АСТРОФИЗИКА

TOM 22

ИЮНЬ, 1985

выпуск з

УДК: 524.37—355—36

ЛИНИИ ИОНОВ УГЛЕРОДА, АЗОТА И КИСЛОРОДА В СПЕКТРАХ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ. І. ВЕРОЯТНОСТИ ПЕРЕХОДОВ И СИЛЫ ОСЦИЛЛЯТОРОВ

П. О. БОГДАНОВИЧ, Р. А. ЛУКОШЯВИЧЮС, А. А. НИКИТИН, З. Б. РУДЗИКАС, А. Ф. ХОЛТЫГИН Поступила 20 октября 1984 Принята к печати 11 января 1985

Рассчитаны энергии уровней, длины волн и вероятности переходов для ряда астрофизически важных линий ионов С, N, O.

1. Введение. В спектрах планетарных туманностей (ПТ) как в видимой, так и в УФ и ИК-областях наблюдается большое число линий углерода: С I-С IV, азота: N I-NV и кислорода: О I-O VI [1-5]. Линии видимой области спектра, как правило, слабы (их интенсивности много меньше интенсивности линии H₃ ($I_{(\lambda)}/I(H_3) = 0.001 - 0.02$). Возникновение в спектрах ПТ этих линий обусловлено в значительной степени фоторекомбинационным механизмом. В УФ-спектрах наиболее сильными линиями нонов C, N и O являются линии C III λ 1909, C IV λ 1548, N IV λ 1468. N III λ 1640 и ряд других. Эти линии соответствуют переходам между низколежащими уровнями, в том числе как резонансным, так и интеркомбинационным. В ИК-спектрах ПТ обнаружены линии C IV (n→ $\rightarrow n'$), где n, n' = 8-10 [5]. Эти линии имеют рекомбинационное происхождение и вклад в их интенсивности ударных процессов, вероятно, мал. как он мал для соответстеующих линий водорода [6]. В то же время, линии УФ-области спектра в основном являются столкновительными. Из оценок [13] видно, что фоторекомбинация вносит вклад в их интенсивности не более 10%. Как указывается в [7, 8], эначительный вклад в их интенсивности дает диалектронная рекомбинация. Однако этот вывод основан на вычислениях вероятностей переходов из автоионизационных состояний ионов C, N и O, которые в настоящее время недостаточно надежны.

Сравнение наблюдаемых интенсивностей линий в спектрах ПТ с рассчитанными по моделям ПТ является одним из основных методов познания свойств ПТ (*T*., *n*., химический состав и т. д.). В спектрах ПТ весьма полно исследованы линии H, He I, He II и достигнуто хорошее согласие рассчитываемых и наблюдаемых их интенсивностей. Вместе с тем не хватает достаточно полных и последовательных расчетов интенсивностей линий ионов C, N и O в спектрах ПТ. Основной причиной неполноты расчетов является плохое знание вероятностей переходов в указанных ионах, особенно для высоковозбужденных линий, существенная роль двухэлектронных переходов и переходов в дважды возбужденных состояниях [9, 10]. В данной работе получены вероятности переходов и силы осцилляторов для ряда астрофизически важных линий ионов C II, C III, N III, N IV. O IV и OV. Эти величины в дальнейшем будут использованы для расчета интенсивностей линий этих ионов и определения содержания ионов углерода, азота и кислорода в ряде ПТ.

2. Методы расчета характеристик электронных переходов. Наиболее распространенным методом, используемым при массовом расчете энергетических спектров, длин волн и вероятностей переходов, является одноконфигурационное приближение. Обычно при втом, как и в настоящей работе, используются численные хартри-фоковские радиальные орбитали, а матрица энергии вычисляется в LS-связи с последующей ее диггонализацией. Получаемые в результате втого многотермные собственные функции используются для расчета матричных влементов оператора перехода. Такой подход позволяет определять характеристики как разрешенных переходов, так и запрещенных в LS-связи (например, интеркомбинационных) линий.

Однако, как известно, одноконфигурационное приближение во многих случаях обладает малой точностью, недостаточной для надежной интерпретации экспериментальных данных. Вероятности двух- и трехэлектронных переходов, играющих важную роль в спектрах ПТ, вообще не могут быть получены в одноконфигурационном приближении, так как они обусловлены корреляционными эффектами. В этих случаях необходимо проводить расчеты с учетом последних. Наиболее удобным методом, непосредственно обобщающим используемое одноконфигурационное приближение Хартри—Фока, является суперпозиция конфигураций, один из возможных вариантов которой описан ниже в конце раздела.

В спектрах ПТ, как указывалось выше, наблюдаются линии переходов между уровнями ионов С, N и O со значениями n от n = 2 до n = = 8 - 10, и необходимо знание характеристик возможных переходов с $n \leq 10$ на все нижележащие уровни. Как указывалось в работах [11, 12], в интенсивности рекомбинационных линий ионов С, N и O, в отличие от водорода, могут вносить вклад и переходы с вышележащих уровней с $n \geq 10$, что приводит к необходимости расчета еще большего числа переходов. Например, при расчете рекомбинационного спектра С III [13] использовалось более 200 значений вероятностей A_{ij} . Все используемые в расчетах значения вероятностей требуется вычислять по возможности в единой схеме. Если же использовать разнородные литературные источники вероятностей, то нерегулярные отклонения от истинных значений приводят к непредсказуемой погрешности расчетов интенсивностей линий.

Одноконфигурационные хартри-фоковские расчеты, использованные в данной работе для получения большей части вероятностей переходов, проводились с помощью программ, описанных в [14, 15]. Радиальные орбитали определялись независимо для усредненной по термам энергии каждой конфигурации. В операторе энергии, кроме обычных членов электростатического и спин-орбитального взаимодействия, учитывались и релятивистские поправки второго порядка в рамках оператора Брейта [16]. однако их роль в рассматриваемых ионах невелика. Оказалось, что во всех случаях LS-связь выполняется очень хорошо и коэффициенты разложения волновой функции при примесных членах обычно не превышают нескольких тысячных и только в некоторых случаях достигают сотых долей. Спин-орбитальное расщепление термов хорошо описывается в используемом поиближении, а в разностях энергий отдельных мультиплетов существуют погрешности. Уточненные длины волн λ* могут быть получены пои введении полуэмпирических поправок $\Delta(LS, L'S')$, постоянных для каждой пары термов.

Как уже упоминалось, для рассматриваемых ионов важны и двухвлектронные переходы типа 2snlLS - 2pn'l'L'S. Линии таких переходов наблюдались в спектрах ПТ и некоторых звезд [1-4]. Линия переходов $2s5f^{3}F - 2p3p^{3}D$ в ClII (λ 4156) является одной из самых интенсивных линий этого иона в спектрах ПТ. Следует также указать, что двухэлектронные переходы влияют и на интенсивности линий обычных одноэлектронных переходов. Например, переход CII λ 1063 ($2s4f^{2}F - 2p^{3}D$) уменьшает заселенность терма ${}^{2}F$, а тем самым и интенсивность линии λ 4267, принадлежащей переходу 2s4f - 2s3d в C II и являющейся наиболее интенсивной в спектрах ПТ.

Для получения вероятностей двухэлектронных переходов и уточнения некоторых одновлектронных в работе проведены расчеты с учетом наложения конфигураций. При втом для описания уточняемых конфигураций начального и конечного состояний использовались хартри-фоковские радиальные орбитали (РО). Если для поправочных конфигураций, налагаемых на уточняемую, использовать обычные хартри-фоковские функции, то получаемое приближение можно назвать суперпозицией конфигураций (СК). К сожалению, СК обладает плохой сходимостью по отношению к числу налагаемых конфигураций. Даже для достижения хорошей точности в энергии перехода требуется учет очень большого числа конфигураций, в том числе и содержащих функции непрерывного спектра. Сходи-

П. О. БОГДАНОВИЧ И ДР.

мость относительно характеристик влектронных переходов еще хуже. Максимальную сходимость обеспечивает использование РО, получаемых при решении многоконфигурационных уравнений Хартри—Фока—Юциса [18]. Однако решение этих уравнений довольно сложно, требует больших расходов машинного времени и не может быть рекомендовано для массовых расчетов. В работах [19, 20] было предложено вместо решений многоконфигурационных уравнений использовать функции, получаемые из РО исследуемой конфигурации с помощью простых преобразований:

$$P^{T}(n'l|r) = \frac{1}{N} (A - r^{2}) P(nl|r), \qquad (1)$$

$$P^{T}(n'l'|r) = \frac{1}{N} r^{\Delta l} P(nl|r), \quad \Delta l = l' - l \neq 0.$$
 (2)

Такие трансформированные функции использовались для описания тех электронов, которыми поправочная конфигурация отличается от уточняемой, и позволили получить существенное уточнение энергетических спектров в рамках теории возмущений [19, 20]. В настоящей работе так описанные поправочные конфигурации использовались для формирования матрицы энергии и описания многоконфигурационной функции.

3. Вероятности переходов в ионах углерода, азота и кислорода. Линии рассматриваемых нами ионов в спектрах ПТ можно, как указывалось ранее [10], разделить на три группы:

 А) переходы между конфигурациями с одним возбужденным влектроиом — «нормальные переходы».

Б) Переходы между конфигурациями с двумя возбужденными влектронами, один из которых не участвует в переходе, например, переход $2s2p3p^{4}P - 2s2p 3S^{4}D$ в NIII, λ 4515.

В) Двухэлектронные переходы, запрещенные в одноэлектронном приближении. Например, переход $2^{s}5f^{1}F - 2p3p^{1}D$ в СШ, λ 6351.

Как уже указывалось, во всех рассматриваемых случаях LS-связь является достаточно чистой. Поэтому вероятности переходов между отдельными уровнями A_{JJ} . могут характеризоваться через вероятности переходов между мультиплетами $A(LS \rightarrow L'S)$. Для перехода от $A(LS \rightarrow -L'S)$ к $A_{JJ'}$ необходимо воспользоваться соотношением:

$$A_{JJ'} = (2L+1)(2J'+1) \left\{ \begin{matrix} L & J & S \\ J' & L' & 1 \end{matrix} \right\}^2 A(LS \to L'S).$$
(3)

Для сокращения объема информации в табл. 1 приведены только вероятности переходов между термами для астрофизически важных линий

554

ЛИНИИ В СПЕКТРАХ ПЛАНЕТАРНЫХ ТУМАННОСТЕИ. І 555

Таблица 1

ДЛИНЫ ВОЛН (А) И ВЕРОЯТНОСТИ (10⁸ с-1) ЭЛЕКТРИЧЕСКИХ ДИПОЛЬНЫХ ПЕРЕХОДОВ В ИОНАХ С. N и О. РАССЧИТАННЫЕ В ОДНОКОНФИГУРАЦИОННОМ ПРИБЛИЖЕНИИ ХАРТРИ—ФОКА

Ион	Мультиплет	λ _{SKC0}	λχφ	ALXO	AV	A
1	2	3	4	5	6	7
	3= 2S-2p 2P	858	847	12.5	14.5	1 1
	4s 2S-2p 2P	636	626	3.74	4.30	1.200.0
	5: 2S-2p 2P	577	570	1.65	1.86	1
	6s 2S-2p 2P	552	545	0.876	1.04	
	$3d^{2}D-2p^{2}P$	687	676	26.2	23.0	
	$4d^2D - 2p^2P$	595	587	11.9	10.3	
Сп	$5d^2D-2p^2P$	560	554	6.10	5.31	
	$6d^{2}D-2p^{2}P$	543	537	3.52	3.06	1
	3p ² P - 3s ² S	6580	5798	0.651	0.80	Y.
	$3d^2D-3p^2P$	7233	7885	0.369	0.378	- 1 -
	4s 2S-3p 2P	3920	4107	1.81	1.61	1 1 1 K 1
	$4f^{2}F - 3d^{2}D$	4267	4314	2.38	2.37	
	3= 2S-2p 2P	452	444	37.8	43.1	
	4: 2S-2p 2P	332	328	12.1	13.8	
	5 = 2 S-2 p 2 P	300	297	5.52	6.27	
	6: 2S-2p 2P	286	283	2.95	3.39	1. 1. 1. 1.
	$3d^2D-2p^2P$	374	. 369	119	107	60.8 [20]
N III	4d ² D-2p ² P	315	311	49.2	44.0	
	5d 2D-2p 2P	293	290	24.4	21.9	
	6d 2D-2p 2P	282	280	15.5	12.4	
	3p 2P-3s 2S	4097	3876	1.19	0.968	
	3d ² D-3p ² P	4640	5010	0.679	0.673	1.1.1
	$4f^{2}F - 3d^{2}D$	1885	1899	12.2	12.1	•
	2p3s 2P-3s 2S	618	982	38.0		+
1 1 1	2p3s 4P-3s 2S	1224	1665	5.25-06		
OIV	$3d^2D - 2p^{3^2P}$	762	865	1.75-07		
	$3d ^{2}D - 2p^{3} ^{4}S$	529	538	1.42-06		
	$3d ^2D - 2p^3 ^2D$	606	651	8.84-03		
	2s2p 1P-2s2 1 S	977	1009	23.1	11.9	23 [9]
	2:3p 1P-2:21 S	386	399	38.6	35.0	36 [9]
CIII	2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	310	327	17.9	16.7	19 [9]
	2:5p 1P -2:21S	291	303	9.33	8.81	101 8.6
	2s6p 1P-2s21 S	230	292	5.43	5.14	5.8 [9]

Таблица 1 (окончание)	Þ
-------------	------------	---

1	2	3	4	5	6	7
	$2s2p P - 2s^2 S$	765	799	29.4	15.9	30 [32]
	2:3p 1P - 2:21 S	247	253	126	118	120 [32]
N IV	2:4p 1P - 2:2 1S	197	204	57.5	54.9	63 [32]
	2:5p 1P -2:21 S	182	187	29.9	28.8	32 [32]
	2.6p 2P - 2.21S	175	180	17.4	16.8	14 [32]

С II, N III, O IV, C III, N IV, вычисленные в одноконфигурационном приближении Хартри—Фока. Как обычно, вероятности переходов рассчитывались для двух эквивалентных форм оператора перехода: формы длины (A_L) и формы скорости (A_V) . Хотя, как известно, совпадение характеристик переходов, полученных в двух формах, не может всегда быть гарантией точности найденной величины, однако степень их расхождения позволяет в большинстве случаев верно оценивать достоверность получаемых результатов. Как видно из табл. 1, в случае изовлектронной последовательности бора (С II, N III и O IV) вероятности, рассчитанные в дзух формах, совпадают сравнительно хорошо. Это связано с тем, что рассматриваются переходы одного влектрона в поле заполненных оболочек. Хорошее согласие наблюдается и в длинах волн — теоретических и экспериментальных. В случае изовлектронной последовательности бериллия расхождения несколько больше.

В случае изовлектронной последовательности бериллия вероятности перехода $2s^2p - 2s^2$, полученные в двух формах сильно отличаются. Для установления надежных результатов в втом случае требуется учет корреляционных эффектов, который был проведен по методике, описанной в конце предыдущего раздела. При расчетах на уточняемую конфигурацию накладывалось по 15—20 поправочных конфигураций. В табл. 2 в качестве примера приведены коэффициенты разложения собственных функций, полученные в многоконфигурационном приближении (МКП). Из таблицы видно, какие поправочные конфигурации играют наиболее важную роль. Как и следовало ожидать, самым большим вкладом в уточняемые обладают квазивырожденные конфигурации, т. е. конфигурации, получающиеся из уточняемых без изменения главных квантовых чисел.

Результаты расчета длин волн и вероятностей переходов $1s^2 2p^2 - 1s^2 2s^2 p$ приведены в табл. 3. В данном случае МКП заметно улучшает те длины волн, которые при использовании приближения ХФ плохо совпадают с вкспериментом. В МКП существенно лучше согласуются вероятности, полученные исходя из двух форм оператора перехода. При этом наблюдается хорошее согласие и с результатами, полученными методами

ЛИНИИ В СПЕКТРАХ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ. I 557

теории возмущений (ТВ) с разложением по 1/ż [21], а также другими авторами в различных приближениях.

Таблица 2

РАЗЛОЖЕНИЕ СОБСТВЕННЫХ ФУНКЦИЙ НЕКОТОРЫХ УРОВНЕЙ ИОНОВ С. N. O В МНОГОКОНФИГУРАЦИОННОМ ПРИБЛИЖЕНИИ

Конф.	Ион	LSJ	1000-🖓 🕷
1s ² 2s ² 2p	СП	² P _{1/2}	969 $(2s^{2}2p)$ ² <i>P</i> - 211 $(2p^{3})$ ³ <i>P</i> - 23 $(2p3s^{2})$ ² <i>P</i> - 23 $(2p3d^{2})$ ³ <i>P</i> 28 $(2s2p3s)$ ² <i>P</i> + 89 $(2s^{2}p3d)$ ² <i>P</i> - 68 $(2s^{2}p3d)$ ³ <i>P</i> + + 26 $(2s^{2}p4d)$ ² <i>P</i> - 21 $(2s^{2}p4d)$ ² <i>P</i>
	O IV	² P _{1/2}	976 $(2s^{2}2p)$ ² P - 197 $(2p^{3})$ ² P - 15 $(2p^{3}s^{2})$ ² P - 23 $(2s^{2}p^{3}s)$ ² P + 64 $(2s^{2}p^{3}d)$ ³ P - 49 $(2s^{2}p^{3}d)$ ² P + 15 $(2s^{2}p^{4}d)$ ² P 11 $(2s^{2}p^{4}d)$ ³ P
1s ² 2s2p ²	CII	² D _{5 2}	977 $(2*2p^3)$ ³ D - 46 $(2*3p^2)$ ³ D - 39 $(2*3d^2)$ ² D - 157 $(2*^3d)$ ³ D + 118 $(2p^23d)$ ² D + 25 $(2p^23d)$ ³ D - 27 $(2*2p^3p)$ ³ D 45 $(2*2p^3p)$ ³ D
	οιν	² D _{5/2}	992 $(2 \cdot 2p^{2})^{2}D - 27 (2s^{3}p^{2})^{2}D - 27 (2s^{3}d^{2})^{2}D - 84 (2s^{2}3d)^{2}D + 84 (2p^{2}3d)^{2}D - 18 (2s^{2}p^{3}p)^{2}D$
1s ² 2p ²	СШ	¹ S ₀	$\begin{array}{l} 942(2p^2){}^1S+263(2s^2){}^1S-56(3d^2){}^1S-58(2p3p){}^1S-\\ -151(2s3s){}^1S \end{array}$
	ov	¹ S ₀	$\begin{array}{l} 960(2p^2){}^1S+256(2s^2){}^1S-21(3s^2){}^1S-36(3p^2){}^1S-\\ -65(3d^2){}^1S-68(2s^3s){}^1S-35(2p3p){}^1S \end{array}$
1 s²2s²3p	СП	² P _{1/2}	958 (2 $s^{2}3p$) ² P - 16 (2 $p^{2}3p$) ² P - 258 (2 $p^{2}3p$) ² P - 19 (3 $s^{2}3p$) ² P - 47 (2 $s^{2}2p3s$) ² P + 112 (2 $s^{2}2p3s$) ² P
1s ² 2s2p	СШ	3Р0	$998 (2s2p) {}^{3}P + {}^{5}3 (2s3p) {}^{3}P - 18 (3s3p) {}^{3}P + 13 (2p4d) {}^{3}P$
	ov	3Р0	999 (2 $s2p$) ${}^{3}P$ + 37 (3 $p3d$) ${}^{3}P$ - 13 (2 $p3s$) ${}^{3}P$ - 12 (3 $s3p$) ${}^{3}P$

* Конфигурации, по волновым функциям которых разлагается волновая функция исходного состояния, приведены в скобках. Перед скобками даны коэффициенты разложения, умноженные на 1000.

При расчете перехода $1s^22s^2p^2 - 1s^22s^22p$ МКП не улучшает длин волн разрешенных переходов. Это связано со случайной компенсацией корреляционных эффектов и в результате высокой точности длин волн в приближении ХФ. В то же время, МКП существенно улучшает энергетический спектр конфигурации $1s^22s^2p^2$ (табл. 4). В первой строке этой таблицы указана энергия уровня ${}^4P_{1/2}$, отсчитанная относительно нижнего уровня конфигурации $1s^22s^2p$, рассчитанного в аналогичном приближении. Остальные уровни указаны относительно ${}^4P_{1/2}$. Вероятности этого перехода приведены в табл. 5. Как видно из таблицы, МКП существенно улучшает совпадение двух форм и рассчитанные вероятности можно считать достаточно надежными.

-				λ					-	A					
Ион	Переход	J-J'		VA	WYD	X	0	M	кп	TB	Эксп.	TB	[24]	[25]	
	15			SECU. XW	ΧΨ	MKII	r	U	r	U	[21]	[22]	[[23]	[21]	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
СШ	1S1P	0-1	1247	1483	1223	7.35	8.47	22.3	25.5	16.6	100	-	21.1	18.6	
	3p_3p	0—1 1—0	1176 1175	1161 1161	1161 1160	15.3	10.8	13.8	14.9	12.7		-	13.3	13.6 4.55	
		$ \begin{array}{c c} 1-1 \\ 1-2 \\ 2-1 \\ \end{array} $	1176 1176 1175	1161 1162 1160	1160 1161 1160	3.83 6.36 3.83	2.70 4.50 2.70	3.44 5.73 3.45	6.19 3.72	5.3 5.10 3.19	12		5.5 3.3 9.98	5.67 3.42	
1	1D_1P	2-2 2-1	2298	2379	2322	1.78	5.28	1.30	1.30	1.5	1.4	1.56	1.4	1.46	
NIV	1S_1P	0-1	955	1128	941	10.6	11.7	30.7	35.2	25.1	1. 11			1100	
	3P_3P	$\begin{array}{c c} 0-1 \\ 1-0 \\ 1-1 \\ 1-2 \\ 2-1 \end{array}$	924 923 923 924 922	915 914 914 915 915	914 913 914 915 915	19.9 6.65 4.98 8.26 4.99	14.5 4.83 3.62 6.03 3.63	18.2 6.10 4.56 7.58 4.58	19.9 6.64 4.97 8.28 4.98	17.1 5.73 4.29 7.12 4.30	100	11 5			
-		2-2	923	914	914	14.9	10.9	13.7	14.9	12.9			1.1	· .	
	¹ <i>D</i> → ¹ <i>P</i>	2-1	1719	1781	1734	2.69	7.44	2.23	2.22	2.44	2.2	2.47	3.35	-	
o v	$^{1}S-^{1}P$	0-1	775	910	766	13.9	15.1	39.4	45.2	34.0			251	35.4	
	3P_3P	$ \begin{array}{c c} 0-1 \\ 1-0 \\ 1-1 \\ 1-2 \\ 2-1 \end{array} $	761 759 760 762 759	756 754 755 757 757	757 755 756 758 758 754	24.3 8.15 6.09 10.1 6.13	18.1 6.05 4.53 7.5 4.54	22.4 7.53 5.63 9.32 5.67	24.2 8.09 6.06 10.1 6.07	21.5 7.22 5.40 8.93 5.43			11.4	22.5 7.55 5.64 9.34 5.68	
634	$^{1}D-^{1}P$	2-2 2-1	1371	755 1421	1388	3.66	9.64	3.19	3.07	3,45	3.3	3.46	4.36	3.29	

ДЛИНЫ ВОЛН (А) И ВЕРОЯТНОСТИ (10⁸ с-1) ПЕРЕХОДОВ 1s² 2p² — 1s² 2s 2p, РАССЧИТАННЫЕ В МНОГОКОНФИГУРАЦИОННОМ ПРИБЛИЖЕНИИ

0 БОГДАНОВИЧ И ДР

линии в спектрах планетарных туманностей. 1 559

555

Таблица 4 ЭНЕРГИИ УРОВНЕЙ (ст-1) КОНФИГУРАЦИИ 1з²2з2р², ПОЛУЧЕННЫЕ В РАЗЛИЧНЫХ ПРИБЛИЖЕНИЯХ

		CII	-		O IV		N III		
LSJ	Эксп. [26]	ХФ	мкп	Эксп. [26]	ХΦ	мкп	Эксп. [26]	ХФ	мкп
4P10	43000	29302	41681	71177	53443	69896	57192	41295	55859
+P3/2	22	21	21	131	129	130	60	58	58
4P50	51	57	57	316	· 344	344	141	155	155
2D5/2	31931	42900	35018	55759	66926	59270	43832	55071	47331
Dan	31933	42900	35017	55773	66925	59267	43840	55071	47330
2S1/2	53494	65253	58282	93190	103710	98145	73812	84696	78853
2P1/2	67625	83894	72689	109304	126602	114838	88684	105693	94211
² P _{3/2}	67666	83937	72731	109548	126859	115092	88745	105810	94326

Таблица 5

ДЛИНЫ ВОЛН (А) И ВЕРОЯТНОСТИ ПЕРЕХОДОВ (10⁸ с⁻¹) 1s² 2s 2p² — 1s² 2s² 2p, РАССЧИТАННЫЕ В МНОГОКОНФИГУРАЦИОННОМ ПРИБЛИЖЕНИИ

				λ	Ì			A	
Ион	Переход	J-J'	2	VA	MET	X	Ð	МКП	
		10	Эксп.	ΧΨ	MULI	r	e e	T	U
1	2	3	4	5	ó	7	8	9	10
CII	² <i>P</i> _ ² <i>P</i>	1/2—1/2 1/2—3/2 3/2—1/2 3/2—3/2	904 904 904 904	883 884 883 883	874 875 874 874	42.08 21.10 10.53 52.67	16.96 8.51 4.24 21.23	29.90 15.08 7.50 37.48	32.15 16.22 8.06 40.32
	² S- ² P	1/2-1/2 1/2-3/2	1036 1037	1057 1058	1000 1001	4.13 8.13	2.39 4.70	8.02 15.83	9.19 18.14
	³ D- ³ P	3/2—1/2 3/2—3/2 5/2—3/2	1335 1336 1336	1385 1386 1386	1304 1305 1305	4.56 0.90 5.45	4.52 0.90 5.41	2.45 0.49 2.93	2.65 0.52 3.18
NIII	² <i>P</i> _2 <i>P</i>	1/2-1/2 1/2-3/2 3/2-1/2 3/2-3/2	686 686 685 686	680 681 680 681	666 667 666 667	55.83 28.13 13.99 70.02	23.97 12.11 6.00 30.09	40.82 20.79 10.27 51.41	43.93 22.39 11.04 55.29
	² S- ² P	1/2-1/2 1/2-3/2	763 764	794 795	742 743	6.01 11.58	3.51 6.79	10.20 19.69	11.85 22.89
11.	² D- ² P	3/2—1/2 3/2—3/2 5/2—3/2	990 992 992	1038 1040 1040	969 971 971	6.60 1.29 7.85	6.59 1.30 7.87	4.31 0.84 5.13	4.61 0.90 5.50
O IV	² P_2P	1/2—1/2 1/2—3/2 3/2—1/2 3/2—3/2	554 555 553 555	555 557 555 556	541 542 541 542	68.61 34.86 17.23 86.34	30.84 15.74 7.72 38.87	51.12 26.48 12.93 64.75	55.00 28.58 13.90 69.74

Таблица 5 (окончание)

1	2	3	4	5	6	7	8	9	10
	³ S— ³ P ³ D— ³ P	1/2-1/2 1/2-3/2 3/2-1/2 3/2-3/2 5/2-3/2	608 610 788 790 790	636 638 831 833 833	595 596 774 776 776	8.01 14.87 8.65 1.67 10.23	4.73 8.82 8.69 1.69 10.35	13.22 24.62 6.18 1.19 7.31	15.40 28.68 6.53 1.25 7.76

Таблица б

ВЕРОЯТНОСТИ (108 с-1) ДВУХЭЛЕКТРОННЫХ ПЕРЕХОДОВ ИОНОВ С II, N III

Teneror	Mon	15 115	1 11		A	
Heberok	PIOH		<u> </u>	A.	Au	[27, 28]
2s ² 4f-2s2p ²	СШ	$ \begin{array}{c} {}^{2}F^{0}-{}^{2}P\\ {}^{2}F^{0}-{}^{4}P\\ {}^{2}F^{0}-{}^{2}D\end{array} $		1.2-07 6.6-08 0.13		0.15
2s ² 3p-2s2p ²	СП	2P_2P	1/2-1/2 1/2-3/2 3/2-1/2 3/2-3/2	$\begin{array}{r} 1.2-04 \\ 5.4-05 \\ 2.4-05 \\ 1.4-04 \end{array}$	2.1-03 9.6-04 4.5-04 2.5-03	
		³ P-4P	$\begin{array}{c} 1/2 - 1/2 \\ 1/2 - 3/2 \\ 3/2 - 1/2 \\ 3/2 - 3/2 \\ 3/2 - 5/2 \end{array}$	1.6-071.8-072.0-073.8-081.1-06	2.3-07 1.9-07 2.4-07 2.1-08 1.0-06	
		$^{2}P-^{2}S$	1/2 - 1/2 3/2 - 1/2	0.042 0.042	0.18 0.18	
		$^{2}P-^{2}D$	1/2-3,2 3/2-3/2 3/2-5/2	0.38 0.038 0.35	0.68 0.068 0.62	
	N III	² P_4P	1,2-1/2 1/2-3/2 3/2-1/2 3/2-3/2 3/2-5/2	2.2-05 1.5-06 4.1-06 1.3-06 1.4-05	3.1-06 1.5-06 4.3-06 7.4-07 1.2-05	8.2-07 6.6-09 4.9-06 1.8-05
122		² P-2D	1/2-3/2 3/2-3/2 3/2-5/2	0.59 0.059 0.53	0.98 0.098 0.88	0.25 0.25 2.2

Приведенные примеры показывают, что описанный метод наложения конфигураций с использованием трансформированных функций позволяет учитывать большую часть корреляционных эффектов и находить достаточно точные значения вероятностей. В дальнейших расчетах он использовался для определения вероятностей двухалектронных переходов (табл. 6). Как видно из таблицы, для некоторых переходов величины вероятностей получаются довольно большими и сравнимыми с вероятностями разрешен-

ЛИНИИ В СПЕКТРАХ ПЛАНЕТАРНЫХ ТУМАННОСТЕЙ. 1 561

ных одноэлектронных переходов. Рассчитывалась также вероятность трехэлектронного перехода $2s^2 3d - 2p^3$, однако эта вероятность мала, и можно считать, что такого рода трехэлектронные переходы не дают значительного вклада во времена жизни.

Рассчитанные времена жизни т термов ионов (С II, N III)- в табл. 7 сравниваются с имеющимися экспериментальными данными [29—31]; полученными в экспериментах пучок—фольга.

C HEIN TH

		1201 70 2	C. a grant gay a	10 1632020 .f.		10.0
BPEMEHA	жизни	TEPMOB	ИОНОВ	Vursbarmer.	14	,8

_		A PARTY MARKET	THE PLAN WE WARRANTED THE
	1.5	т (нс)	1977.
Терж	CII.VII		III A. A Husterson, J. Ch. NoIII
	TileTIO/.	Tend	MARCE AL PROPERTY OF THE
2=23= 2S	0.80/	0.26	0.44 [29] MUTHANH A A S!
2=24= 2S	1.80	0.53	А. А. Ничитин. А. А. Сапин
28258 2'S	6.1	1.8	CKOR 80c., 45, 257 1977
25268 2S	11.4	3.3. Sharaqu	Болданович. Сооринк
2*23d 2D	0.33	0.084 .70	0.081/[30] - 148 .EUT:
2=24d 2D	ne 1 0.85 H	0:29	B II THOMAN I H
2s ² 5d ² D	ом 115 ° г.)	0.41	ML 1982. CTD. 30
2s ² 6d ² D	3.1	0.72	A A HURNTUR, 3 5, PULLUR
2:23p 2P0	6.6	1.6	2.1 [31] E&V i.
2s ² 4f ² F ⁰		0.61 Dect	BARDON SAL, 1932

A # # Page #370 3 129 1952

Как видно из таблицы, согласие довольно хорошее, что указывает на возможность использования полученных вероятностей переходов в астрофизических расчетах интенсивностей линий соответствующих ионов.

00210N

Аснинградский государственный универствение Сонстания С

25 H. P. Mablethaler, H. Nussbuumer, Astron. Astrophys. 48, 109 1975

THE LINES OF CARBON, NITROGEN AND OXYGEN IN THE SPECTRA OF PLANETARY NEBULAE. I. THE TRANSITION PROBABILITIES AND OSCILLATOR FORCES

P. O. BOGDANOVICH, R. A. LUKOSHYAVICHUS, A. A. NIKITIN, Z. B. RUDZIKAS, A. F. KHOLTYGIN

The energy levels, wave lenghts and transition probabilities for some astrophysical important lines of C, N and O ions are calculated.

ЛИТЕРАТУРА

- 1. J. B. Kaler, Ap. J. Suppl. ser., 31, 517, 1976.
- 2. L. H. Aller, S. J. Czyzak, Astrophys, Space Sci., 62, 397, 1979.
- 3. L. H. Aller, S. J. Czyzak, Ap. J. Suppl. ser., 51, 211, 1983.
- 4. J. P. Harrington, M. J. Seaton, S. Adams, J. H. Lutz, M. N. RAS, 199, 517, 1982.
- 5. H. B. French, Ap. J., 273, 214, 1983.
- 6. M. Brocklehurst, M. N. RAS, 153, 471, 1971.
- 7. P. J. Storey, M. N. RAS, 195, 27, 1981.
- 8. H. Nussbaumer, P. S. Storey, Astron. Astrophys., 126, 75, 1983.
- 9. А. А. Никитин, А. Ф. Холтызин, Т. Х. Феклистова, Публ. Тартуской обс., 45, 45, 1977.
- 10. А. А. Никитин, А. Ф. Холтыгин, Вестн. ЛГУ, № 13, 111, 1981.
- 11. А. А. Никитин, Т. Х. Феклистова, А. Ф. Холтызин, Тезисы Всесоюзной конференции по теории атомов и атомных слектров, Минск, 1983, стр. 35.
- 12. А. А. Никитин, Т. Х. Феклистова, А. Ф. Холтыгин, Публ. Тартуской обс., 52, 1985 (в печати).
- 13. А. А. Никитин, А. А. Сапар, Т. Х. Феклистова А. Ф. Холтыгин, Публ. Тартуской обс., 45, 257, 1977.
- П. О. Бозданович, Сборник программ по математическому обеспечению атомных расчетов, вып. 2, Вильнюс, 1978.
- П. О. Богданович, М. И. Богдановичене, И. И. Грудзинскас, Э. Б. Рудзикас, В. И. Тутлис, С. Д. Шаджювене, в сб. «Спектроскопяя многозарядных нонов» М., 1982, стр. 30.
- А. А. Никитин, З. Б. Рудзикас, Основы теорин спектров атомов н монов, Наука, М., 1983.
- 17. А. Р. Стризанов, Г. А. Одинцова, Таблицы спектральных линий атомов и конов, Энергонздат, М., 1982.
- 18. А. П. Юцис, ЖЭТФ, 23, 129, 1952.
- 19. П. О. Богданович, Г. Л. Жукаускас, Лит. физ-сб., 23, 18, 1983.
- 20. П. О. Богданович, Г. Л. Дукаускас, С. Д. Шаджювене, Лят. физ. сб., 1984, 24 (в печати).
- 21. D. S. Victorov, U. I. Safronova, J. Quant. Spectr. Rad. Transfer., 17, 605, 1977.
- 22. J. Linderberg, Phys. Letters, 29A, 467, 1969.
- 23. C. Laughlin, A. Dalgarno, Phys. Letters, 35A, 61, 1971.
- 24. H. Nussbaumer, P. J. Storey, Astron. Astrophys., 64, 139, 1978.
- 25. H. P. Mühlethaler, H. Nussbaumer. Astron. Astrophys., 48, 109, 1976.
- 26. C. E. Moore, Atomic Energy Levels, 1, 1949.
- 27. H. Nussbaumer, P. J. Storey, Astron Astrophys., 96, 91. 1981.
- 28. H. Nussbaumer, Ap. J., 170, 93, 1971.
- 29. J. P. Buchet, M. C. Poulizak, M. Carre, J. Opt. Soc. Amer., 62, 623, 1972.
- 30. P. D. Dumont, Y. Baudinet-Robinet, A. E. Livingston, Phys. Scr., 13, 365, 1976.
- M. R. Levis, T. Marshall, E. H. Carnevale, F. S. Zimnach, Phys. Rev., 164, 94-99, 1967.
- 32. А. Ф. Холтыгин, Вестн. ЛГУ, № 13, 128, 1977.