УДК 535; 343.1

СПЕКТРОСКОПИЧЕСКИЕ ВОЗМОЖНОСТИ КРИСТАЛЛОВ LaF₃:Er³⁺ ДЛЯ КАСКАДНЫХ MIR ЛАЗЕРОВ

Г.Г. ДЕМИРХАНЯН^{1,2*}, Р.Б. КОСТАНЯН²

¹Армянский государственный педагогический университет им. Абовяна, Ереван, Армения ²Институт физических исследований НАН Армении, Аштарак, Армения

*e-mail: gdemirkhanyan@gmail.com

(Поступила в редакцию 3 июля 2020 г.)

Проведено теоретическое исследование спектроскопических свойств низкофононного кристалла LaF₃:Er³⁺, определяющее их лазерные возможности в средней инфракрасной области длин волн (2.62–4.97 мкм). Построены волновые функции штарковских подуровней мультиплетов ${}^{4}S_{3/2}$, ${}^{4}F_{9/2}$, ${}^{4}I_{1/2}$, и ${}^{4}I_{13/2}$ иона Er³⁺ в LSJM-представлении. Вычислены силы линий косвенных электродипольных и магнитодипольных межштарковских переходов, рассчитаны основные спектроскопические и кинетические характеристики оптического спектра примесного иона.

1. Введение

Кристаллы фторида лантана, легированные ионами группы редких земель (LaF₃:Er³⁺), имея низкочастотный фононный спектр ($\omega_m \cong 300 \div 350 \text{ cm}^{-1}$), являются одним из перспективных кандидатов лазерных материалов для получения генерации в средней инфракрасной (MIR) области длин волн [1]. Целенаправленный поиск материалов для MIR – лазеров имеет особое практическое значение, поскольку они являются составной частью оптической лидарной системы. Последний может быть использован для сбора важных данных о химическом составе атмосферы: выявления концентраций, содержащихся в атмосфере токсичных соединений CO₂, CH₄, CO, NO₂, SO₂ и т.д. [2]. Оптические спектры примесного поглощения и излучения кристалла LaF₃:Er³⁺ исследованы в [3-6]. В частности, в [4] определены энергетические уровни примесного иона (Рис.1), проведен стандартный анализ Джадда-Офельта спектров поглощения, определены параметры интенсивности ($\Omega_2 = 1.07 \times 10^{-20} \text{ cm}^2$, $\Omega_4 = 0.28 \times 10^{-20} \text{ cm}^2$, $\Omega_6 = 0.63 \times 10^{-20} \text{ cm}^2$). В [3] вычислены вероятности косвенных электродипольных (КЭД) и магнитодипольных (МД) межмультиплетных переходов, определены времена жизни возбужденных мультиплетов.

Рис.1. Схема энергетических уровней LaF₃ –Er³⁺.

В настоящей работе приведены результаты количественных вычислений основных спектроскопических характеристик кристалла $LaF_3:Er^{3+}$, определяющие их лазерный потенциал в диапазоне длин волн 2.62–4.97 мкм. Расчеты проведены с учетом штарковской структуры оптического спектра примесного иона.

2. Волновые функции штарковских подуровней

Как известно, в кристаллическом поле (КП) вырожденные мультиплетные состояния свободного иона Er^{3+} расщепляются на крамерсовские дублеты, при этом волновая функция ν -ого штарковского состояния, в приближении слабого КП (LSJM представление), строится в виде линейной комбинации

$$\left|\nu\right\rangle = \sum_{M} a_{JM}^{(\nu)} \left| LSJM \right\rangle, \tag{1}$$

где L и S – угловой и спиновый моменты, M – проекция полного углового момента J, $a_{JM}^{(v)}$ – численные коэффициенты. Полагая, что в матрице кристалла LaF₃:Er³⁺ точечная симметрия ближайшего окружения примесного иона D_{3h} [6], гамильтониан КП, в рамках приближения точечных зарядов, можно записать в виде:

$$\widehat{H}_{CF} = \alpha_J B_{20} \widehat{O}_{20} + \beta_J B_{40} \widehat{O}_{40} + \gamma_J B_{60} \widehat{O}_{60} + \gamma_J B_{60} \widehat{O}_{60} , \qquad (2)$$

где α_J , β_J и γ_J – постоянные Стивенса, значения которых для иона Er^{3+} приведены в приложении [8], B_{kq} – параметры КП, численные значения которых, определенные из условия наилучшего согласия расчетных и экспериментальных значений штарковских расщеплений мультиплетных состояний, приведены в [6]: $B_{20} = 141$, $B_{40} = 145$, $B_{60} = 48.3$, $B_{66} = 430$ (в см⁻¹), \hat{O}_{kq} – эквивалентные операторы, матричные элементы которых табулированы в [9]. Волновые функции штарковских состояний, построенные путем внутримультиплетной диагонализации потенциала КП (2) на основе базисных функций неприводимых представлений точечной группы D_{3h} [7], приведены в приложении.

3. Спектроскопические характеристики кристалла LaF₃:Er³⁺

При теоретическом исследовании спектроскопических свойств примесных кристаллов наиболее удобной величиной является сила линии межштаркоского перехода $i \rightarrow f$ [10]:

$$S_{i \to f} = \chi_{ed} S_{i \to f}^{ed} + \chi_{md} S_{i \to f}^{md}, \qquad (3)$$

где первое слагаемое соответствует КЭД

$$S_{i \to f}^{(ied)} = \sum_{t=2,4,6} \Omega_t A_t^{(ied)} \left(i \to f \right) \left| \left\langle f \left\| U_t \right\| i \right\rangle \right|^2, \tag{4}$$

а второе – МД переходам

$$S_{i \to f}^{(md)} = A_{i \to f}^{(md)} \cdot S_{md} .$$
⁽⁵⁾

В (3)–(5) введены следующие обозначения: $\chi_{ed} = n(n^2 + 2)^2/9$ и $\chi_{md} = n^3$ – поправки локального КП (n – коэффициент преломления на длине перехода), Ω_t (t = 2, 4, 6) – параметры интенсивности, $\langle i \| u_t \| f \rangle$ – приведенный матричный элемент неприводимого единичного оператора u_t ранга t, явное выражение которого приведено в работах [10, 11], $A_t^{(ied)}(i \rightarrow f)$ и $A_{i\rightarrow f}^{(md)}$ – коэффициенты межштарковского КЭД и МД переходов [11–13]:

$$A_{t}^{(ied)}(i \to f) = \sum_{m=-t}^{t} \left| \sum_{M_{i},M_{f}} (-1)^{J_{f}-M_{f}} a_{J_{f},M_{f}}^{*(f)} a_{J_{i},M_{i}}^{(i)} \begin{pmatrix} J_{f} & t & J_{i} \\ -M_{f} & m & M_{i} \end{pmatrix} \right|^{2},$$
(6)

$$A_{i \to f}^{(md)} = \frac{1}{2J_f + 1} \cdot \sum_{m} \left| \sum_{M_i M_f} (-1)^{J_f - M_f} a_{J_f M_f}^{*(f)} a_{J_i M_i}^{(i)} \cdot \begin{pmatrix} J_f & 1 & J_i \\ -M_f & m & M_i \end{pmatrix} \right|^2,$$
(7)

 S_{md} – сила линии межмультиплетного МД перехода [3,11], $\begin{pmatrix} \vdots & \vdots \\ \vdots & \vdots \end{pmatrix}$ – 3*j* символ.

Приведенные матричные элементы рассчитаны, используя вычисленные в [8] значения генеалогических коэффициентов иона Er^{3+} (4 f^{11}):

$$\left|\left\langle {}^{4}I_{11/2} \left\| u_{2} \right\| {}^{4}I_{13/2} \right\rangle \right|^{2} = 0.0332, \quad \left|\left\langle {}^{4}I_{11/2} \left\| u_{4} \right\| {}^{4}I_{13/2} \right\rangle \right|^{2} = 0.1706,$$

$$\left|\left\langle {}^{4}I_{11/2} \left\| u_{6} \right\| {}^{4}I_{13/2} \right\rangle \right|^{2} = 1.0915,$$
(8a)

$$\left|\left\langle {}^{4}I_{9/2} \left\| u_{2} \right\| {}^{4}I_{11/2} \right\rangle \right|^{2} = 0.0021, \quad \left|\left\langle {}^{4}I_{9/2} \left\| u_{4} \right\| {}^{4}I_{11/2} \right\rangle \right|^{2} = 0.0690,$$

$$\left|\left\langle {}^{4}I_{9/2} \left\| u_{6} \right\| {}^{4}I_{11/2} \right\rangle \right|^{2} = 0.1520,$$
(8b)

$$\left|\left\langle {}^{4}F_{9/2} \left\| u_{2} \right\| {}^{4}I_{9/2} \right\rangle \right|^{2} = 0.122, \quad \left|\left\langle {}^{4}F_{9/2} \left\| u_{4} \right\| {}^{4}I_{9/2} \right\rangle \right|^{2} = 0.0061,$$

$$\left|\left\langle {}^{4}F_{9/2} \left\| u_{6} \right\| {}^{4}I_{9/2} \right\rangle \right|^{2} = 0.0203,$$
(8c)

$$\left|\left\langle {}^{4}S_{3/2} \left\| u_{2} \right\| {}^{4}F_{9/2} \right\rangle \right|^{2} = 0, \quad \left|\left\langle {}^{4}S_{3/2} \left\| u_{4} \right\| {}^{4}F_{9/2} \right\rangle \right|^{2} = 0.0001,$$

$$\left|\left\langle {}^{4}S_{3/2} \left\| u_{6} \right\| {}^{4}F_{9/2} \right\rangle \right|^{2} = 0.0228.$$
(8d)

Значения сил линий, поперечных сечений и вероятностей спонтанных межштарковских переходов $v_i({}^{4}S_{3/2}) \rightarrow k_f({}^{4}F_{9/2}), \quad k_i({}^{4}F_{9/2}) \rightarrow \phi_f({}^{4}I_{9/2}),$ $\phi_i({}^{4}I_{9/2}) \rightarrow \vartheta_f({}^{4}I_{11/2})$ и $\vartheta_i({}^{4}I_{11/2}) \rightarrow \mu_f({}^{4}I_{13/2})$, рассчитанные при n = 1.6, приведены в табл.1–4.

Из Табл.1 видно, что сила межмультиплетного перехода ${}^{4}S_{3/2} \rightarrow {}^{4}F_{9/2}$ мала (5.34×10⁻²² cm²), чем и обусловлен пренебрежимо малый вклад этого перехода в процесс распада уровня ${}^{4}S_{3/2}$ [3]. Сила КЭД межмультиплетного

Табл.1. Спектроскопические характеристики спектральныхлиний межштарковских переходов $v({}^{4}S_{3/2}) \rightarrow k({}^{4}F_{9/2})$

переход	2	$S_{i \to f}$,	$* \sigma \Gamma_{cm^{-1}}$,	$A_{i \to f}$,
	λ, мкм	$10^{-23}{\rm cm}^2$	$10^{-20}{\rm cm}^2$	s^{-1}
$\nu_1 \rightarrow k_1$	3.159	3.6238	0.2809	0.083
$\rightarrow k_2$	3.205	3.2645	0.2437	0.072
$\rightarrow k_3$	3.213	1.3330	0.1015	0.029
$\rightarrow k_4$	3.244	2.5503	0.1928	0.054
$\rightarrow k_5$	3.300	2.5743	0.1921	0.052
$v_2 \rightarrow k_1$	3.130	1.6964	0.1329	0.040
$\rightarrow k_2$	3.176	2.0557	0.1574	0.046
$\rightarrow k_3$	3.184	3.9857	0.3060	0.089
$\rightarrow k_4$	3.213	2.7695	0.2063	0.060
$\rightarrow k_5$	3.269	2.8571	0.2139	0.059

* Г – ширина соответствующей спектральной линии в см⁻¹

λ мкм	$S_{i o f}$,	$* \sigma \Gamma_{cm^{-1}},$	$A_{i \to f}$
70, MRM	$10^{-23}{\rm cm}^2$	$10^{-20} \mathrm{cm}^2$	\mathbf{s}^{-1}
3.362	11.8418	0.7963	0.2256
3.499	19.7870	1.2779	0.3335
3.587	12.1305	0.7259	0.1894
3.720	4.5166	0.2974	0.0688
3.748	4.9003	0.2988	0.0679
3.311	9.6590	0.6594	0.1925
3.444	3.8915	0.2558	0.0691
3.529	21.2723	1.2935	0.3494
3.658	13.1575	1.4646	0.1939
3.685	5.6359	0.3461	0.0817
3.303	10.3476	0.7062	0.2062
3.434	7.1027	0.4679	0.1272
3.519	34.6767	2.2264	0.5745
3.647	12.7538	0.7900	0.1895
3.674	19.9460	1.2285	0.2916
3.271	15.7104	1.0853	0.3247
3.400	8.9743	0.5966	0.1650
3.483	8.6124	0.5593	0.1477
3.609	20.6727	1.2947	0.3175
3.635	13.7814	0.8558	0.2065
3.215	15.9011	1.1155	0.3442
3.340	8.7884	0.5946	0.1704
3.420	8.1437	0.5381	0.1471
3.541	20.7252	1.3207	0.3376
3.566	14.2210	0.9006	0.2258
	λ, мкм 3.362 3.499 3.587 3.720 3.748 3.311 3.444 3.529 3.658 3.685 3.303 3.434 3.519 3.647 3.674 3.271 3.400 3.483 3.609 3.635 3.215 3.340 3.420 3.541 3.566	λ , MKM $S_{i \rightarrow f}$, $10^{-23} \mathrm{cm}^2$ 3.36211.84183.49919.78703.58712.13053.7204.51663.7484.90033.3119.65903.4443.89153.52921.27233.65813.15753.6855.63593.30310.34763.4347.10273.51934.67673.64712.75383.67419.94603.27115.71043.4008.97433.4838.61243.60920.67273.63513.78143.21515.90113.3408.78843.4208.14373.54120.72523.56614.2210	λ , MKM $S_{i \rightarrow f}$, $10^{-20} \mathrm{cm}^2$ * $\sigma \Gamma_{cm^{-1}}$, $10^{-20} \mathrm{cm}^2$ 3.36211.84180.79633.49919.78701.27793.58712.13050.72593.7204.51660.29743.7484.90030.29883.3119.65900.65943.4443.89150.25583.52921.27231.29353.65813.15751.46463.6855.63590.34613.30310.34760.70623.4347.10270.46793.51934.67672.22643.64712.75380.79003.67419.94601.22853.27115.71041.08533.4008.97430.59663.4838.61240.55933.60920.67271.29473.63513.78140.85583.21515.90111.11553.3408.78840.59463.4208.14370.53813.54120.72521.32073.56614.22100.9006

Табл.2. Спектроскопические характеристики спектральных линий межштарковских переходов $k({}^{4}F_{9/2}) \rightarrow \phi({}^{4}I_{9/2})$

* Γ – ширина соответствующей спектральной линии в см $^{-1}$

перехода ${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$ составляет 6.54×10⁻²¹ см², что для вероятности спонтанного радиационного перехода приводит к значению 1.1 с⁻¹ (Табл.2), согласующемуся с значением, полученным в [3]: $A_{ed} = 1.2$ с⁻¹.

			Sixe.	*σΓ ₋₁ .	A
пеј	реход	λ, мкм	10^{-23} cm^2	10^{-20} cm^2	\mathbf{s}^{-1}
\$ _1	$\rightarrow \vartheta_1$	4.721	66.2793	3.4488	0.4555
	$\rightarrow \vartheta_2$	4.744	166.4830	8.6254	1.1296
	$\rightarrow \vartheta_3$	4.787	4.3895	0.2254	0.0289
	$\rightarrow \vartheta_4$	4.819	42.0707	2.1483	0.2732
	$\rightarrow \vartheta_5$	4.852	9.4657	0.4797	0.0600
	$\rightarrow \vartheta_6$	4.973	4.2481	0.2099	0.0250
\$ _2	$\rightarrow \vartheta_1$	4.476	26.0803	1.4294	0.2096
	$\rightarrow \vartheta_2$	4.596	24.0186	1.3135	0.1909
	$\rightarrow \vartheta_3$	4.535	44.4508	2.4091	0.3455
	$\rightarrow \vartheta_4$	4.564	82.3669	4.4352	0.6277
	$\rightarrow \vartheta_5$	4.593	90.2827	4.8296	0.6746
	$\rightarrow \vartheta_6$	4.701	26.9390	1.4076	0.1875
\$ 3	$\rightarrow \vartheta_1$	4.340	7.8409	0.4434	0.0693
	$\rightarrow \vartheta_2$	4.359	5.0287	0.2829	0.0438
	$\rightarrow \vartheta_3$	4.396	185.8530	10.3694	1.5765
	$\rightarrow \vartheta_4$	4.423	3.1428	0.1746	0.0263
	$\rightarrow \vartheta_5$	4.450	83.7593	4.6209	0.6868
	$\rightarrow \vartheta_6$	4.552	8.4148	0.4544	0.0646
ϕ_4	$\rightarrow \vartheta_1$	4.160	120.5810	7.1160	1.2103
	$\rightarrow \vartheta_2$	4.177	37.1515	2.1817	0.3676
	$\rightarrow \vartheta_3$	4.211	3.5114	0.2047	0.0340
	$\rightarrow \vartheta_4$	4.235	63.8633	3.6971	0.6054
	$\rightarrow \vartheta_5$	4.261	22.2426	1.2817	0.2079
	$\rightarrow \vartheta_6$	4.354	2.4183	0.1363	0.0212
\$ 5	$\rightarrow \vartheta_1$	4.125	27.6117	1.6407	0.2832
	$\rightarrow \vartheta_2$	4.143	4.5983	0.2724	0.0468
	$\rightarrow \vartheta_3$	4.175	5.9414	0.3497	0.0592
	$\rightarrow \vartheta_4$	4.200	22.0277	1.2871	0.2148
	$\rightarrow \vartheta_5$	4.225	31.3596	1.8238	0.3015
	$\rightarrow \vartheta_6$	4.316	202.6050	11.5128	1.8159

Табл.3. Спектроскопические характеристики спектральных линий межштарковских переходов $\phi({}^{4}I_{9/2}) \rightarrow \vartheta({}^{4}I_{11/2})$

* $\Gamma-$ ширина соответствующей спектральной линии в см $^{-1}$

переход	λ, мкм	$S_{i o f}$,	$* \sigma \Gamma_{cm^{-1}}$,	$A_{i \rightarrow i}$,
		10^{-23} cm^2	10^{-20} cm^2	s^{-1}
$\vartheta_1 \rightarrow \mu_1$	2.705	243.1820	20.4526	8.9275
$\rightarrow \mu_2$	2.724	104.0750	8.6588	3.7371
$\rightarrow \mu_3$	2.754	50.3983	4.1065	1.7511
$\rightarrow \mu_4$	2.777	22.7269	1.8401	0.7644
$\rightarrow \mu_5$	2.795	21.3236	1.7108	0.7095
$\rightarrow \mu_6$	2.819	3.8441	0.3027	0.1239
$\rightarrow \mu_7$	2.878	21.9667	1.6920	0.6645
$\vartheta_2 \rightarrow \mu_1$	2.698	19.2238	1.5785	0.7057
$\rightarrow \mu_2$	2.717	162.9140	13.5351	5.8498
$\rightarrow \mu_3$	2.747	12.9032	1.0395	0.4483
$\rightarrow \mu_4$	2.769	178.6010	14.5659	6.0720
$\rightarrow \mu_5$	2.787	38.4929	3.0897	1.2807
$\rightarrow \mu_6$	2.811	27.0332	2.1520	0.8804
$\rightarrow \mu_7$	2.869	28.3668	2.1938	0.8671
$\vartheta_3 \rightarrow \mu_1$	2.684	75.0195	6.2943	2.8162
$\rightarrow \mu_2$	2.703	40.3716	3.3758	1.4821
$\rightarrow \mu_3$	2.732	212.8830	17.6765	7.5604
$\rightarrow \mu_4$	2.755	26.2279	2.1255	0.9113
$\rightarrow \mu_5$	2.772	84.4569	6.9061	2.8713
$\rightarrow \mu_6$	2.796	18.5120	1.4647	0.6094
$\rightarrow \mu_7$	2.854	10.0976	0.7931	0.3152
$\vartheta_4 \rightarrow \mu_1$	2.674	4.4131	0.3682	0.1675
$\rightarrow \mu_2$	2.693	12.8300	1.0699	0.4763
$\rightarrow \mu_3$	2.722	24.0152	1.9632	0.8623
$\rightarrow \mu_4$	2.744	89.8604	7.4216	3.1565
$\rightarrow \mu_5$	2.762	72.3305	5.9300	2.4859
$\rightarrow \mu_6$	2.786	229.2190	18.5289	7.6265
$\rightarrow \mu_7$	2.843	34.8710	2.7329	1.0002
$\vartheta_5 \rightarrow \mu_1$	2.664	7.6162	0.6385	0.2924
$\rightarrow \mu_2$	2.682	54.2900	4.5359	2.0380
$\rightarrow \mu_3$	2.712	77.5617	6.4740	2.8160
$\rightarrow \mu_4$	2.734	57.1257	4.7432	2.0288
$\rightarrow \mu_5$	2.751	160.1360	13.1543	5.5639
$\rightarrow \mu_6$	2.775	89.4245	7.3273	3.0402
$\rightarrow \mu_7$	2.831	21.3726	1.6796	0.6814
$\vartheta_6 \rightarrow \mu_1$	2.629	51.4941	4.2540	1.9770
$\rightarrow \mu_2$	2.647	26.2572	2.1238	0.9857
$\rightarrow \mu_3$	2.675	23.0353	1.8611	0.8363
$\rightarrow \mu_4$	2.697	26.2061	2.0799	0.9307
$\rightarrow \mu_5$	2.714	23.9994	1.8930	0.8339
$\rightarrow \mu_6$	2.737	32.7152	2.5604	1.1122
$\rightarrow \mu_7$	2.792	284.0730	22.1554	9.0565

Табл.4. Спектроскопические характеристики спектральных линий межштарковских переходов $\vartheta({}^{4}I_{11/2}) \rightarrow \mu({}^{4}I_{13/2})$

* Γ – ширина соответствующей спектральной линии в см $^{-1}$

Отметим, что в [3] рассмотрены перемешанные по орбитальным и спиновым моментам мультиплетные состояния с фиксированным значением полного углового момента. В результате снимается запрет на магнитодипольный переход ${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$, что приводит к увеличению вероятности суммарного радиационного перехода до $A_{tot} = 3.6$ с⁻¹. Заметим, что аналолгичное расхождение возможна во всех случаях, когда межмультиплетные магнитодипольные переходы запрещены. При отсутствии же запрета на магнитодипольные переходы, как в случае ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ перехода, налицо хорошее совпадение рассчитанного значения вероятности радиационного перехода, 16.2 с⁻¹ (Табл.4), с значением, полученным в [3]–16.1 с⁻¹.

4. Заключение

Полученные значения поперечных сечений и вероятностей спонтанных межштарковских переходов дают возможность выявить лазерные возможности (в том числе, условия эффективной каскадной генерации) кристалла LaF₃:Er³⁺. Так при возбуждении на длине волны 0.52 мкм возможна квазитрехуровневая генерация по нижеприведенной схеме

$${}^{4}I_{15/2} \stackrel{0.52\mu m}{\Rightarrow} {}^{2}H_{11/2} \rightsquigarrow \nu_{1,2} \left({}^{4}S_{3/2}\right) \stackrel{3.213\mu m}{\rightarrow} k_{3,4} \left({}^{4}F_{9/2}\right) \rightsquigarrow k_{1} \left({}^{4}F_{9/2}\right) \stackrel{3.50\mu m}{\rightarrow} \phi_{2} \left({}^{4}I_{9/2}\right) \rightsquigarrow ,$$

$$\rightsquigarrow \phi_{1} \left({}^{4}I_{9/2}\right) \stackrel{4.74\mu m}{\rightarrow} \vartheta_{2} \left({}^{4}I_{11/2}\right) \rightsquigarrow \vartheta_{1,2} \left({}^{4}I_{11/2}\right) \stackrel{2.716-2.742\mu m}{\rightarrow} \mu_{2} \left({}^{4}I_{13/2}\right) \rightsquigarrow \mu_{1} \left({}^{4}I_{13/2}\right) ,$$

или ее отдельного фрагмента.

Прилложение

$^{2S+1}L_{\rm J}$	J	$\alpha_{\scriptscriptstyle J}$	β_J	γ_J
	$\frac{15}{2}$	$\frac{2^2}{3^2\cdot 5^2\cdot 7}$	$\frac{2}{3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 13}$	$\frac{2^3}{3^3\cdot 7\cdot 11^2\cdot 13^2}$
41	$\frac{13}{2}$	$\frac{1}{5^2 \cdot 13}$	$\frac{2^2}{3^2\cdot 5\cdot 11^2\cdot 13}$	$\frac{1}{3^3\cdot 11^2\cdot 13^2}$
1,	$\frac{11}{2}$	$\frac{2^3 \cdot 17}{3 \cdot 7 \cdot 11^2 \cdot 13}$	$\frac{2\cdot 17\cdot 47}{3^3\cdot 5\cdot 7\cdot 11^3\cdot 13}$	$\frac{2^5 \cdot 5 \cdot 19}{3^4 \cdot 7 \cdot 11^3 \cdot 13^2}$
	$\frac{9}{2}$	$\frac{7}{3^2 \cdot 11^2}$	$\frac{2^3 \cdot 17}{3^3 \cdot 11^3 \cdot 13}$	$\frac{5\cdot 17\cdot 19}{3^3\cdot 7\cdot 11^3\cdot 13^2}$
${}^{4}F_{J}$	$\frac{9}{2}$	$\frac{157}{2^5 \cdot 3^4 \cdot 7}$	$-\frac{1}{2^2\cdot 3\cdot 7^2\cdot 11}$	$\frac{163}{2^4\cdot 3^5\cdot 7^2\cdot 11\cdot 13}$

Табл.5. Коэффициенты Стивенса нижних мультиплетов иона Ег³⁺

⁴ S _{3/2} :	$v_2 = \left \frac{3}{2} \pm \frac{3}{2} \right\rangle$
	$\nu_1 = \pm \left \frac{3}{2} \pm \frac{1}{2} \right\rangle$
${}^{4}F_{9/2}$:	$k_{5} = 0.7178 \left \frac{9}{2} \mp \frac{7}{2} \right\rangle + 0.6962 \left \frac{9}{2} \pm \frac{5}{2} \right\rangle$
	$k_4 = -0.6962 \left \frac{9}{2} \pm \frac{7}{2} \right\rangle + 0.7178 \left \frac{9}{2} \pm \frac{5}{2} \right\rangle$
	$k_3 = \pm 0.9723 \left \frac{9}{2} \mp \frac{9}{2} \right\rangle \pm 0.2338 \left \frac{9}{2} \pm \frac{3}{2} \right\rangle$
	$k_2 = \mp 0.2338 \left \frac{9}{2} \mp \frac{9}{2} \right\rangle \pm 0.9723 \left \frac{9}{2} \pm \frac{3}{2} \right\rangle$
	$k_1 = \left \frac{9}{2} \pm \frac{1}{2}\right\rangle$
${}^{4}I_{9/2}:$	$\phi_5 = \pm 0.9332 \left \frac{9}{2} \mp \frac{9}{2} \right\rangle \pm 0.3595 \left \frac{9}{2} \pm \frac{3}{2} \right\rangle$
	$\phi_4 = 0.8487 \left \frac{9}{2} \pm \frac{7}{2} \right\rangle + 0.5288 \left \frac{9}{2} \pm \frac{5}{2} \right\rangle$
	$\phi_3 = \left \frac{9}{2} \pm \frac{1}{2} \right\rangle$
	$\phi_2 = \mp 0.3595 \left \frac{9}{2} \mp \frac{9}{2} \right\rangle \pm 0.9332 \left \frac{9}{2} \pm \frac{3}{2} \right\rangle$
	$\phi_{1} = -0.5288 \left \frac{9}{2} \mp \frac{7}{2} \right\rangle + 0.8487 \left \frac{9}{2} \pm \frac{5}{2} \right\rangle$
${}^{4}I_{11/2}:$	$\vartheta_6 = \pm 0.9947 \left \frac{11}{2} \mp \frac{11}{2} \right\rangle \pm 0.1032 \left \frac{11}{2} \pm \frac{1}{2} \right\rangle$
	$\vartheta_5 = 0.2235 \left \frac{11}{2} \pm \frac{9}{2} \right\rangle + 0.9747 \left \frac{11}{2} \pm \frac{3}{2} \right\rangle$
	$\vartheta_4 = \pm 0.4153 \left \frac{11}{2} \pm \frac{7}{2} \right\rangle \pm 0.9097 \left \frac{11}{2} \pm \frac{5}{2} \right\rangle$
	$\vartheta_3 = \mp 0.1032 \left \frac{11}{2} \mp \frac{11}{2} \right\rangle \pm 0.9947 \left \frac{11}{2} \pm \frac{1}{2} \right\rangle$
	$\vartheta_2 = \pm 0.9097 \left \frac{11}{2} \mp \frac{7}{2} \right\rangle \mp 0.4153 \left \frac{11}{2} \pm \frac{5}{2} \right\rangle$
	$\vartheta_1 = 0.9747 \left \frac{11}{2} \mp \frac{9}{2} \right\rangle - 0.2235 \left \frac{11}{2} \pm \frac{3}{2} \right\rangle$

Табл.6. Волновые функции штарковских состояний иона Er³⁺ в LaF₃

Табл.6. (продолжение)

⁴ I _{13/2}	$\mu_7 = 0.0146 \left \frac{13}{2} \pm \frac{11}{2} \right\rangle + 0.1063 \left \frac{13}{2} \pm \frac{1}{2} \right\rangle + 0.9942 \left \frac{13}{2} \pm \frac{13}{2} \right\rangle$
	$\mu_{6} = 0.6695 \left \frac{13}{2} \mp \frac{7}{2} \right\rangle + 0.7428 \left \frac{13}{2} \pm \frac{5}{2} \right\rangle$
	$\mu_{5} = \pm 0.5067 \left \frac{13}{2} \mp \frac{9}{2} \right\rangle \pm 0.8621 \left \frac{13}{2} \pm \frac{3}{2} \right\rangle$
	$\mu_{4} = 0.7428 \left \frac{13}{2} \mp \frac{7}{2} \right\rangle - 0.6695 \left \frac{13}{2} \pm \frac{5}{2} \right\rangle$
	$\mu_{3} = -0.3538 \left \frac{13}{2} \pm \frac{11}{2} \right\rangle - 0.9295 \left \frac{13}{2} \pm \frac{1}{2} \right\rangle + 0.1046 \left \frac{13}{2} \pm \frac{13}{2} \right\rangle$
	$\mu_{2} = \pm 0.8621 \left \frac{13}{2} \mp \frac{9}{2} \right\rangle \mp 0.5067 \left \frac{13}{2} \pm \frac{3}{2} \right\rangle$
	$\mu_{1} = -0.9352 \left \frac{13}{2} \mp \frac{11}{2} \right\rangle + 0.3532 \left \frac{13}{2} \pm \frac{1}{2} \right\rangle - 0.0240 \left \frac{13}{2} \pm \frac{13}{2} \right\rangle$

ЛИТЕРАТУРА

- 1. B.M. Walsh, H.R. Lee, N.P. Barnes. J. Luminescence, 169, 400, (2016).
- F.K. Tittel, D. Richter, A. Fried. Mid-infrared laser applications in spectroscopy, Solid-State Mid-Infrared Laser Sources, Springer–Verlag, 2003.
- 3. M.J. Weber. Phys. Rev., 157(2), 262 (1967).
- 4. **W.T. Carnal.** Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃, H. Crosswhite and H. M. Crosswhite Department of Physics. The Johns Hopkins University, 1995.
- 5. W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana. J. Chem. Phys., 90(7), 3443 (1989).
- 6. D.E. Onopko. Optics and Spectroscopy, 24, 301 (1968).
- 7. **А.М.** Леушин. Таблицы функций, преобразующихся по неприводимым представлениям кристаллографических точечных групп, М., Наука, 1968.
- 8. А.Г. Демирханян, А.Р. Мкртчян, А.Г. Бадалян. Ученые записи АГПУ, 2, 38 (2015).
- 9. А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов, т. 2, М., Мир, 1972.
- 10. G.G. Demirkhanyan. Laser Physics, 16, 1054 (2005).
- 11. G.G. Demirkhanyan, R.B. Kostanyan. Proceedings SPIE, 7998, 799805 (2011).
- 12. Г.Г. Демирханян, Э.П. Коканян, А.Г. Демирханян. Изв. НАН Армении, Физика, 50, 338 (2015).
- 13. Э.П. Коканян, Г.Г. Демирханян, А.Г. Демирханян. Изв. НАН Армении, Физика, 53, 301 (2018).

LaF_3: Er^{3+} ԲՅՈՒՐԵՂԻ ՍՊԵԿՏՐԱԴԻՏԱԿԱՆ ՀՆԱՐԱՎՈՐՈՒԹՅՈՒՆՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒՄԸ ԿԱՍԿԱԴԱՅԻՆ MIR ԼԱՉԵՐՆԵՐԻ ՍՏԱՑՄԱՆ ՀԱՄԱՐ

Գ.Գ. ԴԵՄԻՐԽԱՆՅԱՆ, Ռ.Բ. ԿՈՍՏԱՆՅԱՆ

Միջին ինֆրակարմիր տիրույթում (2.62–4.97 մկմ) ցածր ֆոնոնային LaF3:Er³⁺ բյուրեղների լազերային հնարավորությունները բացահայտելու նպատակով ուսումնասիրված են նրանց սպեկտրադիտական հատկությունները։ Կառուցված են ⁴S3², ⁴F9², ⁴I9², ⁴I11², և ⁴I13² մուլտիպլետների Շտարկյան ենթամակարդակների ալիքային ֆունկցիաները՝ LSJM-պատկերմամբ։ Հաշվարկված են անուղղակի էլեկտրեդիպոլային և մագնիսադիպոլային միջշտարկյան անցումների ուժերը, որոշված են խառնուրդային իոնի օպտիկական սպեկտրի հիմնական սպեկտրադիտական և կինետիկական բնութագրերը։

SPECTROSCOPIC CAPABILITIES OF LaF₃:Er³⁺ CRYSTALS FOR MIR LASERS CASCADE OPERATION

G.G. DEMIRKHANYAN, R.B. KOSTANYAN

A theoretical study of the spectroscopic properties of low-phonon LaF₃:Er³⁺ crystals, determining their laser capabilities in the mid-infrared wavelength range (2.62–4.97 μ m), was carried out. The wave functions of the Stark sublevels of ⁴S_{3/2}, ⁴F_{9/2}, ⁴I_{9/2}, ⁴I_{11/2}, and ⁴I_{13/2} of Er³⁺ ion by LSJM-representation are constructed. The line strengths of the indirect electric dipole and magnetic dipole inter-Stark transitions are calculated and the main spectroscopic and kinetic characteristics of the optical spectrum of the impurity ion are determined.