АСТРОФИЗИКА

TOM 24

ИЮНЬ, 1986

ВЫПУСК 3:

УДК: 524.57—655

ПОГЛОЩЕНИЕ И ПОЛЯРИЗАЦИЯ СВЕТА ПЫЛЬЮ В МЕЖЗВЕЗДНОЙ СРЕДЕ: МЕЖЗВЕЗДНАЯ ЛИНЕЙНАЯ ПОЛЯРИЗАЦИЯ

Н. В. ВОЩИННИКОВ, А. Е. ИЛЬИН, В. Б. ИЛЬИН Поступила 18 июня 1985 Принята к печати 18 февраля 1986

В рамках модели двуслойных («астровомический силикат» — загрязненный лед) цилиндрических пылинок, ориентированных под действием механизма Дависа—Гринстейна, рассчитаны кривые межэвелдной линейной поляризация $P(\lambda)$. Найдено, что неличина λ_{max} — длина волны, на которой иоляризация достигает максимума, определяется прежде всего размером пылевых частиц, а отношение $P_{max}/E(B-V)$ в сильной мере зависит от степени и направления ориентации пылинок. Значения W — полуширины нормированной кривой поляризации слабо меняются при вариациях всех параметров задачи.

1. Введение. Как известно, явление межзвездной линейной поляризации связано с линейным дихроизмом межзвездной среды, обусловленным присутствием в ней несферических ориентированных пылинок. Зависимость степени поляризации от длины волны $P(\lambda)$, полученная для некоторых звезд в диапазоне $0.3 \div 2.2$ мкм, достаточно хорошо описывается вмпирической зависимостью, предложенной Серковским (см., например, [1]),

$$P(\lambda)/P_{\max} = \exp\left[-K\ln^2(\lambda_{\max}/\lambda)\right],\tag{1}$$

где P_{\max} — максимальная степень поляризации, λ_{\max} — длина волны, ей соответствующая. Величина P_{\max} определяется лучевой концентрацией, химическим составом, размерами, формой, степенью и направлением ориентации пылевых частиц. Отношение P_{\max} к избытку цвета звезды (чаще всего к E(B-V)) используют как характеристику поляризующей способности межэвездной среды в данном направлении. Из анализа наблюдательных данных для нескольких сотен звезд найдено [1], что

$$P_{\max}/E(B-V) \leq 9^{\circ}/_{\bullet}.$$
 (2)

Эначение λ_{\max} для большинства звезд заключено в пределах от 0.5 до 0.6 мкм, хотя есть звезды, для которых $\lambda_{\max} \approx 0.8$ мкм. Из наблюдений выведено соотношение между λ_{\max} и величиной R_V — отношением полного поглощения к селективному ($R_V \approx 5.6 \lambda_{\max}$). Считается, что оба параметра зависят лишь от размера межзвездных пылинок [1, 2]. Коэффициент K, являющийся мерой ширины кривой $P(\lambda)$, обычно полагался равным 1.15 [1], либо искался для каждой звезды в отдельности, причем Уилкинг и др. [3] нашли, что $K \approx 1.7 \lambda_{\max}$. Однако в работе [4] было показано, что вид зависимости между K и λ_{\max} определяется числом и положением фильтров, выбранных для измерения $P(\lambda)$. Там же было отмечено, что особенности выбора длин волн для измерения $P(\lambda)$ мало влияют на точность определения величины λ_{\max} , что указывалось и раньше при сравнении данных, полученных на различных телескопах [1].

Помимо степени межзвездная линейная поляризация характеризуется направлением преимущественных колебаний электрического вектора приходящего излучения. Считается, что это направление достаточно хорошо соответствует направлению компонента межзвездного магнитного поля, перпендикулярного лучу зрения, B_{\perp} . Это подтверждается и данными о поляризации синхротронного излучения [5]. Отметим, что связь между направлениями линейной поляризации и магнитных полей активно используется для выяснения структуры последних (а точнее распределення B_{\perp} , см., например, [6]).

Интерпретация наблюдений межзвездной линейной поляризации проводилась неоднократно (см. обсуждение в [7, 8]). При этом зависимость $P(\lambda)$, как правило, рассчитывалась для модели цилиндрических пылинок, хотя были попытки найти изменения величины λ_{\max} , используя сферические частицы (см., например, [9]). В настоящее время наиболее близкой к реальности, по-видимому, следует признать модель двуслойных (состоящих из ядра и оболочки) частично ориентированных цилиндрических частиц, рассмотренную Хонгом и Гринбергом [10] и Ааннестадом и Гринбергом [11]. Однако в этих работах авторы ограничились лишь единичными расчетами, не пытаясь установить детальную связь между неблюдаемыми величинами и параметрами модели.

Данная работа посвящена обсуждению кривых межзвездной линейной поляризации и является продолжением работы [12], в которой приведены результаты расчетов кривых межзвездного поглощения. В [12] подробно описана процедура выбора модели пылинок и ее параметров; технические детали расчетов содержатся в работе [13].

2. Основные соотношения. Кратко резюмируем сведения сб использованной нами модели межзвездных пылинок. Рассматривается прохождение

ПОГЛОЩЕНИЕ И ПОЛЯРИЗАЦИЯ СВЕТА ПЫЛЬЮ

неполяризованного излучения звезды через газо-пылевое сблако, направление магнитного поля в котором составляет утол Ω с лучом зрения. Облако заполнено двуслойными цилиндрическими пылинками, ориентированными под действием механизма парамагнитной релаксации (механизм Дависа—Гринстейна; ДГ-ориентация). Считается, что ансамбль пылевых частиц имеет один и тот же радиус ядра a_c и экспоненциальное распределения) ление оболочек по радиусам (a_0 — параметр функции распределения)

$$n(a) \sim \exp \left[-5[(a-a_{c})/a_{0}]^{3}\right].$$
 (3)

После прохождения через облако, степень линейной поляривации излучения на длине волны / составляет

$$P(\lambda) = N_d \langle C_p \rangle_{\lambda} 100^{\circ}/_0, \qquad (4)$$

где N_d — лучевая концентрация пыли и $\langle C_p \rangle_{\lambda}$ — сечение линейной поляривации. Скобки означают усреднение по размерам и всем ориентациям вращающейся пылинки. Для ансамбля двуслойных цилиндрических частиц с неполной ДГ-ориентацией выражение для $\langle C_p \rangle_{\lambda}$ записывается следующим образом [13]:

$$\langle C_{\rho} \rangle_{\lambda} = 4e \frac{2}{\pi^2} \int_{a_{\min}}^{a_{\max} \times 2} \int_{0}^{\pi \times \pi/2} \int_{0}^{\pi \times \pi/2} a^2 Q_{\rho} (m_1(\lambda), m_2(\lambda), x_c, x, a) \times$$

$$\times f(\beta, \alpha) n(\alpha) \left(\frac{2\sin^2\beta \sin^2\omega}{\sin^2\theta} - 1 \right) \left(\frac{2\cos^2\varphi \cos^2\theta}{1 - \cos^2\varphi \sin^2\theta} - 1 \right) d\varphi d\omega d\beta d\alpha,$$
(5)

где e = L/a (2L - длина цилиндрической частицы), a_{\min} и $a_{\max} - mu-$ нимальное и максимальное значение a; $x_c = 2\pi a_c/\lambda$, $x = 2\pi a/\lambda$, $m_1(\lambda)$ и $m_2(\lambda)$ — комплексные показатели преломления вещества ядра и оболочки соответственно, $\pi/2 - x - y$ гол между направлением падающего излучения и осью цилиндра, β — угол раскрыва конуса, который описывает вектор углового момента пылинки J около вектора B; φ угол вращения, ω — угол прецессии, θ — угол между направлением распространения излучения и вектором J. Обозначения углов приведены на рис. 1 в [13]; там же даются и связывающие их соотношения. Фактор эффективности поляризации для неполяризованного падающего излучения записывается следующим образом: $Q_p = (Q_{ext}^E - Q_{ext}^H)/2$, где Q_{ext}^E и Q_{ext}^H — факторы эффективности ослабления для двух случаев поляризации падающего излучения [13]. Для механизма $\Delta\Gamma$ -ориентации функция распределения направлений J зависит от параметра ориентации ξ , определяемого величиной δ_0 ,

$$\delta_0 = 8.28 \cdot 10^{23} \frac{\times B^2}{n_H T_d^{1/2} T_d} \text{ MKM}, \tag{6}$$

где B — напряженность магнитного поля, n_H и T_g — концентрация и температура газа, T_d — температура пыли. Значения этих величин принимались равными средним значениям для диффузных облаков: $x = 2.5 \cdot 10^{-12}$, B = 3 мкГс, $n_H = 1$ см⁻³, $T_g = 100$ K, $T_d = 10$ K.

Рис. 1. Факторы эффективности линейной поляризации для неполяризованного падающего излучения $Q_p = (Q_{ext}^E - Q_{ext}^H)/2$ для двуслойных цилиндрических частиц с показателями преломления ядра $m_1 = 1.72 - 0.29i$ и оболочки $m_2 = 1.31 - 0.01i$, $x_c = 0.6$ $(1-a:=0^\circ, 2-a=30^\circ, 3-a=60^\circ, 4-a=85^\circ)$.

В качестве вещества ядра мы выбрали «астрономический силикат» (астросил), предложенный Драйном и Ли [14], а оболочку пылинки считали состоящей из загрязненного льда.

Зависимость факторов эффективности поляризации Q_{ρ} от x для двуслойных цилиндров с показателями преломления, характерными для астросила и загрязненного льда в области около $\lambda = 0.55$ мкм, нанесена на рис. 1 для $x_{\rho} = 0.6$ и различных углов падения излучения α .

3. Результаты расчетов и обсуждение. В рамках рассмотренной выше модели мы провели расчеты кривых межзвездной линейной поляризации $P(\lambda)$ от ближней ультрафиолетовой (УФ) до ближней инфракрасной (ИК) области спектра. По вычисленным кривым ($P(\lambda)$ определялись зна-

чения λ_{\max} и $P_{\max} = P(\lambda_{\max})$, затем находилась нормированная кривая $P^{(n)}(\lambda^{-1}) = P(\lambda^{-1})/P_{\max}$ и вычислялась полуширина этой кривой, умноженная на λ_{\max} ,

$$W := \lambda_{\max} \cdot (\lambda_{-}^{-1} - \lambda_{+}^{-1}).$$
(7)

В формуле (7) $\lambda_{-} < \lambda_{max} < \lambda_{+}$ и $P^{(n)}(\lambda_{-}^{-1}) = P^{(n)}(\lambda_{+}^{-1}) = 0.5$. Выбор числа узлов при гауссовом интегрировании по *a* и углам β , ω и φ в формуле (5) проводился в соответствии с рекомендациями, приведенными в работе [.13], причем для углов $\Omega < 45^{\circ}$ вычисления проводились с шагом $\Delta \alpha = 3^{\circ}$. Укажем попутно, что отказ от интегрирования по углу ω , проведенный в работе [11], существенно искажает форму кривой $P(\lambda)$. Поэтому выполненные в [11] расчеты W и λ_{max} верны лишь для случая полной $\Delta \Gamma$ -ориентации.

На рис. 2 нанесены нормированные кривые межзвездной линейной поляризации, рассчитанные нами для угла $\Omega = 90^{\circ}$ (магнитное поле перпендикулярно лучу зрения). Нетрудно видеть, что максимум кривых $P^{(n)}(\lambda^{-1})$ смещается в красную область спектра с ростом как параметра a, так и радиуса ядра пылинок a. В обоих случаях это обусловлено возрастанием среднего раднуса частиц (см., например, формулу (7) в [12]). Рост степени ориентации, увеличивающий вклад в поляризацию частиц больших размеров, ведет ж аналогичному, но не столь заметному смещению нию в длинноволновую часть спектра (см. рис. 2с). Сделанные выше выводы подтверждаются и данными из табл. 1, в которой приведены значения и для $a_0 = 0.2 - 0.5$ мкм при неполной (lDG) и полной (PDG) ДГ-ориентации. Из этой таблицы и из рис. 3, на котором нанесена зависимость л_{тах} от параметра 80, следует, что увеличение степени ориентации пылинок во всех случаях сопровождается небольшим ростом Дат. Из табл. 1 вытекает также, что существует лишь слабая зависимость) так от Ω. Характер этой зависимости можно установить из рассмотрения рис. 1; с ростом Ω увеличивается вклад частиц с большими значениями α, для которых максимум кривых $Q_p(x)$ смещается в голубую часть спектра при фиксированном значении а. Отметим, что значения imax, приведенные в табл. 1, близки к средним наблюдаемым [1], однако для звезд с $\lambda_{max} \approx$ ≈ 0.8 мкм, по-видимому, следует использовать модель с большими средними размерами частиц. Рис. 3 и табл. 1 лозволяют также сделать вывод, что, например, небольшие изменения λ_{max} с галактической долготой, замеченные Уайттетом [15], можно объяснить, варьируя лишь степень и направление ориентации пылинок. При этом, однако, не следует забывать о том, что обсуждаемая модель является однооблачной, а присутствие на лу-

н. в. вощинников и др.

λ'(MKM-1)

Рис. 2. Нормированные кривые межзвездной поляризации для ансамблей двуслойных цилиндрических пылинок, (а) $\alpha_c = 0.05$ мкм, $\delta_0 = 0.186$ мкм, $\Omega = 90^{\circ}$ (1- $\alpha_0 = 0.2$ мкм, $2-\alpha_0 = 0.3$ мкм. $3-\alpha_0 = 0.4$ мхм); (b) $\alpha_0 = 0.3$ мкм, $\delta_0 = 0.186$ мкм, $\Omega = 90^{\circ}$ (1- $\alpha_c = 0.03$ мкм, $2-\alpha_c = 0.05$ мкм, $3-\alpha_c = 0.07$ мкм); (c) $\alpha_o = 0.05$ мкм, $\alpha_0 = 0.3$ мкм, $\Omega = 90^{\circ}$ (1- $\delta_0 = 0.019$ мкм, $2-\delta_0 = 0.186$ мкм, $3-\delta_0 = 1.86$ мкм).

Таблица 1

ЗНАЧЕНИЯ λ_{max} (В мкм) ДЛЯ ПЫЛИНОК С НЕПОЛНОЙ (IDG, δ₀ = 0.186 мкм) И ПОЛНОЙ (PDG) ДГ-ОРИЕНТАЦИЕЙ

<i>а</i> ₀ (мкм)	0.2		0.3		0.4		0.5	
Ω	IDG	PDG	IDG	PDG	IDG	PDG	IDG	PDG
30°	0.492	0.811	0.558	0.739	0.646	0.743	_	
60°	0.451	0.581	0.546	0.615	0.620	0.728	0.711	0.800
90°	0.452	0.455	0.534	0.266	0.615	0.678	0.704	0.751

528

че зрения нескольких облаков с различной ориентацией магнитного поля. в них может сказаться на наблюдаемых значениях лат [16].

Рис. 3. Длина волны, на которой поляризация достигает максимума, $\alpha_c = = = 0.05$ мкм, $\alpha_0 = 0.3$ мкм ($1 - Q = 30^\circ$, $2 - Q = 60^\circ$, $3 - Q = 90^\circ$).

Форма кривых $P^{(n)}(\lambda^{-1})$ и их ширина, как видно из рис. Żа и Żс, мало меняются при варьировании a_0 и c_0 . Несколько сужается кривач $P^{(n)}(\lambda^{-1})$ при увеличения a_c (рис. 2b), но это мало сказывается на величине W из-за увеличения значения λ_{max} . Рассчитанные нами полуширины W собраны в табл. 2. Из этой таблицы следует, что в рамках рассматриваемой модели W меняется слабо, особенно при неполной ДГ-ориентации; поэтому ширина кривой $P(\lambda)$, вероятно, несет мало информации о физических условиях в межзвездной среде. Отметим, что величина W связана с параметром K в формуле Серковского (1) соотношением

$$W = \exp\left[\left(\ln 2/K\right)^{1/2}\right] - \exp\left[-\left(\ln 2/K\right)^{1/2}\right].$$
 (8)

В работе [3] на основе данных об ИК-поляризации 24 звезд получено, что $0.5 \leq K \leq 1.4$ (или $1.5 \leq W \leq 2.9$). Однако часть звезд, изученных в [3], по-видимому, наблюдается сквозь несколько межзвездных облаков. Тогда, как показано в [16], следует ожидать уменьшения величины K, т. е. уширения кривой $P^{(n)}(\lambda^{-1})$. Укажем также, что величина K из наблюдений определяется очень ненадежно (как правило, с ошибкой ~ 0.1), что объясняется отсутствием поляризационных наблюдений в ультрафиолете. Повтому разумным представляется нахождение ширины кривой $P^{(n)}(\lambda^{-1})$ по уровню 0.7, а не 0.5. Величину $W_{0.7}$ можно вычислить по формуле (8), заменив 2 на 1/0.7 ≈ 1.43 .

Таблица 2

a ₀ (MRM)	C).2	0	.3	0.4	
Q	IDG	PDG	IDG	PDG	IDG	PDG
30°	1.52	2.72	1.53	2.33	1.63	2.05
60°	1.36	1.80	1.44	1.72	1.51	1.79
90°	1.26	1.12	1.40	1.27	1.43	1.39

ЗНАЧЕНИЯ И ДЛЯ ПЫЛИНОК С НЕПОЛНОЙ (IDG, 30 = 0.186 жкж) И ПОЛНОЙ (PDG) ДГ-ОРИЕНТАЦИЕЙ

Наиболее многообещающей для определения характеристик магнитных полей оказалась зависимость от параметров поляризующей способности межзвездной среды $P_{\max}/E(B-V)$, поведение которой показано на онс. 4-6. При ее оценках мы использовали значение показателя цвета E (B-V) с учетом усреднения в фильтрах [12]. Ход зависимостей $P_{max}/E(B-V)$ с изменением Q и δ_0 (рис. 4, 5) практически целиком определяется величиной P_{max} , тогда как E(B-V) почти не меняется при неполной ДГ-ориентации (см. рис. 4 в [12]). Немонотонная зависимость поляризующей способности от а0 (рис. 6) вызвана изменениями избытка цвета E(B-V), который растет с увеличением a_0 шение $P_{\max}/E(B-V)$ в первую очередь характеризует степень и направление ориентации пылинок и в меньшей степени связано с изменением их среднего размера. Наблюдательное ограничение на величину поляризующей способности, накладываемое соотношением (2), будет выполняться при всех значениях углов Ω для 00≲0.8, что с учетом (6) при $T_d = 10$ K, $T_s = 100$ K и x = $2.5 \cdot 10^{-12}$ соответствует неравенству

 $B \leq 6 \cdot n_{\rm H}^{1/2} \, \text{mk} \Gamma \text{c.} \tag{9}$

Это ограничение всего в два раза превышает среднюю наблюдаемую величину магнитного поля при $n_{\rm H} = 1 \, {\rm cm}^{-3}$ [17]. Подобное расхождение легко устраняется, если увеличить × всего в 5 раз. Отметим, что в некоторых случаях можно ожидать возрастания × в 10—100 раз (см. обсуждение в [12]). Рост В и величины о произойдет и когда пылевое облако попадет в один из магнитных пузырей, напряженность магнитного поля в которых

Рис. 4. Поляризующая способность межзвездной среды в данном направление. $a_c = 0.05$ мкм, $\delta_0 = 0.186$ мкм $(1 - a_0 = 0.2$ мкм, $2 - a_0 = 0.3$ мкм, $3 - a_0 = 0.4$ мкм).

может достигать ~ 10 мкГс [18]. Поэтому вывод о несостоятельности механизма ДГ-ориентации пылинок, по-видимому, преждевременен.

4. Заключение. Основные результаты работы можно резюмировать следующим образом:

а) В рамках модели двуслойных цилиндрических пылинок, состоящих из «астрономического силиката» и загрязненного льда, и ориентированных под действием механизма Дввиса—Гринстейна, рассчитаны кривые межзвездной линейной поляризации $P(\lambda)$.

Рис. 5. То же самое, что на рис. 4 $(1-\Omega=30^{\circ}, 2-\Omega=60^{\circ}, 3-\Omega=90^{\circ})$. Пунктиром показано выведенное из наблюдений ограничение $P_{max}/E(B-V) \leq 9^{0}/_{0}$.

6) Изучены зависимости $P(\lambda)$, λ_{\max} — длины волны, на которой поляризация достигает максимального значения P_{\max} , W — ширины нормированной кривой поляризации и отношения $P_{\max}/E(B-V)$ от степени и направления ориентации пылинок и параметра a_0 в функции распределения пылинок по размерам.

в) Установлено, что на изменения величины мах прежде всего влияют вариации размера пылинок, на $P_{\max} / E (B - V)$ — степени и направления их ориентации, тогда как величина W слабо зависит от всех параметров задачи.

Рис. 6. То же самое, что на рис. 4 (1-2=90°, 2-2=60°, 3-2=30°).

Ленинградский государственный университет

LIGHT EXTINCTION AND POLARIZATION BY DUST GRAINS IN THE INTERSTELLAR MEDIUM: INTERSTELLAR LINEAR POLARIZATION

N. V. VOSHCHINNIKOV, A. E. IL'IN, V. B. IL'IN

The wavelength dependence of interstellar linear polarization is computed for core-mantle (astronomical silicate – dirty ice) cylindrical grains with Davies-Greenstein alignment. The effects of variation of the grain size, the degree and the direction of grain alignment are discussed. It has been found that the wavelength of maximum polarization λ_{max} is determined mainly by the grain size. Dependence of the ratio $P_{\max}/E(B-V)$ on the degree and the direction of grain alignment is strong. The width of normalized polarization curve W is only slightly sensitive to the parameters.

ЛИТЕРАТУРА

- 1. K. Serkowski, D. S. Mathewson, V. L. Ford, Astrophys. J., 196, 261, 1975.
- 2. D. C. B. Whittet, I. G. van Breda, Astron. and Astrophys., 66, 57, 1978.
- B. A. Wilking, M. J. Lebofsky, P. G. Martin, G. H. Risks, J. C. Komp, Astrophys. J., 235, 905, 1980.
- 4. D. Clarke, A. Al-Ronbate, Mon. Notic. Roy. Astron. Soc., 202, 173, 1983.
- 5. G. L. Verscuur, Fundam. Cosmic Phys., 5, 113, 1979.
- 6. Э. Ж. Шессон, Ф. Дж. Врба, Протозвезды и планеты, ред. Т. Герелс, Мир. М., т. 1, 1982, стр. 214.
- 7. Дж. М. Гринберг. Межзвездная пыль, Мир, М., 1970.
- 8. G. V. Cogne, Planets, Stars and Nebulae studied with photopolarimetry, ed. T. Gehrels, Arizona, Tucson, 1974, p. 888.
- 9. R. S. McMillan, Astrophys. J., 225, 880, 1978.
- 10. S. S. Hong, J. M. Greenberg, Astron. and Astrophys., 88, 194, 1980.
- 11. P. A. Aannestad, J. M. Greenberg, Astrophys. J., 272, 551, 1983.
- 12. Н. В. Вощинников, А. Е. Ильин, В. Б. Ильин, Астрофизика, 24, 307, 1986.
- 13. Н. В. Вощинников, А. Е. Ильин, В. Б. Ильин, Вестн. ЛГУ, № 15, 67, 1985.
- 14. B. T. Draine, H. M. Lee, Astrophys. J., 285, 89, 1984.
- 15. D. C. B. Whittet, Astron, and Astrophys., 72, 370, 1979.
- 16. D. Clarke, A. Al-Roubate, Mon. Notic. Roy. Astron. Soc., 206, 729, 1984.
- 17. R. C. Fleck, Astrophys. J., 264, 139, 1983.
- 18. J. P. Vallée, Astron. and Astrophys., 136, 373, 1984.

534