АСТРОФИЗИКА

TOM 23

ДЕКАБРЬ, 1985

ВЫПУСК 3

УДК: 524.6—7

ФОРМИРОВАНИЕ СПЕКТРА ЭЛЕКТРОНОВ СВЕРХВЫСОКИХ ЭНЕРГИЙ В ГАЛАКТИКЕ

Ф. А. АГАРОНЯН, А. С. АМБАРЦУМЯН Поступила 11 апреля 1985 Принята к печати 20 августа 1985

Рассмотрено формирование спектра электронов сверхвысоких энергий в галахтическом диске и в гало. Обнаружено различное поведение спектра электронов в рамках моделей захвата в гало или в диске в области энергий $E \gtrsim 10^5$ ГэВ, обусловленное учетом релятивистских поправок в энергетических потерях электронов при обратном комптоновском рассеянии. Проведено сравнение с имеющимися экспериментальными данными.

1. Введение. Экспериментальное обнаружение первичного космического излучения с энергией квантов $E_{\gamma} > 10^6$ ГэВ свидетельствует о наличин источников космических лучей сверхвысоких энергий (к.л.с.э.) галактического происхождения [1, 2]. Если гамма-кванты имеют вторичное происхождение, т. е. являются продуктом взаимодействия к.л.с.в. с окружающей средой — а в этом едва ли приходится сомневаться, — то в источнике должны присутствовать электроны сверхвысоких энергий. Действительно, если гамма-кванты имеют «электронное» происхождение, то они могут образовываться в результате комптоновского рассеяния электронов, ускоренных непосредственно в источнике, на низкочастотных фотонах*. Если же они имеют «протонное» происхождение, т. е. являются продуктами распада п°-мезонов, то генетически связанные с ними электроны (от распада π^{\pm} -мезонов) рождаются с таким же спектром и примерно в таком же количестве. Кроме того, взаимодействие гамма-квантов с реликтовым излучением (РИ), приводит к обильному образованию е[±]-пар в межзвездном пространстве. К примеру, светимость наиболее «надежного» источника, г.к.с.в. Суд X-3 составляет $L_x(E_T \gtrsim 10^6 \ \Gamma_{9}B) \gtrsim 10^{37} \ врг/с$ [3, 4]. Светимость электронов сверхвысоких энергий (э.с.э.) должна быть

^{*} В условнях больших плотностей низкочастотных фотонов и магнитного поля в возможных ясточниках ускорения к.л. другие процессы образования гамма-квентов сверхвысоких энергий (г.к.с.э.) являются менее эффективными.

Ф. А. АГАРОНЯН, А. С. АМБАРЦУМЯН

по крайней мере такого же порядка, поскольку малый свободный пробег г.к.с.э. из-эа взаимодействия с РИ ($\lambda \sim 10$ кпс) приводит к тому, что практически все гамма-кванты «застревают» в галактике, трансформируясь в электроны той же энергии.

2. Формирование спектра электронов в межзвездной среде. В межзвездной среде энергетическое распределение электронов со спектром инжекции $N_{\circ}(E)$, в результате энергетических потерь и утечки из галактики трансформируется, принимая вид [5]:

$$N(E) = |B(E)|^{-1} \int_{E'} N_0(E') \times \\ \times \exp\left\{-\int_{E'}^{E} |B(E'')|^{-1} [T^{-1}(E'') + \tau^{-1}(E'')] dE''\right\} dE', \qquad (1)$$

где B(E) — сумма энергетических потерь, $\tau(E)$ — время жизни электронов, T(E) — время жизни электронов, обусловленное катастрофическими потерями, при которых электрон в первом же акте взаимодействия теряет энергию порядка своей собственной.

В области энергий E > 10 ГъВ в энергетических потерях электронов вкладом от потерь на ионизацию и тормозное излучение при взаимодействии с межзвездным газом можно пренебречь (см., например, [6]). В этой области энергий существенными становятся потери, обусловленные магнитным полем (синхротронные потери), взаимодействием электронов с фотовным полем (комптоновские потери), а также утечкой электронов из галактики. Начиная с энергий $E > 10^2$ ГъВ, синхротронные и комптоновские потери становятся настолько большими, что потерями за счет утечки можно пренебречь. В этой области энергий равновесный спектр электронов будет иметь простой вид

$$N(E) \sim E^{-2} \int N_0(E) dE,$$
 (2)

поскольку как синхротронные, так и комптоновские потери растут пропорционально E^2 . В случае степенного спектра инжекции $N_0(E) \sim E^{-\alpha}$ равновесный спектр электронов имеет, также степенной вид, но с показателем $\alpha + 1$:

$$N(E) \sim E^{-(\alpha+1)}.$$
 (3)

Однажо в интересующей нас области энергий возможно существенное отклочение поведения энергетических потерь от вида $dE/dt \sim E^2$. Действи-

480

тельно, энергетические потери складываются из потерь на синхротронное излучение и комптоновское рассеяние: '

$$dE/dt = (dE/dt)_{\rm CHEARD} + (dE/dt)_{\rm KOMOT}.$$
(4)

Скорость синхротронных потерь равна [7]:

$$(dE/dt)_{csuxp.} = -\frac{32}{9} \pi r_0^2 c \gamma^2 W_{H},$$
 (5)

где r_0 — классический радиус электрона, c — скорость света, $W_H = H^3/8\pi$ — энергетическая плотность магнитного поля. Формула (4) справедлива вплоть до энергий $E \leq 10^{10}/H$ ГэВ, т. е. она заведомо верна при любых разумных значениях энергии электронов в межзвездной среде ($H \sim 10^{-5} + 10^{-6}$ Гс). Для комптоновских потерь ситуация иная. В томпсоновском пределе, когда выполняется условие $b = 4 \times X E \omega/(mc^2)^3 \ll 1$ (ω — энергия фотона), потери описываются формулой, аналогичной (5); в которой вместо плотности магнитного поля должна быть энергетическая плотность фотонов — W_{\oplus} . Когда же $b \gg 1$, то, в силу падающего характера сечения Клейна—Нишины, зависимоеть скорости потерь от энергии становится логарифмической (см., например, [8, 9]):

$$(dE/dt)_{\rm KOMOT.} = -\frac{\pi r_0^2}{\omega^2} W_{\oplus} (mc^2)^2 c (\ln b - 11/6).$$
 (6)

В общем случае комптоновские потери определяются формулой [9]:

$$(dE/dt)_{\text{compt}} = -\frac{2\pi r_0^2}{\omega^3 b} W_{\Phi} (mc^2)^2 c \left[\left(6 + \frac{b}{2} + \frac{6}{b} \right) \ln (1+b) - \frac{2Li \left(\frac{1}{1+b} \right) - \ln^2 (1+b) - \frac{(11/12) b^3 + 8b^2 + 13b + 6}{(1+b)^3} \right], \quad (7)$$

где Li — дилогарифмическая функция. В случае $H \ll (8\pi W_{\Phi})^{1/2}$ и $b \gg 1$ равновесный спектр электронов, как видно из формул (6) и (1), оказывается более жестким, чем спектр инжекции:

$$N(E) \sim E^{-(\alpha+1)} / \ln E.$$
(8)

В межзвездной среде энергетические потеря за счет комптоновского рассеяния обусловлены взаимодействием с РИ и оптическими фотонами, для которых условие $b \gg 1$ выполняется при $E \gtrsim 10^5$ ГзВ и $E \gtrsim 50$ ГзВ, соответственно. Следовательно, при определении равновесного спектра электронов в межзвездной среде в области сверхвысоких энергий необходим корректный учет комптоновских потерь.

На рис. 1 приведены кривые энергетических потерь электронов в случае, когда электроны захвачены в галактическом диске и в гало. При расчетах использовались следующие параметры: а) в диске — плотность инфракрасных и оптических фотонов $W_0 \approx 1$ эВ/см³, напряженность магнитного поля $H = 3 \cdot 10^{-6}$ Гс; b) в гало — $W_0 \approx 0.1$ вВ/см³, $H = 5 \cdot 10^{-7}$ Гс; внергетическая плотность РИ с температурой 2.7 К° — $W_{PH} = 0.25$ зВ/см³. Как видно из рисунка, отклонение скорости потерь от закона E^2 наблюдается как для диска, так и для гало. В последнем случае это особенно четко проявляется при энергиях $E \sim 10^4 - 10^6$ ГзВ, поскольку в гало плотность несть магнитного поля существенно меньше плотности РИ. Эта особенность, несомненно, должна отразиться на виде равновесного спектра электронов в области сверхвысоких внергий.

Рис. 1. Скорость энергетических потерь электронов в диске (ы) и в гало (b). Кривые 1 и 2 — потери, обусловленные комптоновским рассеянием на оптических фотонах и РИ, соответственно; кривая 3 — синхротронные потери; кривая 4 — суммарные энергетические потери.

3. Результаты расчетов. На рис. 2 приведены кривые, определяющие равновесный спектр влектронов, рассчитанные для случаев диска и гало. Время жизни к.л. для диска и гало равно 1.15 · 10¹⁴с и 3 · 10¹⁴с, соответственно. Спектр инжекции имеет вид $N_0(E) = E^{-2.7}$, в соответствии с работой [10]. При этих параметрах, как показано в [10], достигается наилучшее согласие с экспериментальными данными в области энергий $E \le 10^2 \ \Gamma_{\rm P} B$. На рис. З приведена расчетная кривая равновесного спектра электронов при захвате в диске вместе с имеющимися эксперимента оными данными [10, 11]. В области энергий $E > 10^2$ ГэВ энергетические потери, обусловленные утечкой частиц из области захвата, как уже указывалось, не влияют на равновесный спектр электронов, который определяется лишь спектром инжекции и параметрами, характеризующими область захвата (интенсивность магнитного поля, плотность и средняя энергия излучения). Если бы потери определялись видом $dE/dt \sim E^2$, мы вправе были бы ожидать степенной зависимости с показателем дифференциального спектра $\alpha = 3.7$ в области энергий $E > 10^2$ ГэВ. Однако, как видно из рис. 3, такая зависимость наблюдается лишь при энергиях $E > 10^5 \, \Gamma_8 B_1$

ФОРМИРОВАНИЕ СПЕКТРА ЭЛЕКТРОНОВ

при которых определяющими становятся синхротронные потери, пропорциональные E^2 (см. рис. 1). На рис. 3 приведен также теоретический спектр из работы [10], при расчете которого не учитывались релятивистские поправки в энергетических потерях при обратном комптоновском рас-

Рис. 2. Равновесный спектр электронов для моделей захвата в диске (1) и в тало (2).

сеянин. Из сравнения двух кривых, построенных при одних и тех же исходных предположениях о спектре инжекции и параметрах, характеризующих область захвата, следует, что релятивистские поправки начинают играть существенную роль уже в области $E \sim 10^2$ ГзВ. Учет этих поправок при-

Рис. 3. Дифференциальный энергетический спектр электронов. Сплошная криваяравновесный спектр, рассчитанный для модели захвата электронов в диске; штрихованная кривая — спектр, взятый из работы [10].

водит к лучшему согласию с имеющимися экспериментальными данными. Отличие в поведении спектров, как и следовало ожидать, становится еще более существенным в случае гало, где энергетическая плотность магнитного поля эначительно меньше энергетической плотности РИ. Отметим, что для корректного расчета равновесного спектра электронов в области энергий $E \sim 10^6$ ГвВ необходимо учитывать рождение e^{\pm} -пар при взаимодействии вторичных гамма-квантов с энергией $\sim 10^6$ ГвВ, образованных при комптоновском рассеянии, с РИ. Однако, в первом приближении, этим процессом можно пренебречь, поскольку при $E \sim 10^6$ ГвВ комптоновское рассеяние подавлено по сравнению с синхротронными потерями (см. рис. 1).

4. Обсиждение. Из понведенных расчетов следует, что спекто влектоонов в области сверхвысоких энергий должен иметь особенность, связанную со сложным характером зависимости энергетических потерь от энергии. Экспериментальное изучение спектра электронов в этой области энергий. открывает возможности для получения информации о параметрах, определяющих область захвата. В частности, на рис. 2 видно резкое отличие между ожидаемыми спектрами влектронов в случаях, если они захвачены в гало и в диске. Возможность получения экспериментальных данных о виде спектоа электронов в области энергий $E \sim 10^6 \Gamma_{\rm B}B$ может быть связана с измерением интенсивности синхротронного излучения, генерируемого этими электронами в области жесткого рентгена (порядка 50 КэВ и 10 КэВ для диска и гало, соответственно). Принципиальная возможность регистрании электронов сверхвысоких энергий вблизи. Земли путем выделения широких атмосферных ливней (ШАЛ) электромагнитного происхождения (по аномально малому содержанию мюонов), к сожалению, представляется маловероятной. Действительно, на Тянь-шаньской комплексной установке ШАЛ был получен поток частиц, иницируемых ШАЛ, с аномально малым содержанием мюонов и $E \ge 6 \cdot 10^5 \, \Gamma_9 B - 8.3 \pm 2.9 \cdot 10^{-13}$ частиц/см² · с [12]. В то же время, как следует из рис. 3, ожидаемый поток электронов в этом диапазоне энергий не может превосходить 10⁻¹⁶ частиц/см² с (иначе имело бы место противоречие с экспериментальными данными в области малых внергий). Это означает, что а) найденный в Тяньшаньском эксперименте поток имеет фотонное происхождение; б) регистрация электронов сверхвысоких энергий с помощью методики изучения ШАЛ не представляется реальной, поскольку ШАЛ, иницируемые электронами и фотонами, должны быть идентичны.

В заключение отметим, что в работе [13] предлагается принципиально новый метод регистрации электронов с $\mathcal{E}_{\epsilon} \sim 10^4 \div 10^5$ ГвВ по синхротронному рентгеновскому излучению в геомагнитном поле Земли.

Ереванский физический институт

ФОРМИРОВАНИЕ СПЕКТРА ЭЛЕКТРОНОВ

THE FORMATION OF SUPERHIGH ENERGY ELECTRON SPECTRUM IN GALAXY

F. A. AHARONIAN, A. S. AMBARTSUMIAN

The formation of superhigh energy electron spectrum in the disk of galaxy and halo is considered. A different behaviour of the electron spectrum within the framework of capture models in disk or halo, in the energy region $E \gtrsim 10^5$ GeV is revealed due to the account of relativistic corrections in the energy loss of electrons during the inverse Compton scattering. A comparison with the existing experimental data is carried out.

ЛИТЕРАТУРА

- 1. Ф. А. Агаронян, Э. А. Мамиджанян, С. И. Никольский, Е. И. Тукиш, Изв. АН СССР, сер. фкв., 48, 2196, 1984.
- F. A. Aharonian, E. A. Mamidjanian, S. I. Nikolsky, E. I. Tukish, 19-th ICRC, San Diego, 1985.
- 3. W. Stamm, M. Samorski, 18-th ICRC, Bangalore, v. 1, 1983, p. 131.
- 4. S. Lloyd-Evans, A. Watson, Nature, 305, 784, 1983.
- 5. В. Л. Гинзбург, С. И. Сыроватский, Происхождение космических лучей, Изд. АН СССР, М., 1963.
- 6. С. Хаякава, Физика космических лучей, т. 2, Мир. М., 1974.
- 7. Л. М. Оверной, О. Ф. Прилуцкий, И. Л. Ровенталь, Астрофизика космических лучей, Атомиздат, М., 1973.
- 8. G. R. Blumental, R. G. Gould, Rev. Mod. Phys., 42, 237, 1970.
- 9. F. A. Aharonian, A. M. Atoyan, Astrophys. Space Sci., 79, 321, 1981.
- 10. D. Muller, J. Tang, 18-th ICRC, Bangalore, v. 2, 1983, p. 60.
- 11. J. Nishimura, 17-th ICRC, Paris, v. 2, 1981, p. 94.
- J. N. Stamenov, S. Z. Ushev, S. I. Nikolsky, V. I. Yakovlev, 18-th ICRC, Bangalore, v. 6, 1983, p. 54.
- S. A. Stephens, V. K. Balasubrahmanyan, Proc. Cosmic Rays Conf., Univ. Utah, ed. T. I. Goisser, 1983, p. 196.

485