Известия НАН Армении, Физика, т.55, №4, с.559–565 (2020)

УДК 546.05

МИКРОВОЛНОВЫЙ СИНТЕЗ НАНОКОМПОЗИТА ZnO/Ag

А.А. САРГСЯН¹, В.В. БАГРАМЯН^{1*}, Н.Б. КНЯЗЯН¹, Р.К. ОВСЕПЯН², Н.Р. АГАМАЛЯН², Г.Р. БАДАЛЯН²

¹Институт общей и неорганической химии им. М.Г. Манвеляна НАН Армении, Ереван, Армения ²Институт физических исследований НАН Армении, Аштарак, Армения

*e-mail: v bagramyan@mail.ru

(Поступила в редакцию 24 июня 2020 г.)

Разработан микроволновый (MB) метод получения нанокомпозита ZnO/Ag с использованием методов химического осаждения и разложения термически нестабильных соединений. Химическое совместное осаждение является простым и эффективным методом в сравнении с другими методами получения нанокомпозита ZnO/Ag. Определены характеристики синтезированного продукта методами дифференциально-термического анализа (ДТА), рентгенофазовым анализом (РФА) и сканирующей электронной микроскопией (СЭМ). Проведенные исследования показывают эффективность MB обработки при получении нанокомпозитов ZnO/Ag.

1. Введение

Оксид цинка (ZnO) – перспективный материал для применения во многих областях науки, техники и наиболее широко используется в качестве катализаторов и хемосорбентов [1,2], а также для создания устройств оптоэлектронной и сенсорной техники [3,4]. В последнее время внимание исследователей привлекают нанокомпозиты на основе наночастиц оксида цинка, которые обладают важными функциональными свойствами: оптическими, механическими, полупроводниковыми, ферроэлектрическими, пьезоэлектрическими, пироэлектрическими и др.

Известны различные физические [5,6] и химические [7,8] методы получения ультрадисперсных частиц оксида цинка. Физические методы заключаются в интенсивном тепловом или силовом воздействии на исходный материал и требуют применения специального оборудования для поддержания высоких давлений и температур. К химическим относятся методы осаждения, микроэмульсионный, гидро- и сольвотермальный, золь-гель и термическое разложение.

Наночастицы металлов привлекли внимание ученых из-за их уникальных свойств, которые используются для разработки новых технологий в области

электроники, материаловедения и медицины [9–11]. В частности, наночастицы серебра (Ag) используются в качестве материала для батарей, оптических рецепторов, катализаторов в химических реакциях и антимикробных агентов. Одно из важнейших свойств серебра – его бактерицидная и антивирусная активность, которая существенно возрастает при использовании наночастиц вследствие резкого увеличения площади поверхности. При добавлении серебра антибактериальная активность ZnO может значительно возрасти. Композиты нового типа – неорганические антибактериальные материалы, содержащие Ag и ZnO, могут найти широкое применение.

Задачей современной химии и материаловедения является разработка новых методов получения материалов с целью снижения энергетических расходов и технологических процессов. Весьма перспективным методом является микроволновая (MB) химия, которая открывает новые возможности в технологии синтеза [12–14]. MB обработка – эффективный способ получения неорганических материалов благодаря равномерному и быстрому нагреву реакционной смеси по всему объему, контролю за временем процесса, а также условиям высокой чистоты процесса.

Целью настоящей работы является разработка MB метода получения композитов ZnO/Ag с высокой дисперсностью для производства фотокатализаторов и компонентов полупроводниковых приборов, датчиков, УФ-фильтров, солнечных батарей и антибактериальных материалов.

2. Экспериментальная часть

Синтез композита ZnO/Ag осуществляли в бытовой микроволновой печи марки «CE1073AR» фирмы «Samsung», переделанной для проведения химических процессов, в открытой стеклянной колбе, снабженной обратным холодильником и мешалкой (рис.1). Условия синтеза: частота микроволн – 2.45 ГГц, мощность микроволновой печи –100 Вт. На этапе синтеза композита ZnO/Ag химическим осаждением из водных растворов основной целью является получение порошка заданного химического и фазового состава и дисперсности. Для синтеза композита ZnO/Ag использовали AgNO₃, Zn(NO₃)₂ и Na₂CO₃ марки «хч». Количества исходных растворов взяты с таким расчетом, чтобы обеспечить следующий состав в конечном продукте: ZnO – 96.73 и Ag – 3.27 масс%.

Осаждение проводили одновременным взаимодействием смеси растворов солей AgNO₃ (0.5 M), Zn(NO₃)₂ (0.5 M) и раствора осадителя Na₂CO₃ (2 M) при интенсивном перемешивании, поддерживая pH = 10. Реакции, протекающие в растворе, могут быть представлены уравнениями:

Рис.1. Бытовая микроволновая печь марки CE1073AR фирмы «Samsung», переделанная для проведения химических процессов.

$$\begin{split} 5\text{Zn}(\text{NO}_3)_2 + 2\text{Na}_2\text{CO}_3 + 6\text{Na}\text{HCO}_3 &= \text{Zn}_5(\text{CO}_3)_2(\text{OH})_6 \downarrow + 10\text{Na}\text{NO}_3 + 6\text{CO}_2\uparrow,\\ 2\text{Ag}\text{NO}_3 + \text{Na}_2\text{CO}_3 &= \text{Ag}_2\text{CO}_3 \downarrow + 2\text{Na}\text{NO}_3. \end{split}$$

Для получения гомогенной массы реакционную смесь выдерживали 10– 15 мин. при непрерывном перемешивании в MB печи при температуре 40–45°C, после чего осадок отфильтровывали с использованием воронки Бюхнера. Для полного протекании вышеуказанных реакций при MB нагреве достаточно 10– 15 минут, что 4–6 раза быстрее в сравнении с известными методами [15]. Образующийся рыхлый осадок светло-желтого цвета, обусловленного преобладающим количеством карбоната серебра, темнеет под действием света. Осадок тщательно отмывали от ионов Na⁺ и NO₃⁻ горячей водой путем репульпации и высушивали при 80°C до установления стабильной массы. После сушки смесь солей-прекурсоров отжигали на воздухе при температуре 400°C в течение 3 час., в результате чего происходит разложение термически нестабильных солей Ag₂CO₃ и Zn₅(CO₃)₂(OH)₆ до оксида цинка и металлического серебра:

$$Zn_5(CO_3)_2(OH)_6 = 5ZnO + 2CO_2\uparrow + 3H_2O,$$

$$Ag_2CO_3 = Ag_2O + CO_2\uparrow,$$

$$2Ag_2O = 4Ag + O_2\uparrow.$$

В результате получили смесь, состоящую из серебра и оксида цинка, которая представляет собой высокодисперсный светло-коричневый порошок без видимых включений.

Состав продуктов определяли физико-химическими методами анализа (весовым, спектроскопическим, фотокалориметрическим, пламенно-фотокалориметрическим). Рентгенофазовый анализ (РФА) образцов проводили порошковым методом на дифрактометре URD-63 с излучением CuKα, а дифференциально-термический анализ (ДТА) до температуры 1500°С – на дериватографе Q-1500 фирмы МОМ. Структура поверхности образцов изучалась с помощью сканирующего электронного микроскопа (СЭМ) Vega TS-5130MM.

3. Результаты и их обсуждение

Получен нанокомпозит ZnO/Ag MB методом. Соосажденная смесь Zn₅(CO₃)₂(OH)₆ и Ag₂CO₃ после термолиза представляет собой гомогенный порошок, состоящий из оксида цинка и серебра. Результаты термического анализа смеси карбонатов цинка и серебра представлены на рис.2. Так как в исследуемых образцах карбонат цинка является основной фазой, то следует ожидать, что он проявляет доминирующее влияние на характер кривых ДТА–ТГ термолиза.

Рис.2. Кривые ДТА-ТГ соосажденных карбонатных солей Zn₅(CO₃)₂(OH)₆ и Ag₂CO₃.

Кривые ДТА–ТГ полученных порошков, приведенные на рис.2, показывают пять эндотермических пиков вплоть до 450°С с общей потерей массы 25.92%. Эта потеря массы близка к теоретической (25.97%), рассчитанной для $Zn_5(CO_3)_2(OH)_6$ и Ag₂CO₃. Слабые эндотермические пики при 60, 110 и 125°С с общей потерей массы 6.13% обусловлены дегидратацией воды и началом разложения $Zn_5(CO_3)_2(OH)_6$ и Ag₂CO₃. Слабый эндопик при 365°С обусловлен термолизом Ag₂O на Ag [15]. Основной пик при 230°С с потерей массы 19.78% представляет собой совокупность тепловых эффектов термолиза солей серебра и цинка с образованием ZnO и Ag с выделеним CO₂ и H₂O. Расчетные потери массы при термолизе составляют 6.14% и 19.78%, соответственно, что согласуется с потерями, выявленными на кривой TГ.

Для подтверждения фазового состава смеси соосажденных солей и

Рис.3. Рентгенограмма смеси соосажденных карбонатных солей $Zn_5(CO_3)_2(OH)_6$ и Ag₂CO₃ (a) до и (b) после термической обработки при $T = 400^{\circ}C$.

образующихся в результате термолиза металл–оксидных порошков был проведен рентгенофазовый анализ и исследования поверхности образцов. На рис.3 представлены рентгенограммы смеси соосажденных солей до и после термической обработки при T = 400°C. Как показали результаты исследования, синтезированный нанокомпозит имеет состав $Zn_5(CO_3)_2(OH)_6$ и Ag_2CO_3 (рис.3а). По данным РФА, продуктом термического разложения $Zn_5(CO_3)_2(OH)_6$ и Ag_2CO_3 являются ультрадисперсные ZnO и Ag (рис.3b).

На рис.4 представлены СЭМ-микроструктура смеси после термической обработки соосажденных солей при T = 400°С (рис.4а) и СЭМ-микроструктура пленки, полученной вакуумным напылением из мишени, изготовленной из этого порошка (рис.4b).

СЭМ изображения показывают, что синтезированный нанокомпозит ZnO/Ag имеет агломерированную структуру, а частицы – сферическую форму с размерами менее 100 нм (рис.4а), в то время как в пленке частицы Ag (размеры 0.1–0.5 мкм) практически равномерно распределены в матрице ZnO (рис.4b). Присутствие более крупных частиц Ag (1.5–2 мкм) объясняется агрегацией частиц серебра в процессе термической обработки.

Рис.4. СЭМ микроструктура (а) смеси соосажденных солей после термической обработки при T = 400 °C и (b) пленки, полученной вакуумным напылением из мишени, изготовленной из этого порошка.

4. Заключение

Проведенные исследования показали, что химическое совместное осаждение MB методом является простым и эффективным в сравнении с другими методами получения нанокомпозита ZnO/Ag. Согласно результатам, полученным с помощью СЭМ, восстановленный Ag прочно адсорбируется на поверхности наночастиц ZnO. Полученные экспериментальные данные процесса термического разложения карбонатов $Zn_5(CO_3)_2(OH)_6$ и Ag₂CO₃ на основании термогравиметрического анализа в интервале температур 50–600°С показали, что реакции дегидратации и декарбонизации протекают в перекрывающимся температурном интервале 20–400°С.

Проведенные исследования показывают эффективность MB обработки при получении нанокомпозита ZnO/Ag.

ЛИТЕРАТУРА

- 1. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, S.B. Cronin. Nano Letters, 11, 1111 (2011).
- 2. A.J. Esswein, D.G. Nocera. Chem. Rev., 107, 4022 (2007).
- 3. М.В. Евстафьева, А.Н. Редькин, Е.Е. Якимов. Нано- и Микросистемная техника, 18, 729 (2016).
- М.В. Рыжова, А.Н. Редькин, Е.Е. Якимов. Межд. научно-техн. конф. «Технологии микро- и наноэлектроники в микро- и наносистемной технике», Сб. материалов конференции, с.231 (2016).
- 5. Е.И. Бурылин, А.Г. Веселов, А.С. Джумалиев, О.А. Кирясова, Т.А. Пушкарева, С.Л.Рябушкин. ЖТФ, 77(5), 130 (2007)..
- 6. **Н.А. Шабанова.** Химия и технология нанодисперстных оксидов, Москва, Академкнига, 2007.

- 7. V. Briois, C. Giorgetti. J. Sol-Gel Sci. Techn., 39, 25 (2006).
- 8. A. Aimable, M.T. Buscaglia, V. Buscaglia, P. Bowen. J. European Ceramic Society, 30, 591 (2010).
- 9. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak. Angew. Chem. Int. Ed., 23, 60 (2009).
- 10. Р.К. Овсепян, Н.Р. Агамалян, Е.А. Кафадарян, Г.Г. Мнацаканян, А.А. Аракелян, С.И. Петросян, Г.Р. Бадалян. Изв. НАН Армении, Физика, **53**, 477 (2018).
- 11. C. Meng, L. Ying, J.-T. Han, J.-Y. Zhang, Z.-Y. Li, D.-L. Qian. J. Fudan University, 45, 34 (2006).
- E.T. Thostenson, T.W. Chou. Composites Part A: Applied Science and Manufacturing, 30, 1055 (1999).
- H. Brittany. Microwave Synthesis Chemistry at the Speed of Light. CEM Publishing, USA, 2002.
- 14. Д.Л. Рахманкулов, И.Х. Бикбулатов, Н.С. Улаев, С.Ю. Шавшукова. Микроволновое излучение и интенсификация химических процессов, Химия, Москва, 2003.
- 15. **Н.С. Николаева, В.В. Иванов, А.А. Шубин.** J. Siberian Federal University. Chemistry, **2**, 153 (2010).

ZnO/Ag ՆԱՆՈԿՈՄՊՈԶԻՏԻ ՄԻԿՐՈԱԼԻՔԱՅԻՆ ՍԻՆԹԵԶ

Ա.Ա. ՍԱՐԳՍՅԱՆ, Վ.Վ. ԲԱՂՐԱՄՅԱՆ, Ն.Բ. ԿՆՅԱՉՅԱՆ, Ռ.Կ. ՀՈՎՍԵՓՅԱՆ, Ն.Ռ. ԱՂԱՄԱԼՅԱՆ, Գ.Ռ. ԲԱԴԱԼՅԱՆ

ZnO/Ag նանոկոմպոզիտների ստացման համար մշակվել է միկրոալիքային (ՄԱ) մեթոդ՝ օգտագործելով քիմիական նստեցման և ջերմանկայուն միացությունների քայքայման եղանակը։ Քիմիական համատեղ նստեցումը պարզ և արդյունավետ մեթոդ է՝ համեմատած ZnO/Ag նանոկոմպոզիտների ստացման այլ մեթոդների հետ։ Սինթեզված արտադրանքի բնութագրերը որոշվել են դիֆերենցիալ ջերմային վերլուծության (DTA), ռենտգենյան ֆազային վերլուծության (XRD) և սկան էլեկտրոնային մանրադիտակի (SEM) միջոցով։ Ուսումնասիրությունները ցույց են տալիս ՄԱ մշակման արդյունավետությունը ZnO/Ag նանոկոմպոզիտների ստացման համար։

MICROWAVE SYNTHESIS OF ZnO/Ag NANOCOMPOSITE

A.A. SARGSYAN, V.V. BAGHRAMYAN, N.B. KNYAZYAN, R.K. HOVSEPYAN, N.R. AGHAMALYAN, G.R. BADALYAN

A microwave (MW) method has been developed for the production of ZnO/Ag nanocomposites using chemical precipitation and decomposition of thermally unstable compounds. Chemical co-precipitation is a simple and effective method compared to other methods for producing ZnO/Ag nanocomposites. The characteristics of the synthesized product were determined by differential thermal analysis (DTA), X-ray phase analysis (XRD) and scanning electron microscopy (SEM). The studies show the effectiveness of MW processing for the preparation of ZnO/Ag nanocomposites.