Mg I), IV (2800 Mg II) И СРЕДНЕЙ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ n, В АТМОСФЕРАХ ЗВЕЗД

Звезда HD	Спектр	V	T _{eff} K	T _{ion} K	E (B-V)	₩ (2852) A	₩ (2800) A	lg n _e cm-3
1	2	3	4	5	6	. 7	8	. 9
64760	B0.5 Ia	4.24	25000	1	0.08	_	(0,2)	_
46328	B1 III	4.34	26500		0.01		(0.8)	-
150168	B1 Ia	5.65	23500		0.16	_	(0.1)	
62747	B1.5 III	5.62	25000		0.06	_	1.4	·
51283	B2 III	5.28	23000	S 3	0.05	_	(0.8).	
165024	B2 Ib	3.66	20300	1	0.08	_	(0.6)	
142096	B3 V	5.03	19000	100	0.19		(0.9)	
190993	B3 V	5.07	19000		0.02	_	(0.7)	
53138	B3 Ia	3.04	17500	1 - 3	0.05		1.7	_
65904	B4 V	5.99	17500		0.04		(0.6)	·
195986	B4 III	6.60	17500		0.07	-	(0.5)	
34759	B5 V	5.23	15500	-	0.01	_	0.9	
4180	B5 III	4.54	15500		0.09		(0.7)	
83183	В5 П	4.08	13700		0.13		1.0	
164353	B5 Ib	3.97	13700		0.11		2.2	
58350	B5 Ia	2.44	13700		0.02	-	2.8	- <u>-</u> 2, 1
90994	B6 V	5.09	14200		0.00	_	1.8	
182255	B6 III	5.18	14200		0.02	-	- 1.7	
125288	B6 Ib	4.33	12600		0.19		2.1	-
29335 -	B7 V	5.31	12800		0.02	50-01	1.50	
23630	B7 III	2.87	12800		0.03	-	1.35	
23324	B8 V	5.64	12000		0.04	-	2.8	
10205	B8 IV	4.94	12000	10500	0.01	(0.15)	2.5	13.49
23850	B8 III	3.63	12000	100	0.01		2.4	=
46769	ВЗ ІЬ	5.80	11000	1	0.02	-	1.7	
38899	B9 V	4.92	10500	9500	0.00	(0.3)	3.3	13.55.
196867	B9 IV	3.77	10500	9500	0.01	(0.4)	3.8	13.60
202850	B9 Iab	4.23	11300		0.12	-	3.1	-
193432	B9.5 V	4.76	10000	9100	0.01	(0.5)	4.1	13.43
222661	B9.5 V	4.49	10000	9100	0.00	(0.65)	4.7	13.60
186882	B9.5 III	2.87	10000	9100	0.02	(0.6)	5.3	13.41
95608	A0 V	4.42	9700	8750	0.06	1.2	6.3	13.66
103287	A0 V	2.44	9700	8750	0.01	(0.9)	5.1	13.60
199629	A0 V	3.94	9700	8750	0.03	(0.65)	8.2	12.95

ОБ ИНТЕНСИВНОСТЯХ РЕЗОНАНСНЫХ ЛИНИИ

Таблица 1 (продолжение)

1	2	3	4	5	6	7	8	9
111775	AOII	6-33	9800	8500	0.03	(0.75)	5.8	13 41
104035	A0 Ia	5.61	9800	8800	0.16	(0.7)	7.0	13.19
166205	A1 V	4.36	9500	8250	0.00	1.2	7.4	13.27
80081	A2 V	3.82	9200	7900	0.01	1.7	11.0	13.00
216956	A3 V	1.16	8900	7500	0.01	2.3	12.2	12.95
122408	. A3 III	4.26	8900	7500	0.01	2.2	14.2	12.77
97603	• A4 V-	2.56	8600	7400	0.00	3.0	15.9	12.77
116842	A5 V	4.01	8400	7300	0.01	3.0	17.4	12.61
159561	A5 III	2.08	8400	7300	0.00	2.6	16.0	12.59
59612	A5 Ib	4.85	8300	7200	0.13	(3)	18.2	12.47
28527	A6 Vn	4.78	8200	7100	0.17	3.9	17.5	12.75
87696	A7 V	4.48	8000	7050	-0.02	3.7	19.0	12.50
76644	A7 IV	3.14	8000	7050	-0.03	3.5	17.4	12.54
27176	A8 V	5.65	7800	6950	0.00	4.5	20.0	12.54
157792	A9 V	4.17	7550	6800	-0.02	5.2	20.1	12.61
147547	A9 III	3.47	7550	6800	-0.02	4.9	23.2	12.43
12311	FO V	2.86	7300	6700	-0.04	6.0	24.2	12.37
40136	F0 IV	3.71	7300	6700	0.03	5.8	22.0	12.42
89025	FO III	3.44	7300	6700	-0.01	5.6	27.2	12.22
36673	FO In	2.58	7300	6700	0.06	5.3	25.5	12.22
113139	F2 V	4.93	7000	6450	0.01	6.8	28.0	12.13
99028	F2 IV	3,94	7000	6450	0.04	7.3	25.2	12.22
17584	P2 III	4.23	7000	6450	-0.02	5.4	24.3	11.98
161471	F2 Ia	3.63	7000	6450 .	0.33	5	29.3	11.75
163506	F2 Ia	5.46	7000 `	6450	0.16	5.6	26.1	11.95
157950	F3 V	4.59	6800	6250	-0,02	8.0	28.4	12.02
61110	F3 III	4.90	6800	6250	0.01	6.3	25.7	11.91
27524	F5 V	6.80	6500	6000	-0.01	9.1	31.2	11.76
61421	F5 V—IV	0.38	6500	6000	0.00	11.0	34.5	11.83
20902	F5 Ib	1.79	6500	6000	0.22	7.5	36.5	11.45
173667	F6 V	4.19	6400	5900	-0.02	10.5	35.0	11.67
82328	F6 IV	3.17	6400	5900	0.00	11.2	36.4	11.68
160365	F6 III	6.12	6400	5900	0.10	7.9	28.0	11.50
126660	F7 IV	4.05	6300	5800	0.00	11.9	36.0	11.64
90839	F8 V	4.83	6200	5750	0.01	12.2	40.0	11.54
102870	F8 V	3.61	6200	5750	0.02	15.6	39.3	11.80
54605	F8 Ia	1.85	6000	5550	0.10	10.2	41.8	11.17
27383	F9 V	6.88	6100	5700	0.00	14.3	37.2	11.74
				1				

	Гоблица / (продолжение)							
1	2	3	4	5	6	7.	8	9
109358	GO V	4 26	6000	5700	0.01	14.9	42.1	11.62
4612	GO V	3.44	6000	5700	-0.03	13.5	44.6	11.48
121370	G0 IV	2.68	6000	5700	-0.05	14.2	40.0	11.62
150680	G0 IV	2.82	6000	5700	0.02	16.4	44.0	11.66
6903	GO III	5.55	5850	5550	0.05	10.1	29+o	11.31
111812	G0 III	4.94	5850	5550	0.03	12.2	33+e	11.42
84441	G0 II	2.98	5700	5400	0.07	12.3	34+e	11.22
26630	G0 Ib	4.14	5700	5400	0.13	9.8	33+e	11.05
115043	G1 V	6.83	5900	5500	-0.02	18.5	41.2	11.61
10307	G2 V	4.95	5800	5500	-0.01	16.1	38.6	11.40
186408	G2 V	5.96	5800	5500	0.01	20.3	48.2	11.42
2151	G2 IV	2.80	5800	5500	-0.02	18.6	48.0	11.41
159181	G2 II	2.79	5400	5200	0.11	10.6	31+e	10.80
209750	G2 Ib	2.96	5400	5200	0.10	11.5	34.5	11.18
26736	• G3 V	8.09	5,00	5400	0.01	16.5	38.6	11.43
142876	G3 Ib	4.24	5300	5100 ,	0.15	13.0	32+e	10.77
26756	G5 V	8.46	5500	5400	0.02	19.1	39.0	11.35
20630	G5 V	4.83	5500	5400	0.00	21.0	38.2	11.47
186427	- G5 V	6.20	5500	5400	-0.02	24.2	41.5	11.51
161797	G5 IV	3.46	5400	5350	0.05	23.0	34.8	11.56
:206859	G5 Ib	4.34	4900	4800	0.17	(10)	_	-
93497	G5 III	2.68	5150	5050	0.00.	17.2	31+0	10.95
109379	G5 Ш	2.65	5150	5050	-0.01	18.63	42.2	10.75
115617	G6 V	4.74	5400	5300	0.01	23.7	36.5	11.42
10700	G8 V	3.50	5200	5100	-0.02	27.2	45.0	11.10
188512	G8 IV	3.71	5100	5000	0.04	26.7	38.7	11.03
76294	G8 III	3.11	4900	4800	0.05	26.2	32.2	10.86
48329	G8 Ib	2.98	4650	4550	0.26	11.0	18+e	9.45
72324	G9 Ш	3.36	4800	4700	0.04	24.6	30+e	10.65
185144	KO V	4.68	5000	4900	-0.02	30.5	31.2	11.20
7198149	K0 V	3.43	4900	4800	0.01	29.2	33.1	10.92
62509	ко Ш	1.14	4700	4600	-0.01	28.3	31.0	10.52
10476	KI V	5.24	4900	4800	-0.02	31.9	33.4	10.98
4128	K1 III	2.04	4600	4500	-0.07	19.2	(18+•)	10.48
22049	K2 V	3.73	4800	4700	0.04	27.2	(20+e)	11.08
137759	К2 ЛП	3.29	4500	4400	0.00	22.0	(15+e)	10.30
85503	K2 III	3.88	4500	4400	0.06	22.4	(18+e)	10.15
:206778	K2 Ib	2.39	4200	4100 .	0.30	8.1	(10+e)	9.52

ОБ ИНТЕНСИВНОСТЯХ РЕЗОНАНСНЫХ ЛИНИЙ

1	2	3	4	5	6	7	8	9
219134	K3 V	5	4700	4600	0.06	21.8	(10+•)	11.28
157244	K3 Ib	2.85	4100	3950	0.04	9	(9+e)	9.03
69267	K4 III	3.52	4200	4100	0.05	9.2	(9+e)	9.50
201091	K5 V	5.21	4400		0.03	17.2	e	
29139	K5 III	0.85	4100		0.03	(5)		-
78547	K5 Ib	2.21	3900		0.06	(3.2)	е ,	-
201092	· K7 V	6.03	4200		0.04	15.2		<u> </u>
17709	K7 III	4.53	4000		0.03	(3.3)	e	
52877	K7 lb	3.46	3700		0.12	(2)	-е	
89758	MO III	3.05	3500		0.03	(4)	e	

Таблица 1 (окончание)

Примечание. Эквивалентные ширины, приведенные в скобках, означают неуверенные данные; е — эмиссияя в лижиях 2800 Mg II.

слияние межзвездного псглощения), наряду с остальными данными изученных звезд: номер збезды по каталогу HD; спектральный класс и класс светимости; видимая звездная величина V и колор-эксцесс звезды E(B-V)[2]; эффективные T_{eff} и ионизационные T_{lon} температуры. Переход от T_{eff} к T_{lon} осуществлен с использованием численных значений отношений T_{lon}/T_{eff} для звезд спектральных классов B8-G5, найденных И. М. Копыловым [3]. Шкала эффективных температур взята в основном по В. Страйжису и Г. Куриелене [4], с некоторыми незначительными корректировками при использовании T_{eff} , даваемых другими авторами.

Для более точного определения уровня непрерывного спектра в интересующем нас диапазоне длин волн 2700—2900 А нами была использоеана сетка теоретических ЛТР-моделей Р. Куруча [5]. Принимая во внимание хорошее согласие моделей с наблюдаемым распределением внергии на исследуемых спектрограммах, окончательный уровень непрерывного спектра мы установили путем линейной интерполяции.

Исправление наблюдаемых значений W (2852 Mg I) и W (2800 Mg II) за эффект межзвездного поглощения проводилось нами исходя из существующих оценок эквивалентных ширин межэвездных линий поглощения:

Δ W_{int} = 0.7 А/кпк для линии 2852 Mg I [6, 7],

∆ W_{int} = 1.0 А/кпк для дублета 2800 Mg II [8].

3. Зависимость эквивалентной ширины дублета 2800 Mg II от спекгрального класса. На основе найденных нами в табл. 1 наблюдаемых величин эквивалентной ширины дублета 2800 Mg II нами была установлена

313

В. Г. ЧОЛАКЯН

эмпирическая зависимость W (2800 Mg II) от спектрального класса звезд для диапазона ВО—К4 (рис. 1); при этом использованы IUE данные для 113 звезд, в том числе 25 звезд спектральных классов ВО—В8.

Ряс. 1. Эмпирическая зависимость между эквивалентной шириной резонансного дублета июнизованного магния 2800 Mg II в поглощении и спектральным клиссом по данным IUE: точки — звезды главной последовательности (жлассы светимости V—IV), кружки — гигинты (III), престики — сверхгитанты (II—I). Сплошной линией проведена эмпирическая кривая зависимости W (2800 Mg II) от спектрального класса по данным «Ориона-2».[10].

Как следует из рис. 1, величина W (2800 Mg II) сперва увеличивается по мере уменьшения вффективной температуры и, достигая максимума у звезд классов G0—G2, уменьшается по мере продвижения к звездам более поздних спектральных классов и практически не просматривается в поглощении в спектрах звезд К5 и позднее.

Сравнение полученных нами эначений W (2800 Mg II) в спектрах звезд одного и того же спектрального класса, но разных классов светимости показало, что для классов, позднее G0, величина W (2800 Mg II) в спектрах звезд главной последовательности больше, нежели в спектрах гигантов и сверхгигантов того же спектрального класса. Что касается эвезд ранних классов, то здесь эффект как будто обратный — дублет 2800 Mg II сильнее в спектрах сверхгигантов и гигантов по сравнению с карликами. Это согласуется с выводами Ламерса и Снайдерса [9], показавшими, что в спектрах звезд В—А2 величина W (2800 Mg II), как правило, больше: у сверхгигантов, нежели у карликов.

На рис. 1 нанесена также средняя кривая эмпирической зависимости W (2800 Mg II) от спектрального класса, построенная Г. А. Гурзадяном [1, 10] на основе обработки «орионовых» спектральных снимков около 300 звезд. Спектральное разрешение снимков «Ориона-2» было ≈ 28 А вблизи 2800 А. Как видно, имеет место почти полное совпадение результатов измерений IUE спектрограмм (точки на рис. 1) с результатами «Ориона-2» (сплошная линия), по крайней мере у звезд спектральных классов A0—G0. Хорошее согласие результатов измерения величины W (2800 Mg II), полученных двумя различными экспериментами со спектральными разрешениями, отличающимися в 4 раза, следует отнести прежде всего к исключительно большой мощности самого дублета 2800 Mg II в звездных спектрах. Благодаря этому, сравнительно невысокое спектральное разрешение аппаратуры фактически не сказывается на окончательных результатах при определении величины W (2800 Mg II), и дальнейшее улучшение спектрального разрешения в этом случае практически не имеет решающего значения.

Что же касается расхождения в величинах W (2800 Mg II) для звезд позднее G2—G5 между данными IUE и данными «Ориона-2», то эдесь меньшие значения W (2800 Mg II) в случае «Ориона-2» следует объяснить влиянием хромосферной эмиссии в линиях Mg II 2800, частично заливающей фотосферные линии поглощения 2800 Mg II и приводящей к ослаблснию последних. Сопоставление величин W (2800 Mg II) в спектрах «орионовых» звезд со средними значениями W (2800 Mg II) в спектрах «орионовых» звезд со средними значениями W (2800 Mg II) для звезд того же спектрального класса, найденными при помощи более высокодисперсионных экспериментов IUE, позволяет судить о наличии умеренной хромосферы у «орионовых» звезд поздних классов, так как сравнительно низкое спектральное разрешение «Ориона-2» позволяет выделить лишь мощные хромосферы.

4. Ревонансная линия 2852 Mg I в звездных спектрах. В области ближнего ультрафиолета находится резонансная линия нейтрального магния 2852 Mg I, возникающая при переходе $3s^2 \, {}^{1}S - 3p \, {}^{1}P^{\circ}$ с потенциалом возбуждения верхнего уровня 4.34 вВ. Представляет определенный интерес рассмотрение поведения линии 2852 Mg I у звезд различных спектральных классов и классов светимости на основе обработки коротковолновых спектров 95 звезд спектральных классов В8-M0 [2]. Найденные нами данные о W (2852 Mg I) для втих звезд приведены в табл. 1. Графическая зависимость W (2852 Mg I) от спектрального класса и эффективной температуры звезды, построенная на основе данных табл. l, приведена на рис. 2. Этот график дополнен эначениями W (2852 Mg I) в спектрах 31 звезды и Солнца, найденными нами ранее [11]. Располагая, таким образом, данными о W (2852 Mg I) в спектрах в общей слежпости 127 звезд, мы можем сделать некоторые предварительные выводы. Так, судя по рис. 2, наблюдается явно выраженный рост эквивалентной ширины линии 2852 Mg I по мере понижения вффективной температуры звезды. Затем, достигая своего максимума у звезд спектральных классов G8—K2, сила линии 2852 Mg I падает с переходом к звездам еще более поздних классов.

Рис. 2. Эмпирическая зависныюсть между эквивалентной шириной резолансной лигии нейтрального магния 2852 Mg I и спектральным классом. Точки — звелды главной последовательности (IV—V), кружки — гиганты (III), крестики -- сверхгиганты (II—I). Треугольныками отмечены значения W (2852 Mg I), взятые из [11].

Величина W (2852 Mg l) в спектрах звезд типа В, исправленная за вффект межзвездного поглощения, оказалась порядка 0.1—0.5 А. Слабость линии 2852 Mg l в спектрах звезд этого спектрального класса существенно снижает точность определения величины эквивалентной ширины линии, особенно при использовании наблюдательного материала, полученного с умеренным спектральным разрешением (7 А). У здезд типа А линия 2852 Mg I наблюдается достаточно уверенно. По нашим измерениям, рост эквивалентной ширины линии составляет от I A до 5 A при переходе от звезд класса АО к поздним подклассам А.

В спектрах звезд типа F и G линия 2852 Mg I наблюдается в виде достаточно сильной абсорбционной линии с эквивалентной шириной, оказавшейся в пределах 6—27 А; в некоторых случаях линия 2852 Mg I сравнима по мощности с дублетом 2800 Mg II. Линия 2852 Mg I является самой сильной абсорбционной структурой в коротковолновых спектрах звезд класса К.

Судя по полученным нами данным, величина W (2852 Mg I) в спектрах звезд главной последовательности (классы светимости V—IV) больше, нежели в спектрах гигантов (III) и сверхгигантов (I—II). Эта раздвоенность, едва заметная у звезд ранних спектральных классов, усиливается по мере перехода к збездам поздних классов — поздние подклассы G и ранние K, при этом разница в величинах W (2852 Mg I) между карликами и сверхгигантами достигает 15—20 А. Максимум же зависимости W (2852 Mg I) — спектральный класс» приходится на G8—K2 для звезд главной последовательности и на G0—G3 для сверхгигантов. Максимальная ееличина W (2852 Mg I) составляет \approx 30 А в первом случае и \approx 10—13 А во втором.

Ранее подобный эффект — «әффект абсолютной величины» был установлен в отношении резонансной линии нейтрального кальция 4227 Са I [12]; эта линия оказалась аномально усиленной в спектрах карликов по сравнению со сверхгигантами одного и того же спектрального класса.

Установленная зависимость, достаточно четкая, между эквивалентной шириной линии 2852 Mg I и эффективной температурой звезды с одной стороны, и сильная зависимость W (2852 Mg I) от класса светимости для поздних звезд с другой, делает линию 2852 Mg I удобным критерием как для спектральной классификации звезд в диапазоне А—К, так и для определения класса светимости у звезд G и позднее. В связи с этим. дальнейшее накопление данных о W (2852) в спектрах звезд различных классов представляется нам более чем желательным.

5. Электронная концентрация п. в атмосферах звезд типа А—К, найденная при помощи линий 2852 Mg I и 2795 Mg II. При наличии данных об эквивалентных ширинах линий 2852 Mg I и 2800 Mg II становится возможным нахождение величины средней электронной концентрации п. (Mg) в атмосферах звезд спектральных классов А—К, согласно предложенному Г. А. Гурзадяном [1] методу. В [11] нами была сделана попытка практического применения этого метода — «метода магния» по отношению к 32 звездам спектральных классов АО—G5, главным образом на основе наблюдатсль::ого материала космической обсерватории «Орион-2»: Выведенная из условия фотоионизационного равновесия между атомами Mg и ионами Mg⁺ в изотермическом обращающем слое, где формируются линии поглощения Mg I и Mg II, и усредненная по всей глубине этого слоя величина средней электронной концентрации определяется по формуле:

$$n_{e} = 1.17 \cdot 10^{3} \frac{T_{\rm ion}}{D^{+}(T_{e})} \frac{N(Mg)}{N(Mg^{+})} e^{\frac{90,000}{T_{\rm ion}}},$$
 (1)

где N (Mg) и N (Mg⁺) — полное количество поглощающих нейтральных атомов и ионов магния в атмосфере звезды соответственно: $D^+(T_e)$ — полный коэффициент рекомбинации ионов магния со свободными электронами [13]; T_{10n} — ионизационная температура.

Численные значения N (Mg) и N (Mg⁺) находятся при помощи эквивалентных ширин W линий 2852 Mg I и 2795 Mg II, а также соответствующих кривых роста [1], причем, при W (2852 Mg I) \ge 4.5 A и W (2795 Mg II) \ge 5 A выражение (1) может быть представлено непосредственно через эквивалентные ширины этих линий:

$$\lg n_{\bullet} = 2.28 + 2 \lg \left[\frac{W(2852)}{W(2795)} \right] + \lg T_{\rm ion} - \lg D^{+} (T_{\bullet}) - \frac{39\,000}{T_{\rm ion}}$$
(2)

Использованные нами IUE записи были сделаны со спектральным разрешением 7 А. При таком разрешении нельзя было выделить и измерить эквивалентную ширину линии 2795 Mg II в чистом виде—она оказалась слитой с другой резонансной линией 2803 Mg II и двумя субординатными линиями Mg II в одну линию 2800 Mg II. При этом, учитывая небольшой вклад, вносимый субординатными линиями в величину W (2800 Mg II) (\approx 10% у звезд А0, а у более поздних звезд и того меньше), а также примерное равенство обоих резонансных компонентов [9, 14, 15], нами было принято W (2795 Mg II) \approx 0.5 W (2800 Mg II).

Полученные таким образом численные значения $n_{\bullet} = n_{\bullet}$ (Mg) приведены в табл. 1 (столбец 9), а также на рис. З в виде графика зависимости от спектрального класса. При этом использованы также найденные нами ранее значения n_{\bullet} (Mg) для 32 звезд [11].

Эначения n. (Mg), найденные при помощи «метода магния», могут быть использованы в качестве самостоятельного параметра, удобного для целей относительных сопоставлений. В частности, наличие однородных значений n. (Mg) для данной, достаточно многочисленной выборки звезд даст нам возможность составить определенное суждение о качественном характере поведения влектронной концентрации в атмосферах звезд вдоль спектральной последовательности. Это следует из рис. 3, где наблюдается быстрое уменьшение величины n, (Mg) по мере перехода от звезд типа A к звездам более поздних спектральных классов.

Рис. 3. Зависимость средней электронной концевлрации л. (Mg) в атмосферах звезд от спектрального класса, найденная «методом магния». Точки — звезды главной последовательности (IV—V), кружки — гиганты (III), крестики — сверхгичанты (II—I). Треугольныками обозначены значения л. (Mg), взятые из [11].

6. Некоторые выводы. Анализ поведения линий поглощения 2800 Mg II и 2852 Mg I в спектрах в общей сложности 152 звезд спектральных классов В0—М0, проведенный на основе обработки наблюдательного материала космических обсерваторий IUE и «Орион-2», позволяет сделать следующие выводы:

1. Построены эмпирические зависимости эквивалентных ширин как для дублета 2800 Mg II, так и для линии 2852 Mg I от спектрального класса (рис. 1 и 2), которые могут быть использованы, в частности, для целей спектральной классификации эвеэд.

2. Численные значения эквивалентных ширин дублета 2800 Mg II, полученные при обработке материала со спектральным разрешением 28 А и 7 А, для ввезд одного и того же спектрального класса и класса светимости практически совпадают между собой в диапазоне А—GO. Для поздних спектральных классов имеющееся расхождение объясняется влиянием хромосферной вмиссии в линиях 2800 Mg II на абсорбционную линию 2800 Mg II.

3. Эквивалентная ширина линии 2852 Mg I для звезд одного и того же спектрального класса больше в спектрах звезд главной последовательности по сравнению с гигантами и сверхгигантами. Это обстоятельство может служить весьма чувствительным критерием для определения класса светимости поздних эвезд.

Автор выражает искреннюю благодарность профессору Г. А. Гурзадяну за интерес, проявленный к настоящей работе, ценные советы и полезные дискуссии.

Ереванский политехнический институт

ON THE INTENSIVITIES OF THE RESONANCE LINES OF NEUTRAL AND IONIZED MAGNESIUM IN STELLAR SPECTRA

V. G. CHOLAKYAN

Some regularities concerning the behaviour of resonance doublet 2800 Mg II and resonance line 2852 Mg I in stellar spectra were analyzed in detail. The empirical relationships between W(2800 Mg II) and W(2852 Mg I) and spectral type of star are also derived. With the help of the lines 2795 Mg II and 2852 Mg I, the mean electron concentration in the atmospheres of 87 stars of type B8-K4 is determined.

ЛИТЕРАТУРА

- 5. *Ж. П. Аносова, Д. И. Бертов, В. В. Орлов,* Астрофизика, 20, 327, 1984. Наука, М., 1984.
- C.-C. Wu, T. B. Ake, A. Bogges, R. C. Bohlin, C. L. Imhoff, A. V. Holm, Z. G. Levag, R. J. Panek, F. H. Schiffer, III, B. E. Turnose, The IUE Ultraviolet Spectral Atlas, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, Newsletter No. 22 (Special Eddition), 1933.
- 3. И. М. Копылов, Изв. Крым. астрофиз. обсерв., 30, 69, 1963.
- 4. V. Straizys, G. Kuriliene, Astrophys. and Space Sci., 80, 353, 1981.
- 5. R. Kurucz, Astrophys. J. Suppl. Ser., 40, 1, 1979.
- A. Boksenberg, B. Kirkham, W. A. Towlson, T. E. Venis, B. Bates, G. R. Courts, P. P. D. Carson, Nature, Phys. Sci., 240, 127, 1972.
- 7. K. S. Boer, R. Hoekstra, K. A. Hucht, T. M. Kamperman, H. L. Lamers, S. R. Pottasch, Astron. and Astrophys., 21, 447, 1972.

ОБ ИНТЕНСИВНОСТЯХ РЕЗОНАНСНЫХ ЛИНИИ

-8. G. A. Gurzadyan, Astrophys. and Space Sci., 80, 197, 1981.

9. H. J. G. L. M. Lamers, M. A. J. Snijders, Astron. and Astrophys., 41, 259, 1975.

10. G. A. Gurzadyan, Publ. Astron. Soc. Pacif., 87, 289, 1975.

11. В. Г. Чолакян, Письма в Астрон. ж., 11, 458, 1985.

12. P. C. Keenan, J. Nassau, Astrophys. J., 104, 458, 1946.

13. S. M. V. Aldrovandy, D. Pequignot, Astron. and Astrophys., 25, 137, 1973.

14. M. A. J. Snijders, H. J. G. L. M. Lamers, Astron. and Astrophys., 41, 245, 1975.

15. Y. Kondo, J. L. Modisette, G. W. Wolf, Astrophys. J., 199, 110, 1975.