АСТРОФИЗИКА

TOM 24

АПРЕЛЬ, 1986

ВЫПУСК 2

УДК: 524.338.3

СВОЙСТВА ХОЛОДНЫХ КОМПОНЕНТОВ СИМБИОТИЧЕСКИХ ЭВЕЭД

λ. ЛУУД, Λ. ЛЕЭДЯРВ Поступила 17 октября 1985

Методом Блэквелла—Шаллиса по данным инфракрасной фотометрии определены основные физические параметры холодных компонентов симбиотических звезд и краных гигантов сравнения. Найдено, что холодные компоненты симбиотических звезд не отличаются от нормальных красных гигантов асямптотической ветви. Массы холодных хомпонентов симбиотических звезд близки к 3 M_☉. Красные компоненты симбиотических звезд не заполняют их полостей Роша. Среди холодных компонентов симбиотических звезд примерно в 10 раз больше углеродных звезд, чем среди красных гигантов в окрестностях Солнца.

1. Введение. Симбиотические звезды являются весьма интересным классом звезд, спектры которых имеют признаки холодных гигантов и разного типа горячих источников излучения. В спектрах симбиотических звезд наблюдаются одновременно молекулярные полосы поглощения (в основном TIO) и яркие вмиссионные линии. Распределение внергии почти во всех случаях можно представить суммой излучения четырех составляющих: холодного гиганта, горячей звезды, газа и пыли. Спектр и яркость почти всех объектов являются переменными. Симбиотические звезды обычно считают двойными, однако некоторые авторы пытаются объяснить симбиотический спектр и процессами в одной пекулярной звезде. По лучевым скоростям или по фотометрическия данным установлена двойственность примерно 10 симбиотических звезд, и, по всей вероятности, все симбиотические звезды нужно считать двойными.

Настоящей статьей мы начинаем серию публикаций, посвященных общим свойствам симбиотических звезд. Мы принимаем рабочую гипотезу, что все симбиотические звезды состоят из красного гиганта и горячего компонента, которым может быть вырожденный ОС-карлик, горячий субкарлик или звезда около главной последовательности. Газ и пыль в системе существуют вследствие истечения вещества из одной звезды, в большинстве случаев холодной. В нашей трактовке симбиотические звезды появляются на некотором этапе развития пар звезд с начальными массами менее 8 M_{\odot} и с подходящим расстоянием компонентов. Итак к симбиотическим звездам относятся и повторные новые (например, Т СгВ и RR Tel), холодные компоненты которых являются красными гигантами. Отметим. что такую же модель симбиотических звезд приняли Кенион и Веббинк [1] при исследовании их спектра в области длин волн от 0.1 до 3.5 мкм методом синтетического спектра. Указанным авторам удалось получить феноменологические модели 17 объектов из 20 исследованных.

Из компонентов симбиотических эвезд наиболее стабильны красные гиганты, хотя и среди них наблюдаются полуправильные переменные и мириды. Холодные компоненты симбиотических звезд и повторных новых исследованы Алленом [2], который пришел к выводу, что они являются нормальными М-гигантами и миридами. В данном исследовании мы имеем другой подход и в основном касаемся вопросов, не затронутых Алленом.

Начнем с рассмотрения основных характеристик холодных компонентов симбиотических звезд, поскольку они имеют наибольшую стабильность среди компонентов симбиотических звезд и почти все симбиотические звезды в спектральном диапазоне от 0.7 до 2.2 мкм имеют спектры холодных гигантов, незначительно искаженные излучением других составляющих. При втом мы допускаем, что все холодные компоненты (а также нормальные красные гиганты, которые исследованы для сравнения) имеют атмосферы, излучение которых описывается моделями Цудзи [3].

2. Определение основных физических параметров холодных компонентов методом Блэквелла—Шаллиса. В настоящее время имеется основание сомневаться в целесообразности применения абсолютных средних звездных величин и других средних характеристик красных гигантов при анализе конкретных объектов. Причина этого — внутренняя дисперсия названных величин. Эволюционные треки красных гигантов расположены на диаграмме Герцшпрунга—Рессела почти вертикально и это, естественно, допускает очень большой диапазон светимостей при одинаковой температуре. Повтому мы применяем самостоятельные определения, опирающиеся на наблюдения инфракрасных потоков и на модели Цудзи [3].

Метод Бләквелла—Шаллиса [4] позволяет, если известны наблюдаемый и излучаемый потоки, а также расстояние до звезды, по нижеприводимым формулам найти нужные параметры:

$$\theta = 2 \sqrt{F_{E,\lambda}/F_{S,\lambda}},$$

$$R = d \sqrt{F_{E,\lambda}/F_{S,\lambda}},$$

$$L = 4\pi d^{2} \int_{0}^{\infty} F_{E,\lambda} d\lambda = 4\pi d^{2} F_{E}$$

114

$$T_{\mathfrak{spp.}} = \sqrt[4]{\frac{\overline{F_E}}{\sigma \mathfrak{v}^2}},$$

тде θ — угловой диаметр звезды, F_E и $F_{E,\lambda}$ — соответственно полный и монохроматический потоки излучения звезды у Земли, $F_{S,\lambda}$ — монохроматический поток излучения у поверхности звезды, R — радиус звезды, d — расстояние до звезды; остальные обозначения общепринятые.

Входящие в вышеприведенные формулы величины известны для многих симбиотических звезд. Метод нахождения потока F_E требует некоторого объяснения. Потоки на эффективных длинах волн системы JHKL(и иногда M) были вычислены по фотометрическим данным, а экстраполяция распределения энергии для остальных длин волн была проведена согласно моделям Цудан. Потоки в полосах UBV сильно искажены излучением горячего компонента; в полосах R и I (хотя и здесь искажения существенны) очень мало наблюдений и поэтому эти фотометрические полосы не использовались. Пример такого определения потоха показан на рис. 1.

Рис. 1. Распределение энергии в спектре AG Peg, аппроксимированное моделью Цудзи (G1/3600/0.5/3).

В табл. 1 приведены использованные нами данные с указанием литературного источника, а также определенные нами значения отмеченных

Объскт	Источники ИК-фотомотрин	d (RIIR)	Sp
1	2	3	4
EG And	[5-7]	0.34	M2 [5]
AX Per	[5, 7-9]	2.7 [9]	M5 [5]
UV Aur	[5, 7, 10]	1.35 [11]	N [5]
RX Pup (max)	[5, 6, 12, 13]	1.0 [14]	M5 [5]
(med)			
(min)	1. 1.		
SY Mus	[5, 12]	1.0	M2 [5]
RW Hya	[5-7, 12]	1.0 [17]	M2 [5]
TX CVn	[7, 15, 16]	1.1 [15]	K5 [15]
T CrB	[5, 7]	1.35 [17]	M3 [5]
AG Dra	[5, 7, 9, 19]	1.2 [9]	K3 [9]
RS Oph	[58]	1.3	M0 [5]
AS 296	. [5, 7, 20]	2.2 [20]	M5 [5]
AR Pay	[5]	3.8 [21]	M3 [5]
BF Cyg	[5-9, 19]	4.2 [9]	M5 [5]
CH Cyg	[5—9]	0.33 [29]	M6 [5]
CI Cyg	[5-8, 19]	1.6 [19]	M5 [5]
RR Tel (max)	[5, 12, 23]	3.6 [23]	M5 [5]
(med)			
<i>(</i> min)			
PU Vul	[24, 25]	5.1 [25]	M5 [25]

Таблица 1

R/R _O	lg L/L _O	Т _{•фф.} (К)	M (M _O /roa)	M _V	Примечания
5	6	7	8	9	10
58	2.89	4004	3.0.10-8	0.96	1
153	3.46	3432	3.4.10-7	-0.68	2
338	4.13	3395	$2.1 \cdot 10^{-6}$	-1.40	3
282	3.76	3004	1.1	-1.43	
210	3.54	2882	2.9.10-7	0.88	
138	3.03	2759		0.35	
76	3.01	3745	3.0·10 ⁻⁸	-1.25	1
70	2.93	3726	2.7.10-8	-1.6	
32	2.37	3967	7.4.10-9	-0.03	2
90	3.12	3656	5.9 10 ⁻⁹	-1.17	
38	2.60	4192	9.1·10 ⁹	-1.09	
41	2.51	3849	9.1·10 ⁻⁹	-0.32	1
202	3.69	3404	4.3.10-7	-1.26	2
94	3.12	3696	5.6.10-8	-1.17	1.00
168	3.53	3399	3.5.10-7	0.86	
384	[•] 3.94	2865	6.0.10-7	-0,93	
153	3.45	3406	3.3.10-7	-0.66	1-5
490	4.30	3100	100	-2.78	
404	4.11	2961	5.7.10-7	-2.30	
318	3.76	2822		-1.43	100
226	3.79	3399	8.3.10 ⁻⁸	-1,50	4

268

л. лууд. л. леэдярв

1	2	3	4	5	6	7	8	9	10
V 1329 Cyg	[5]	4.8	M4 [5]	141	3.38	3404	1.3.10-7	-1.21	2
AG Peg	[5-8, 12]	0.5 [18]	M3 [5]	54	2.65	3623	3.3.10-8	-0.92	
Z And	[5-8, 10, 19, 26, 27]	1.2 [27]	M2 [5]	77	3.02	3751	3.0.10-8	-1.28	
R Aqr (max)	[5, 7, 28]	0.33 [28]	M7 [5]	480	4.15	2884		-0.62:	
(med)			2	415	3.99	2768	$2.3 \cdot 10^{-6}$	-0.22:	
(min)				350	3.73	2651		0.42:	
o Cet	[29]	0.077 [30]	M6 [29]	274	3.69	2956		-0.31	
				217	3.52	2813	5.4.10-7	+0.12	
	ALC: NOT THE REAL PROPERTY OF	1		159	3.27	2670	1	+0.84	

Примсчания.

1. Расстояние определено с использованием значения Е (В-V) и межзвездного поглощения по Шарову [34].

2. Расстояние определено при предположении, что поток излучения на 2.2 мкм соответствует модели Цудзи.

3. Углеродная звезда, определения по моделям Цудзв весьма грубые.

4. Использованы фотометрические давные в минимуме блеска.

СИМБИОТИЧЕСКИЕ звезды

Таблина 1 (окончание)

выше параметров. Там же приведены и абсолютные визуальные звездные величины, вычисленные по формуле

$$M_V = -2.5 \lg L/L_{\odot} + 4.75 - B. C.,$$

где В. С. — болометрическая поправка. В расчетах В. С. использовалась согласно [31]. Не обнаружено четкой корреляции между M_V и спектральным классом. В среднем M_V для красных компонентов симбиотических ввезд — 1.^m00±0.^m51. Этот результат сравним со значениями M_V для красных гигантов по Миками и Хек [32].

IgT, dd

Рис. 2. а. — Диаграмма Герцшпрунга — Рессела для холодных компонентов симбиотических звезд; b — то же для нормальных гигантов; с — диаграмма Герцшпрунга — Рессела с холодными компонентами симбиотических звезд с указанием раднусов и потерей массы. Х — углеродная звезда UV Aur; \triangle — PU Vul и \square - o Cet.

На рис. 2а показаны положения красных компонентов симбиотических звезд на диаграмме Герцшпрунга—Рессела. Теоретические эволюционные треки даны по работе Ибена и Тутукова [33].

По мнению авторов данной статьи, из исходных данных с наименьшей точностью определены расстояния. По возможности всегда использовались расстояния, полученные специально для данного объекта. Если были доступны величины избытка цвета E(B-V), использовались таблицы Шарова о распределении поглощающего вещества [34]. При наличии лишь фотометрических данных считалось, что при $\lambda = 2.2$ мкм звезда излучает согласно модели Цудзи и межзвездное поглощение на этой длине волны нулевое. Поскольку согласно средней зависимости межзвездного поглощения от длины волны по [35] $\Delta K = 0.26 E(B-V)$, ошибка в расстоянии может в некоторых случаях достигать 20%.

С целью проверки нашей методики, на основе однородного фотометрического материала, нами было проведено такое же исследование группы красных гигантов из каталога Пехка и Тувикене [36]. В данном случае было проведено и сравнение расстояний по тригонометрическим параллаксам и по моделям Цудзи. Выяснилось, что по моделям Цудзи расстояния получаются в среднем в 2 раза большими, однако в некоторых случаях тригонометрические расстояния даже в 10 раз больше фотометрических. Видимо, тригонометрические параллаксы красных гигантов при больших расстояниях неточны, и мы пользовались величинами, полученными по данным инфракрасной фотометрии. Однако расстояния симбиотических везд изучены более тщательно с учетом индивидуальностей объекта, поэтому мы имеем основание считать, что они определены довольно точно. По всей вероятности, расстояния можно будет определить с нужной точностью только после полета спутника ГИППАРХ. Но и тогда открытым останется вопрос о величине и природе E(B-V).

Из рис. 2а следует, что все изученные красные компоненты симбиотических звезд находятся на асимптотической ветви красных гигантов, где у звезды уже возникло СО-ядро. Отметим, что такие звезды по спектроскопическим критериям должны быть єверхгигантами II класса светимости и желательно провести тщательный пересмотр спектральной классификации холодных компонентов симбиотических звезд на основе однородного спектрального материала. Однако нужно отметить, что задача очень сложная из-за вуалирования M-спектра излучением других компонентов. Положения холодных гигантов компонентов симбиотических звезд образуют зону, совпадающую с зоной положений треков красных гигантов больших масс (8 $M_{\odot} > M_{симб.} > 2 M_{\odot}$). Однако вти треки смещаются по абсциссам в зависимости от принятых в расчетах параметров (длина пути перемешивания и химический состав) и поэтому не могут быть применены для определения масс.

Для иллюстрации на рис. 2b показаны положения на диаграмме Герцшпрунга—Рессела звезд сравнения, обладающих такими же свойствами.

Методом Бләквелла—Шаллиса получены также радиусы симбиотических звезд, которые тоже приведены в табл. 1. По рис. 2с можно заключить, что они находятся в пределах 30—300 R_{\odot} .

Для сравнения светимостей, температур и радиусов холодных компонентов симбиотических звезд с теми же параметрами красных гигантов поля в табл. 2 приведены средние для спектрального класса светимости, радиусы и температуры.

Средние отношения светимостей, температур и радиусов холодных компонентов симбиотических эвеэд к соответствующим параметрам гигантов поля следующие:

$$lg L_{\text{cmm6.}} / lg L_{gM} = 0.98 \pm 0.02,$$
$$T_{\text{cmm6.}} / T_{gM} = 1.00 \pm 0.03,$$

л. лууд, л. леэдярв

$R_{\text{cred}} / R_{\text{gM}} = 0.96 \pm 0.13.$

Следовательно, по фундаментальным параметрам, определенным методом Бләквелла—Шаллиса, холодные компоненты симбиотических звезд не отличаются от красных гигантов поля.

Таблица 2

Ig L/L _O			<u>Г</u> 1 вф.	p	R/R _O		
Sp	сямбиоти- ческие	идеоне Вкоп	симбноти- ческие	ы деозе п. коп	симбиоти- ческие-	звезды Поля	
MO	2.51	2.79	3849	3925	41	54	
M1	_ **	2.85		3858	_	60	
M2	2.90	2.97	3806	3713	70	74	
M3	3.12	3.18	3658	3610	79	100	
M4	3.38	3.31	3404	3495	141	141	
M5	3.64	3.66	3310	3297	211	209	
M6	3.94	3.93	2865	3243	384	295	

3. Динамические массы холодных компонентов симбиотических звезд.
По имеющимся спектроскопическим элементам орбиты определены массы
около 10 симбиотических звезд. Из табл. 3 следует, что за исключением
одной звезды — V 1929 Cyg — масса холодного компонента находится в
пределах 2.5 — 4 M _O . Такую же массу имеет и холодный компонент °Cet.
Отметим, что визуальную двойную ° Cet следует рассматривать как пре-
дельный случай симбиотической звезды и эту звезду необходимо всесто-
ронне изучить. Видимо, • Cet откроет одну из возможностей детализовать
модели симбиотических звезд, особенно процесс аккреции.

Что касается V 1329 Суд, то тут, видимо, следует более тщательно проанализировать механизм возникновения эмиссионных линий. С большой вероятностью амплитуда кривой лучевых скоростей отражает не орбитальное движение, а его суперпозицию со скоростью струи, в которой формируются эмиссионные линии высокого возбуждения.

4. Скорости потери массы холодными компонентами симбиотических звезд. Для разработки моделей симбиотических звезд весьма важно знать скорости потери массы холодными компонентами, поскольку нужно предположить, что потерянное холодной звездой вещество аккрецируется на горячий компонент и таким образом создает явление симбиотических звезд. Мы будем обсуждать лишь среднюю потерю массы холодными компонентами, а не ее аккрецию горячим компонентом.

Потеря массы из наблюдений известна лишь для двух звезд — — R Aqr [46—48] и • Cet [46, 47]. Полученные значения равны соотвегственно $2 \cdot 10^{-7}$ и $10^{-7} M_{\odot}$ год. Сравним эти данные с обширным эмпирическим исследованием де Ягера и др. [49], где на основе почти полной компиляции наблюдательных данных найдена интерполяционная формула для определения M по L и $T_{3\phi\phi}$. Для обеих звезд эта интерполяционная формуная формула дает для M несколько завышенные величины. Однако в работе [49] шкала аффективных температур для холодных звезд, видимо,

, Эвсзда	Mi	Mo		
	асзда холодный го компонент ком		Источных	
СН Суд	2.7	1.4	Лууд и Томов [37]	
T CrB	2.9	2.1	Крафт [38]	
CI Cyg	2.4	3.4	Иджныа [39]	
AR Pav	2.5	- 1.2	Такери и Хачингс [40]	
AG Peg	3-4	1	Хачингс и др. [41]	
BF Cyg	3	1	Боярчук [42]	
RW Hya	3	1	Кафатос и др. [17]	
R Aqr	3	1	Матой и Аллон [43]	
V 1329 Cyg	25	1 -	Григар и др. [44]	
Cet	2.5	1	Ферни и Брукер [45]	

Примечание. Курсивом даны предвзятые массы горячего компонента.

несколько занижена. Учитывая, что светимости, температуры и радиусы колодных компонентов симбиотических звезд не отличаются от таковых для одиночных звезд, можно и их потери масс считать такими же, как у нормальных звезд. Из рис. 2с, где на диаграмме $\lg L/L_{\odot} - \lg T_{sopo}$ показаны холодные компоненты симбиотических звезд, следует, что потеря массы зависит от спектрального класса и меняется от $M \approx 10^{-8}$ $M_{\odot}/год$ у ранних подклассов M до $M \approx 6 \cdot 10^{-7}$ $M_{\odot}/год$ у поздних подклассов.

Часто для определения скорости потери массы красными гигантами пользуются формулой Реймерса [50]

$$\dot{M} = -4 \cdot 10^{-13} \eta \frac{L}{gR},$$

где η — параметр порядка единицы (в наших расчетах принято $\tau_i = 1$), а светимость L, эффективное ускорение силы тяжести g и радиус звезды R даны в солнечных единицах. Вычисленные для симбиотических звезд величины M приведены в табл. 1 и согласуются с вышеизложенным.

Таблица 3

Учитывая, что в симбнотических звездах аккрецируется только доля потерянной красным гигантом массы, этот результат не согласуется с предположением, что для возникновения симбнотических звезд требуется скорость аккрецин $\sim 3 \cdot 10^{-7}~M_{\odot}$ /год [51, 52]. Следовательно, механизм образования наблюдаемых в симбнотических звездах явлений требует уточнения, кажется, нужно тщательно проанализировать возникновение сверхветра или возможное аккумулирование вещества в полости Роша с последующим мощным импульсом перетекания. Не исключено, что в некоторых случаях такой процесс происходит в периастроне сильно эллиптической орбиты.

5. Сравнение радиусов холодных компонентов симбиотических звезд с радиусами их полостей Роша. Одной из проблем, связанных с возникновением направленной аккреции в двойных системах, является наполнение полости Роша звезды-донора вещества. Хотя при наличии звездного ветра заполнение полостей Роша отнюдь не является необходимым условием существования перетекания, можно ожидать, что радиус звезды должен равняться примерно половине радиуса полости Роша [53].

Раднусы полостей Роша рассчитывались следующим образом. Сперва по закону Кеплера в крутовом приближении были рассчитаны большие полуоси орбит. Они были взяты за расстояния компонентов и с помощью таблиц Плавеца и Кратохвила [60] были определены размеры полости Роша. Конечно, это приближение неточное, но оно позволяет сравнительно хорошо проводить оценки в первом приближении, если различие масс компонентов не очень большое.

Нам известны периоды орбитального движения для ряда симбиотяческих звезд [38—45, 54—59]. На рис. 3 нанесены точки, представляющие холодные компоненты симбиотических звезд с известными периодами.

Очевидно, что радиусы холодных компонентов всегда меньше радиусов полостей Роша, а во многих случаях приближаются к половине значения последних. Видимо, из этого следует, что нужно исследовать несколько типов аккреционного механизма и что не во всех симбиотических звездах существует дисковая аккреция.

Еще одно свойство симбиотических звезд следует из рис. 3. Не известны симбиотические звезды с периодами между 1000 и 5000 дней. Это, по всей вероятности, результат селекции, поскольку очень трудно обнаружить периоды лучевых скоростей > 1000 дней. Для СН Суд и R Aqr втоудалось лишь благодаря большой яркости и активному поведению этих объектов.

6. Распределение холодных компонентов симбиотических звезд поспектральным классам. Распределение холодных компонентов симбиотиче-ских звезд по спектральным классам согласно [5] показано на рис. 4.

R/Ro 50 100 250 500 1000 148 4.5 3.5 5 g a(2 m = 3.5 IqP(a) 3.5 10 60 2.5 2.5 3 2

Основное свойство, следующее из рис. 4 — сильное увеличение количества симбиотических звезд в поздних подклассах М, несмотря на уменьшение

Ig R/R.

общего количества звезд в этих подклассах. Причина этого явления очевидна — с увеличением радиуса и годовой потери массы повышается вероятность перетекания вещества и формирования аккреционного диска. Среди холодных компонентов симбиотических звезд отношение числа углеродных звезд к числу гигантов спектральных классов М 5 и позднее равно величине 0.08, что почти в 10 раз выше, чем это отношение в окрестностях Солнца [61]. Видимо, это объясняется несколько большими потерями массы углеродных звезд, что способствует образованию симбиотического спектра.

Рис. 4. Распределение холодных компонентов симбиотических эвеэд по спектральным клиссам.

7. Заключение. Наше исследование холодных компонентов симбиотических звезд привело к следующим основным результатам.

1. Холодные компоненты симбиотических звезд по своим основным физическим характеристикам (оветимости, температуры, радиусы, годовые потери масс) не отличаются от нормальных звезд асимптотической последовательности гигантов.

2. Массы холодных компонентов симбиотических звезд $\sim 3~M_{\odot}$.

3. Холодные компоненты симбиотических звезд не заполняют своей полости Роша.

4. Среди холодных компонентов симбиотических звезд аномально много углеродных звезд.

Авторы выражают глубокую признательность П. Траату, А. В. Тутукову, У. Уусу и А. Сапару за ценные обсуждения в ходе работы, а также А. Линнас, Л. Кивиранд и Т. Пехк за большую помощь при оформлении статьи.

Институт астрофизики и физики атмосферы АН ЭССР

СИМБИОТИЧЕСКИЕ ЗВЕЗДЫ

CHARACTERISTICS OF THE COLD COMPONENTS OF SYMBIOTIC STARS

L. LUUD, L. LEEDJARV

Using the Blackwell-Shallis method the luminosities, temperatures and radii for cold components of symbiotic stars and for a sample of field red giants have been determined by means of infrared photometric observations. It turned out that the cold components of symbiotic stars do not differ from the normal red giants of the asymptotic branch. The masses of cold components of symbiotic stars have been found to be close to 3 M_{\odot} . The cold components of symbiotic stars do not fill their Roche lobes. About 10 times more carbon stars than the normal value in the vicinity of the Sun have been found among the cold components of symbiotic stars.

ЛИТЕРАТУРА

- 1. S. J. Kenyon, R. F. Webbink, Astrophys. J., 279, 252; 1984.
- 2. D. A. Allen, Mon. Notic. Roy. Astron. Soc., 192, 521, 1980.
- 3. T. Tsuji, Astron. and Astrophys., 62, 29, 1978.
- 4. D. E. Blackwell, M. J. Shallis, Mon. Notic. Roy. Astron. Soc., 180, 177, 1977.
- D. A. Allon, IAU Coll. No. 70, The Nature of Symbiotic Stars, eds. M. Friedjung, R. Viotti, D. Reidel, Dordrecht, 1982. p. 27.
- 6. J. P. Swings, D. A. Allen, Publ. Astron. Soc. Pacif., 84, 523, 1972.
- 7. S. J. Kenyon, J. S. Gallagher, Astron. J., 88, 666, 1983.
- 8. P. Szkody, Astrophys. J., 217, 140, 1977.
- 9. О. Г. Таранова, Б. Ф. Юдин, Астрон. ж., 59, 92, 1982.
- 10. N. J. Woolf, Astrophys. J., 185, 229, 1973.
- 11. D. Reimers, D. Groote, Astron. and Astrophys., 123, 257, 1983.
- M. W. Feast, B.S. C. Robertson, R. M. Catchpole, Mon. Notic. Roy. Astron. Soc., 179, 499, 1977.
- P. A. Whitelock, R. M. Catchpole, M. W. Feast, G. Roberts, B. S. Carter, Mon. Notic. Roy. Astron. Soc., 203, 363, 1983.
- 14. M. Klutz, O. Simonetto, J. P. Swings, Astron. and Astrophys., 66, 283, 1978.
- 15. О. Г. Таранова, Б. Ф. Юдин, Письма в Астрон. ж., 9, 36, 1983.
- 16. О. Г. Таранова, Б. Ф. Юдин, Астрон. ж., 61, 510, 1984.
- 17. M. Kafatos, A. G. Michalitsianos, R. W. Hobbs, Astrophys. J., 240, 114, 1980.
- M. Plavec, IAU Coll. No. 70, The Nature of Symbiotic Stars, ed. M. Friedjung, R. Viotti, D. Reidel, Dordrecht, 1983, p. 231.
- 19. О. Г. Таранова, Б. Ф. Юдин, Письма в Астрон. ж., 9, 618, 1983.
- 20. О. Г. Таранова, Б. Ф. Юдин, Письма в Астрон. ж., 11, 55, 1985.
- J. W. Renzies, I. M. Coulson, J. A. R. Caldwell, P. M. Corben, Mon. Notic. Roy. Astron. Soc., 200, 463, 1982.
- . 22. Л. С. Луул, Астрофизика, 16, 443, 1980.
- M. W. Feast, P. A. Whitelock, R. M. Catchpole, G. Roberts, B. S. Carter, Mon. Notic. Roy. Astron. Soc., 202, 951, 1983.

5-73

- 24. S. Bensammar, M. Friedjung, S. Assus, Astron. and Astrophys., 83, 261, 1980.
- 25. Т. С. Белякина, Р. Е. Гершберг, Ю. С. Ефимов, В. И. Красновабиев, Е. П. Пив-
- ленко, П. П. Петров, И. К. Чуваев, В. И. Шенаврин, Астрон. ж., 59, 302, 1982.
- 26. О. Г. Таранова, Б. Ф. Юдин, Астрон. ж., 58, 1249, 1981.
- A. Altamore, G. B. Baratta, A. Cassatella, M. Friedjung, O. Riccardt, R. Viotti, Astrophys. J., 245, 630, 1981.
- P. A. Whitelock, M. W. Feast, R. M. Catchpole, B. S. Carter, G. Roberts, Mon. Notic. Roy. Astron. Soc., 203, 351, 1983.
- 29. R. D. Gehrz, N. J. Woolf, Astrophys. J., 165, 285, 1971.
- L. F. Jonkins, General Catalogue of Trigonometric Stellar Parallaxes, New Haven, Yale University Observatory, 1952.
- 31. В. Страйжис, Многоцветная фотометрия звезд, Мокслас, Вильнюс, 1977.
- 32. T. Mikami, A. Heck, Publ. Astron. Soc. Jap., 34, 529, 1982.
- 33. I. Iben Jr., A. V. Tutukov, Astrophys. J. Suppl. Ser., 54, 335, 1984.
- 34. А. С. Шаров, Астрон. ж., 40, 900, 1963.
- 35. Л. Луул, Публ. Тертуской обсерв., 46, 55, 1978.
- 36. М. Пехк, Т. Тувикене, Энергетические характеристики К- и М-гигантов в инфракрысной области спектра, Валгус, Таллин, 1981.
- 37. Л. Лууд, Т. Томов, Письма в Астрон. ж., 10, 860, 1984.
- 38. R. P. Kraft, Astrophys. J., 127, 625, 1958.
- 39. T. Itjima, Astron. and Astrophys., 116, 210, 1982.
- 40. A. D. Thackeray, J. B. Hatchings, Mon. Notic. Roy. Astrop. Soc., 167, 319, 1974.
- 41. J. B. Matchings, A. P. Cowley, R. O. Redman, Astrophys. J., 201, 404, 1975.
- 42. А. А. Боярчук, Изв. Крым. обсерв., 39, 124, 1968.
- 43. J. A. Mattel, J. Allen, J. Roy. Astron. Soc. Can., 73, 173, 1979.
- J. Grygar, L. Hric, D. Chochol, A. Mammano, "Bull. Astron. Inst. Czech., 30, 308, 1979.
- 45. J. D. Fernie, A. A. Brooker, Astrophys. J., 133, 1088, 1961.
- G. R. Knapp, T. G. Phillips, R. B. Leighton, K.-Y. Lo, P. G. Wannier, H. A. Wooten, P. J. Huggins, Astrophys. J., 252, 616, 1982.
- 47. D. N. Spergel, L. L. Giuliani, G. R. Knapp, Astrophys. J., 275, 330, 1983.
- 48. P. C. Gregory, E. R. Seaquist, Nature, 247, 532, 1974.
- 49. C. de Jager, H. Nieuwenhuijzen, K. A. van der Hucht (in press).
- 50. D. Reimers, Mem. Soc. Roy. Sci. Liege, 6-e ser., 8, 369, 1975.
- 51. А. В. Тутуков, Л. Р. Юнгельсон, Астрофизика, 12, 521, 1976.
- 52. B. Paczynski, B. Rudak, Astron. and Astrophys., 82, 349, 1980.
- 53. Ю. П. Коровяковский, Изв. Спец. естрофия. обсерв., 4, 11, 1972.
- 54. P. W. Merrill, Astrophys. J., 112, 514, 1950.
- 55. R. Smith, Astrophys. J., 237, 831, 1980.
- 56. P. W. Merrill, Astrophys. J., 111, 434, 1950.
- 57. S. J. Kenyon, F. M. Bateson, Publ. Astron. Soc. Pacif., 96, 321, 1981.
- 58. А. А. Боярчук, Астрон. ж., 44, 1016, 1967.
- 59. S. J. Kengon. Publ. Astron. Soc. Pacif., 94, 165, 1982.
- 60. M. Plavec, P. Kratochvil, Bull. Astron. Inst. Czech., 15, 171, 1964.
- V. M. Blanco, M. F. McCharty, Physical Processes in Red Giants, eds. I. Iben Jr., A. Renzini, D. Reidel, Dordrecht, 1981, p. 147.