АСТРОФИЗИКА

TOM 25

АВГУСТ, 1986

выпуск 1

УДК: 524.31—335.7

ОБ ЭФФЕКТИВНЫХ ТЕМПЕРАТУРАХ НОРМАЛЬНЫХ ЗВЕЗД КЛАССОВ О9—А0

Е. В. РУБАН

Поступила 10 декабря 1985 Принята к печати 18 февраля 1986

С целью определения эффективных температур звезд классов O9—A0 проведеносравнение средних наблюдаемых распределений энергии в их слектрах с соответствующими данными, вычисленными для различных моделей атмосфер. В случае АТР-моделей и плоскопараллельного приближения температуры сверхгитантов всех подхлассовиолучаются ниже температур звезд главной последовательности, тогда как при использовании для горячих сверхгитантов моделей статических протяженных атмосфер их температуры оказались выше и практически совпали с температурами эвезд главной носледовательности, найденными при использовании моделей, учитывающих отклонения: от АТР.

1. Введение. В предыдущей работе автора [1] была изложена методика уточнения по непрерывным спектрам МК-классификации для звезд подклассов O9—A0 и приведены результаты этото уточнения для более чем 100 звезд. Найденные затем средние распределения энергии в интервале $320.0 \div 737.5$ нм для звезд разных спектральных подклассов и классов светимости собраны в работе [2]. Высокая точность этих данных (~ 1%) и их однородность позволяют получить эффективные температуры путем сравнения утях наблюдземых распределений с теоретическими распределениями, рассчитанными для различных моделей атмосфер, и построить шкалы эффективных температур. Этим вопросам посвящена настоящая статья.

2. Шкала эффективных температур звезд II—V классов светимости. Для определения эффективных температур звезд II—V классов. светимости средние распределения энертии в их спектрах сравнивались с данными наиболее совершенных моделей атмосфер в плоскопараллельном приближении, учитывающих покровный эффект от многих линий поглощения и построенных при предположении о существовании ЛТР-моделей Куруца [3]

Перед сравнением все кривые нормировались в λ 401 нм, где континуумы звезд исследуемых подклассов представлены достаточно хорошо. Распределение внергин в рассматриваемом диапазоне спектра для различных моделей менее чувствительно к различиям в ускорениях силы тяжести, чем к равличиям в температурах, повтому первоначально для сравнения выбирались модели со следующими значениями lg g : 4.0 — для звезд V класса светимости, 3.5 — IV класса, 3.0 — III класса, 2.5 — II класса. Эффективная температура модели, которая давала наилучшее согласие с наблюдательными данными во всем рассматриваемом диапазоне спектра, принималась за среднюю эффективную температуру звезды данного подкласса. После втого, если нужно, проводялось уточнение lg g.

Полученные таким образом значения эффективных температур $(T_{\rm eff})$ и логарифмов ускорений силы тяжести на поверхности $(\lg g)$ приведены в табл. 1 для различных спектральных подклассов и классов светимости. Эдесь же указано число звезд, использовавшихся при выведении средних кривых. Эначения $T_{\rm eff}$ для соответствующего спектрального подкласса нанесены на рис. 1 для разных классов светимости разными символами. В нижней части рисунка на вертикальных отрезках отложены ошибки определения $T_{\rm eff}$, полученные как $1/2 \Delta T$, где ΔT — разность температур соседних моделей.

Как видно из рисунка, для исследуемых спектральных подклассов у звезд II—V классов светимости нет большого различия температур, что подтверждает известные результаты ранних исследований (см. библиографию в [4]).

. Для сравнения с уже существующими шкалами эффективных температур в табл. 1 приведены температуры, полученные Андерхилл и др. [5]; $T_{\rm eff}$ (UD). Существенное отличие настоящей шкалы от шкалы [5] и от других шкал, при определений которых использовались данные о непрерывных спектрах (на рис. 1 приводится недавно опубликованная шкала Феодоссию [6]), состоит в том, что при ее построении использовалась уточненная по непрерывному спектру спектральная классификация [1]. Как было показано в работе [7], отсутствие однозначного соответствия непрерывных спектров спектральным подклассам в МК-классификации связано не только с ошибками наблюдений, но и с реальными физическими причинами. В результате действия некоторых из них непрерывные спектры звезд часто относятся к более поздним подклассам, чем линейчатые [1]. Отсюда и меньшие эффективные температуры (иногда на 1000— 4000 К, как видно из табл. 3, 4 в [4]), которые получаются из непрерывных спектров

Таблица 1

ЭФФЕКТИВНЫЕ ТЕМПЕРАТУРЫ ЗВЕЗД II-V КЛАССОВ СВЕТИМОСТИ

Сп. подвласс	Класс светям.													
	П			III		II—III	IV			V		1V-V		
	Teff	lg g	КОЛ. 9869 <i>д</i>	Teff	lg g	КОЛ. Эвсэд	Teff (UD)	Teff	lg g	жол. Эвезд	Tett	lg g	кол. Звезд	Teff (UD)
09				50000	4.0	1								8
09.5	5 - 1			2					187		40000	4.0	2	
BO	100	22	1.1.1					1.00			35000	4.0	3 '	30780
B0.5		10	1	12.0		1.1.5		30000	3.5	1	-			29270
B1	25000	3.0	1	25000	3.0	2	26320	25000	3.5	1	27500	4.0	2	26°00
B2	22500	3.0	2		100	2 2 1	22270	22500	3.5	10	25000	4.0	5	22820
B2.5	-	+ 11			1.3%		1	21250	3.5	2	22500	4.0	3	20380
B3	1	0				1		20000	3.5	4	20000	4.0	• 5	-18530
B4		1		18000	3.0	2	1.1.1.	18000	3.5	3	18000	4.0	1	16340
B5	16000	2.5	1		1.2		14850	16000	3.0	4	17000	4.0	3	15170
B6				15000	4.0	2	13660				1. 1			10.00
B7			1	-	1.11		2				13500	4.0	2	1298)
B8	13000	2.5	2	12500	3.0	3	11930	-			12500	4.0	6	11900
B8.5				1.	1		1		1.1		12000	4.0	3	1.1.1.1
B9.5	10000	2.0	1	11000	3.0	2		10000	2.5	1	10500	(3.5)	4	10200
AO	1	1	1-200	10000	3.0	4	1 1 1 1 - S				10000	4.0	4	

в соответствие со спектральными подклассами в МК-классификации не только улучшило сходимость непрерывных спектров звезд одного подкласса [2], но и привело в некоторых случаях к более высоким средним для подкласса эффективным температурам, которые неплохо согласуются с данными, полученными из линейчатого спектра [8] (см. рис. 1).

Рок. 1. Шкалы эффективных температур, полученных по нашим данным с помощью следующих моделей атмосфер: а) Куруца [3] для звезд V класса оветимости (1). IV (2), III (3), II (4), Ib (5), Ia (6) (на вертикальных отрезках отложены величины $1/2 \Delta T$, где ΔT — разность температур соседних моделей); b) Аувра и Михаласа [25] для горячих звезд главной последовательности (11); c) Кунаца, Хаммера и Михаласа [26] для горячих сверхгытантов (9). 10 — усредненная шкала для звезд II—V классов светимости. 7 и 8 — шкалы эффективных температур по данным Квыпа [8] и Фесдосско [6] соответственно.

3. Эффективные температуры сверхилантов. Обратимся теперь к звездам класса светимости I. Распределения энергии в спектрах В-сверхгигантов, представленные в [2], не являются средними, а относятся к отдельным звездам. Эти звезды перечислены в табл. 2 (в список включена также звезда у Leo, которая показала те же особенности в непрерывном спектре, что и сверхгиганты I). В таблице приводятся их номера (BS) по каталогу

ЭФФЕКТИВНЫЕ ТЕМПЕРАТУРЫ НОРМАЛЬНЫХ ЗВЕЗД

[9], угловые диаметры (θ), расстояния (d) и раднусы (R/R_{\odot}) [4], а также спектральные классы, уточненные по непрерывному спектру (Sp) [1]. (На содержании трех последних столбцов остановимся ниже). Наблюденные распределения энергии в спектрах сверхгигантов, исправленные за влияние межзвездного ослабления света [10], приведены на рис. 2.

Таблица 2

Назв. звезды	BS	(10 ⁻³ с дуги)	d (пк)	R/R _O	Sp	Teff (K)	$T_{\rm eff}^*({\rm K})$	T _{2/3} (K)
† Ori	1948	0.527	350	20	во іь	22500	27580	43400
s Ori	1903	0.708	470	36	BO Ia	22500	25090	39500
	3090	_			B0.5 Ib	20000		
x Ori	2004	C.450+		1	B0.5 Ia	20000	2639 0 ⁴	
2 ² CMa	2653	0.587	843	53	B4 Ia	14000	14760	
η CMa	2827	0.769	608	50	B6 Ia	12000	13:20	
ß Ori	1713	2.510	228	62	B7 Ia	11000	11380	
η Leo	3975	0.690	540	40	B9.5 II	10000	9400	

СВЕРХГИГАНТЫ

+ Значение в приводится из [20].

∆ Значение T_{eff} взято из [19].

При интерпретации спектров сверхгигантов с помощью моделей [3] возникают трудности. Известно, что из-за большой роли светового давления увеличивается протяженность атмосфер этих звезд [11], что ставит под сомнение возможность поименения плоскопараллельного приближения.

Де Ягер [12] показал, что для фотосфер большинства горячих (T > 8000 K) сверхгигантов плоскопараллельное приближение справедливо, поскольку ускорение силы тяжести (g) на поверхности этих звезд превосходит предельное значение g_{\lim} , при котором высота однородной атмосферы становится больше δR (δ — малое число порядка 0.1), что нарушает ее плоскопараллельность. Однако его нельзя применять к звездному ветру, для которого эффективное ускорение силы тяжести $g_{\text{eff}} = g(1 - |g_{\text{rad}}/g|)$ (здесь g_{rad} — ускорение, обусловленное давлением излучения) может принимать отрицательные значения.

Согласно Хачингсу [13], истечение есть общее свойство всех горячих звезд самой высокой светимости. Не являются исключением и звезды списка 2. Скорости потери масс для них лежат в пределах $(0.4 \div 3.0) \times \times 10^{-6} M_{\odot}$ год [14] (для сравнения, для звезд главной последовательности $M = 4 \cdot 10^{-8} M_{\odot}$ год [15], т. е. истечение из исследуемых звезд значительное, и игнорировать его нельзя.

Для того, чтобы можно было применить плоскопараллельное приближение при интерпретации спектров таких звезд, их атмосферы обычно моделируются двумя составными частями: фотосферой (внутренняя часть атмосферы) и протяженной оболочкой — мантией (внешняя, зафотосфер-

Рис. 2. Сравнение наблюденных распределений энергии (сплошные линии) в спектрах сверхгигантов с Ori (1), с Ori (2), BS 3090 (3), х Ori (4), с² СМа (5), т СМа (6), β Ori (7), т Leo (8) с данными, полученными для следующах моделей: a) [3] (точки) с T и lg g, равными соответственно 22 500 K, 3.0 (1), 22 500 K, 3.0 (2), 20 000 K, 2.5 (3), 20 000 K, 3.0 (4), 14 00 J K, 2.0 (5), 12 000 K, 2.0 (6), 11 000 K, 2.0 (7), 10 000 K, 2.0 (8); b) [26] (штриховые линии) с $T_{2:3}$ и lg $g_{2/3}$, равными соответственно 43 400 K, 4.27 (1) и 39 500 K, 3.79 (2).

ная часть звезды) [4]. Предполагается, что геометрические размеры фотосферы малы по сравнению с радиусом звезды, повтому она может быть представлена классической моделью, состоящей из плоскопараллельных слоев газа. Крупномасштабные движения, включающие истечение, происходят во внешних частях атмосферы—мантии. Считается, что наблюдаемое излучение представляет собой излучение, испущенное фотосферой, плюс дополнительное излучение, которое исходит из мантии, при этом по-лагают, что мантия является оптически тонкой на частотах субординатных континуумов.

Используя основные параметры для В-сверхгигантов из табл. 8—2 в. [4], мы провели оценки оптической толщины (т) мантии для трех возможных - механизмов испрозрачности в непрерывном спектре в исследуемом диапазоне длин воли: свободно-свободного поглощения, электронното рассеяния и связано-свободного поглощения. При этом делалось предположение о постоянстве скорости выбрасывания материи из звезды, т. е. рассматривалось изменение плотности газа в мантии по закону $N(r) = N_0 \left(\frac{r_0}{r}\right)^2$ (см., например, [12]), где N_0 — число частиц в 1 см³ у основания мантии, равное концентрации частиц в фотосфере ($r = r_6$); N(r) — концентрация частиц на расстоянии r от фотосферы. Оценки показали, что мантии В-сверхгигантов оптически тонки на частотах. субординатных континуумов для свободно-свободного ($\tau_{ff} \simeq 10^{-7}$ для $\lambda = 500$ нм) и связано-свободного ($\tau_{ef} \simeq 10^{-2}$ у границы бальмеровской. серии) поглощения и находятся на пределе оптически тонкого случая. для электронного рассеяния ($\tau_e \simeq 1$).

Как известно (см., например, [16]), хотя рассеяние и не участвует непосредственно в переработке излучения (коэффициент электронного рассеяния с не зависит от частоты), оно способствует ему, увеличивая путь кванта в среде и повышая тем самым вероятность его поглощения (коэффициент поглощения с. $\sim v^{-3}$). Это приводит к увеличению обусловленной поглощением эффективной оптической толщины мантии. Влияние электронного рассеяния на непрерывный спектр увеличивается с ростом.

отношения $\frac{\sigma}{\alpha_{s}} = \frac{b_{s}(T)}{N_{s}}$ [17] (b. (T) — функция от температуры), ко-

торое тем больше, чем меньше концентрация свободных электронов и чем выше температура, т. е. вто влияние оказывается наиболее существенным для протяженных оболочек торячих сверхгигантов. Повтому необходимо принимать во внимание, что какая-то доля излучения фотосферы сверхгигантов может быть поглощена мантией, при втом излучение в фиолетовой части спектра уменьшится сильнее, чем в красной.

Если учесть это и, кроме тото, иметь в виду, что все сверхтиганты имеют эмиссию в области бальмеровского континуума [4], то становится очевидным, что для определения эффективных температур метод совпадения теоретических и наблюденных распределений энергии во всем рассматриваемом диапазоне спектра для сверхгигантов непригоден. Однако, поскольку влияние электронного рассеяния и эмиссии оболочки меньше в красной области, то эффективные температуры сверхгигантов иногда устанавливаются (см. [4]) по наилучшей сходимости теоретических и наблюденных данных в области пашеновского континуума при минимальном различии в области бальмеровского.

Рассмотрим эту возможность. На рис. 2 построены наилучшим образом совпадающие с наблюденными кривыми теоретические значения монохроматических потоков, вычисленных по моделям [3] с наименьшими lg g и нормированных в λ 401 нм. Эффективные температуры соответствующих моделей, $T_{\rm eff}$, приведены в табл. 2 (столбец 7) и на рис. 1. В восьмом столбце табл. 2 приведены взятые из таблицы 4—1 в [4] эффективные температуры сверхгигантов, $T_{\rm eff}$, полученные из интегрирования по всему спектру наблюденных монохроматических освещенностей (исправленных за влияние межзвездного ослабления света) и угловых диаметров. Используемые угловые диаметры были вычислены по методу Блэквелла— Шеллиса [18] по формуле

$$\theta = 2 \left(E_{\lambda} / F_{\lambda} \right)^{1/2},\tag{1}$$

где F_{λ} — монохроматический поток в ИК-области, выходящий с поверхности звезды (взят из [3]), и E_{λ} — соответствующий поток, приходящий на внешнюю границу земной атмосферы и исправленный за влияние межзвездного поглощения (произведена также коррекция наблюденных потоков за ИК-избытки).

Сравним T_{eff} с T_{eff}^{*} . Температуры T_{off}^{*} почти для всех звезд несколько выше T_{off} . Как видно из рис. 2, теоретические распределения энергии для моделей с температурами T_{off} большей частью практически совпадают с наблюдениями в пашеновском континууме (лишь иногда в этой области спектра наблюдаются большие избытки). Однако, по-видимому, наблюденный пашеновский континуум во всех случаях искажен влиянием мантии, и выведенная из него T_{off} не характеризует излучение фотосферы.

Следует заметить, что эффективная температура, полученная в [19] из полного потока и углового диаметра, измеренного интерферометрически [20] (в табл. 2 такая температура приводится для ×Ori, BS 2004), может быть несколько заниженной, поскольку из-за наличия электронно-рассеивающей оболочки радиус звезды, определенный таким путем, больше истинното радиуса фотосферы. В результате температура, определенная по формуле ЭФФЕКТИВНЫЕ ТЕМПЕРАТУРЫ НОРМАЛЬНЫХ ЗВЕЗД

$$T_{\rm eff} = \left(\frac{4\theta^{-2}}{\sigma}\int_{0}^{\infty}E_{\lambda}\,d\lambda\right)^{1.4},\tag{2}$$

где с- постоянная Стефана-Больцмана, будет меньше, чем температура, характеризующая излучение фотосферы.

Этот эффект был получен для звезды ζ Pup [21]. Существование электронно-рассеивающей оболочки у нее авторы связали с большой скоростью потери массы ($M = 6 \cdot 10^{-6} M_{\odot}/$ год [22]). Для этой звезды, согласно [23], скорость растет с расстоянием не очень быстро. Учитывая это, авторы [21] предположили, что в области от 1.0 до 1.5 звездного радиуса плотность вещества (и, следовательно, оптическая толщина оболочки для электронного рассеяния) может быть еще достаточно большой.

Для звезды * Ori, для которой в табл. 2 приводится T_{eff} из [19], мы не нашли данных о скорости потери массы. Однако, как следует из [14], темп потери массы исследуемых нами звезд в 2—15 раз меньше, чем у Pup. Повтому, если электронно-рассеивающие оболочки обусловлены звездным ветром, то количество материи, вызывающей эффект гало, для В-сверхгигантов меньше, чем для ζ Pup, что должно уменьшить эффективность влияния электронного рассеяния.

С другой стороны, для звезд є Огі и 7 СМа с сильно (почти на порядок) [14] различающимися скоростями потери массы оба метода определения угловых диаметров (интерферометрический и Бләквелла—Шеллиса) дают одинаковые (в пределах ошибок измерений) результаты (см. табл. 3—5 в [4]). Поэтому или у данных звезд влектронно-рассеивающие оболочки расположены близко к звездам, что практически не сказывается на измерении утловых диаметров, или при использовании метода Бләквелла—Шеллиса (см. формулу (1)) недостаточно учитываются межзвездное покраснение и ИК-избытки. Во всяком случае, влияние гало на определение вффективных температур В-сверхгигантов в данном случае не обнаруживается.

Итак, сравнение эффективных температур $T_{\rm eff}$, полученных из распределения энергии в спектре, с температурами $T_{\rm eff}$, вычисленными по формуле (2), показало, что $T_{\rm eff}$, как правило, несколько выше $T_{\rm eff}$. По-видимому, наблюдаемое распределение энергии в спектре излучения В-сверхгитантов во всем видимом диапазоне искажено влиянием излучения мантии; и использовать его для определения эффективных температур нельзя. Поэтому в качестве характеристики излучения фотосферы лучше использовать $T_{\rm eff}$, хотя надо иметь в виду, что она может быть занижена.

7-563

4. Влияние учета отклонения от ΛTP на эффективные температуры горячих звезд глаяной последовательносги. Остановныся подробнее на самых горячих звездах в нашем рассмотрении, на звездах подклассов O9— B0. Как известно, в фотосферах этих звезд из-за большой степени ионизации вещества важную роль в переносе излучения играет расссяние света свободными электронами, которое слабо связано с локальными тепловыми условиями. Михаласом было показано [11], что в таких атмосферах будут иметь место отклонения от ΛTP вплоть до больших глубин, где образуется континуум. Пренебрежение этими эффектами в атмосферах звезд с $T_{\rm eff} > 30\,000$ К ведет к понижению шкалы эффективных температур [24]. Однако основные изменения, которые вносят отклонения от ΛTP в расчеты непрерывных спектров, относятся к континууму в далеком ультрафиолете, где их необходимо принимать во внимание. В ближней УФ-области и видимом диапазоне их влияние меньше, и его обычно не учитывают.

Посмотрим, как сказывается влияние учета отклонений от ΛTP на определении эффективных температур звезд в нашем случае. На рис. 3 приведены средние распределения энергии в спектрах звезд подклассов O9—B0 классов светимости III, IV, V и подкласса B1 II. Лишь для этих подклассов удалось найти модельные данные без предположения об ΛTP . На каждую кривую на рис. 3 нанесены нормированные в λ 401 согласующнеся с ней расчетные данные, полученные из моделей как с предположением об ΛTP (Куруц [3]), так и с учетом отклонений от ΛTP (Ауэр и Михалас [25]).

Видно, что в большинстве случаев $T_{\rm eff}$ для моделей без предположения об ΛTP на 5000—10 000 К выше. Соответствующая этим температурам шкала приведена на рис. 1 в виде штриховой линии, которая проходит несколько выше сплошной кривой, полученной при использовании моделей с предположением об ΛTP . Уточнять величину вертикального сдвита шкалы, по-видимому, преждевременно, поскольку теория не- ΛTP находится на начальной стадии своего развития и не разработана еще так тщательно и во всех деталях, как теория при предположении о существовании ΛTP . Поэтому результат, связанный с повышением эффективных температур торячих звезд при использовании моделей с учетом отклонений от ΛTP , можно рассматривать лишь как качественный, а полученные с этом случае $T_{\rm eff}$ предварительными.

5. Влияние протяженности атмосферы на эффективные температуры сверхгигантов. Поскольку теоретические расчеты моделей атмосфер горячих сверхгигантов очень сложны, они проведены пока лишь для случая статических сферических протяженных атмосфер с очень высокими температурами [26]. Попробуем применить их при интерпретации спектров самых горячих звезд в нашем исследовании, С Ori и © Ori. Относительные монохроматические потоки для моделей [26] с $T_{2|3} = 43400$ К и $T_{2/3} = 39500$ К, пересчитанные на единичный интервал длин волн, построены на рис. 2 в виде зависимостей — 2.5 lg (F_{λ}/F_{401}) от λ . (В отличие от "тонкого" плоскопараллельного случая в моделях протяженных атмосфер становится неоднозначным понятие "радиус"

Рис. 3. Сравнение средных распределений энергии (сплошные линии) в спектрах звезд подклассов O9 III (1), O9.5 V (2), B0 V (3), B0.5 IV (4), B1 II (5) с данными, полученными для следующих моделей: a) [3] (точки) с T и lg g, равными соответственно 50 000 K, 4.0 (1), 40 000 K, 4.0 (2), 35 000 K, 4.0 (3), 30 000 K, 3.5 (4), 25 000 K, 3.0 (5); b) [25] (штриховые линии) с T и lg g, равными соответственно 50 000 K, 4.5 (1), 50 000 K, 4.0 (2), 40 000 K, 4.5 (3), 35 000 K, 4.0 (4), 30 000 K 3.3—3.5 (5).

и, следовательно, "эффективная температура". Поэтому в качестве характерного радиуса используется значение $R_{2/3}$, при котором $\tau_R = 2/3$ [27]). Как видно, относительные теоретические потоки дают хорошее согласие с наблюденными.

Однако сравнение абсолютных наблюденных монохроматических осбещенностей на внешней границе земной атмосферы с теоретическими (f_{λ}) , вычисленными по формуле

$$f_{\lambda} = \left(\frac{\theta}{2 \cdot 2.063 \cdot 10^{8}}\right)^{*} F_{\lambda},$$

где θ — в миллисекундах дуги, показывает, что вычисленные значения в среднем существенно меньше наблюденных (в 4 раза—для ζ Ori, в 2 раза — для ς Ori).

Полученное расхождение, по-видимому, связано главным образом с несоответствием параметров моделей параметрам звезд (в обоих случаях радиусы моделей значительно меньше радиусов звезд, а именно, $R_{2/3}/R_{\odot} \simeq (1/3) R/R_{\odot}$), а также с несовершенством моделей. Ошибки θ для данных звезд не превышают 8% [20], а возможные ошибки наблюденных величин из-за ошибок в калибровке еще меньше (как показало сравнение абсолютных потоков для Веги, отличие вычисленных и наблюденных величин в среднем < 1%).

Несмотря на различие абсолютных значений, относительные распределения энергии в непрерывном спектре практически совпадают с модельными данными, поэтому атмосферам звезд \Box Ori и'є Ori можно приписать соответствующие температуры $T_{2/3}$ (они приведены в табл. 2, столбце 9) и посмотреть, как они согласуются с $T_{\rm eff}$. Как видно из табл. 2, $T_{23} > T_{\rm eff}$, т. е. эффект сферичности областей образования континуума проявляется в увеличении температуры оферической атмосферы по сравнению с плоской. И, хотя температуры T_{23} еще требуют дальнейших уточнений, поскольку модели статических сферических атмосфер являются лишь приближением к реальной расширяющейся атмосфере, можно сделать вывод, что истинные температуры сверхгигантов должны быть выше, чем температуры $T_{\rm eff}$, получающиеся из плоскопараллельного приближения.

Интересно сравнить температуры сверхгигантов $T_{2/3}$ с температурами горячих О—В-звезд главной последовательности, полученными из совпадений наблюденных распределений энергии с данными моделей, учитывающих отклонения от ЛТР. Как видно из рис. 1, температуры практически совпали.

Это естественно было ожидать, так как именно в атмосферах горячих звезд все эффекты, учтенные в приведенных моделях, проявляются паиболее сильно. Однако, принимая во внимание плавный ход зависимостей температуры от спектрального подкласса, можно предположить, что эти эффекты имеют место и в атмосферах звезд других подклассов, но их эффективность постепенно падает с уменьшением температуры. Может быть, именно их влиянием и объясняется существующее расхождение эффективных температур сверхгигантов и звезд главной последовательности. Провеј ить это можно лишь при дальнейшем совершенствовании моделей и расширении вариаций их параметров.

ЭФФЕКТИВНЫЕ ТЕМПЕРАТУРЫ НОРМАЛЬНЫХ ЗВЕЗД

6. Заключение. Сравнение наблюденных распределений энергии в спектрах звезд с теоретическими, рассчитанными для моделей в плоскопараллельном приближении [3], показало совпадение результатов наблюдений и расчетов для звезд II—V классов светимости и наличие избытков излучения в областях бальмеровского и пашеновского континуумов для сверхгигантов. Построенные для сверхгигантов и звезд главной последовательности шкалы эффективных температур, полученных из наилучшего совпадения данных наблюдений и теории, не совпали.

Сравнение наблюденных распределений энергии в спектрах горячих О—В-звезд главной последовательности с данными моделей без предположения об ЛТР [25], а в спектрах горячих В-сверхгигантов с данными моделей статических протяженных атмосфер [26] показали хорошее согласие результатов наблюдений и соответствующих моделей. Полученные из этих сравнений температуры оказались значительно выше температур, определенных при использовании плоскопараллельного приближения. При этом температуры горячих В-сверхгигантов и звезд тлавной последовательности практически совпали.

Автор выражает глубокую благодарность В. А. Гаген-Торну за ценные замечания при подготовке рукописи.

Главная астрономическая обсерватория АН СССР

ON EFFECTIVE TEMPERATURES OF NORMAL O9-A0 STARS

E. V. RUBAN

In order to determine the effective temperature of O9—A0 stars, a comparison is made of observed energy distributions in their spectra with those calculated for different model atmospheres. The temperature of supergiants of all subclasses are lower than those of the main sequence in the case of LTE models and plane-parallel approximation. In the case of static extended model atmospheres for hot supergiants their temperature has proven to be higher and, in fact, coincide with the temperature of stars of the main sequence, determined with the use of models taking into account deviations from LTE.

ЛИТЕРАТУРА

1. Е. В. Рубан, Астрофизика, 22, 75, 1985.

2. Е. И. Газен-Торн, Е. В. Рубан, Средние распределения внергия в спектрах звезд классов О9—А0, ВИНИТИ, № 5310—84 Деп., 42 с., 1984.

3. R. L. Kurucz, Astrophys. J. Suppl. Ser., 40, 1, 1979.

- 4. B Stars with and without Emission Lines, eds. A. B. Underhill, V. Doazan, NASA Sp-456, 1982.
- 5. A. B. Underhill, L. Divan, M.-L. Prevot-Burntchon, V. Doazan, Mon. Notic. Roy. Astron. Soc., 189, 601, 1979.
- 6. E. Theodossiou, Mon. Notic. Roy. Astron. Soc., 214, 327, 1985.
- 7. Е. В. Рубан, Астрофизика, 21, 111, 1984.
- 8. L. W. Kamp, Astrophys. J. Suppl. Ser., 36, 143, 1978.
- 9. D. Hofflett, Catalog of Brigth Stars, New Haven, 1964.
- Е. И. Газен-Торн, Е. В. Рубан, Бальмеровские скачки, спектрофотометрические градиенты и температуры звезд по результатам спектрофотометрических наблюдений, ВИНИТИ, № 6001—83 Деп., 24 с., 1983.
- 11. Д. Михалас, Звездные атмосферы, т. І. Мир. М., 1982.
- 12. К. де Ялер, Эвезды нанбольшей светимости, Мир, М., 1984.
- 13. J. B. Hatchings, Mon. Notic. Roy. Astron. Soc., 147, 161, 1970,
- Mass Loss and Evolution of O-type Stars, eds. P. S. Conti, C. W. H. de Loore, IAU, Symp., 83, 1979.
- 15. J. B. Rogerson, H. J. Lamers, Nature Phys. Sci., 256; 190, 1975.
- 16. В. Г. Горбацкий, И. Н. Минин, Нестационарные эвезды, Физматгиз, М., 1963.
- 17. В. В. Соболев, Астрофизика, 16, 695, 1980.
- 18. D. E. Blackwell; M. J. Shallis, Mon. Notic. Roy. Astron. Soc., 180, 177, 1977.
- 19. A. D. Code, j. Davis, R. C. Bless, R. Hanburg Brown, Astrophys. J., 203, 417, 1976.
- 20. R. Hanbury Brown, J. Davis, L. K. Allen, Mon. Notic. Roy. Astron. Soc., 167, 121, 1974.
- 21. A. V. Holm, J. P. Cassinelli, Astrophys. J., 211, 432, 1977.
- 22. J. I. Castor, D. C. Abbott, R. I. Klein, Astrophys. J., 195, 157, 1975.
- 23. H. J. G. L. M. Lamers, D. C. Morton, Astrophys. J. Suppl. Ser., 32, 715, 1976.
- 24. D. Mihalas, Astrophys. J., 160, 1161, 1970.
- 25. L. U. Auer, D. Mihalas, Astrophys. J. Suppl. Ser., 24, 193, 1972.
- 26. P. B. Kunasz, D. G. Hummer, D. Mihalas, Astrophys. J., 202, 92, 1975.
- 27. D. Mihalas, D. G. Hummer, Astrophys. J. Suppl. Ser., 28, 343, 1974.