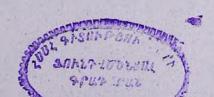
АСТРОФИЗИКА

ТОМ 22 ИЮНЬ, 1985

выпуск з

УДК 524.6-355:520.84

СПЕКТРАЛЬНОЕ И МОРФОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ГАЛАКТИК С UV ИЗБЫТКОМ. VI


М. А. КАЗАРЯН, Э. С. КАЗАРЯН Поступила 6 июня 1984 Принята к печати 11 января 1985

Приводятся результаты спектрального и морфологического исследования галактик \mathbb{N}_2 73, 125 и 229 из списков [1, 2]. Определены массы газовых составляющих этих галактих, приблизительно равные $6.4\cdot10^4~\mathrm{M}_{\odot}$ $1.4\cdot10^5~\mathrm{M}_{\odot}$ и $1.5\cdot10^6~\mathrm{M}_{\odot}$. Установлено, что галактика \mathbb{N}_2 73 является галактикой типа Sy2 и по своим физическим особенностям походит на галактики типа Sy2, Маркарян 744 и 1066. По некоторым ризическим особенностям галактика \mathbb{N}_2 125 похожа на галактику \mathbb{N}_2 73, только она по-видимому, находится на более поздней стадии развития, чем галактика \mathbb{N}_2 73.

1. Введение. Спектральное и морфологическое исследование проведено относительно многих галактик с UV избытком, взятых из списков [1—5]. Результаты этих исследований показывают, что эти галактики отличаются друг от друга как по физическим особенностям, так и по внешней структуре. Среди них встречаются галактики типа Сейферта [6—8], галактики, в спектрах которых наблюдаются узкие, но сильные эмиссионные линии [9—12], одновременно наблюдаются вмиссионные линии и линии поглощения [11—16], а также только линии поглощения [11]. Имеются еще и такие, у которых в длинноволновой части (около линии H_2) линий не наблюдаются [1]. По морфологическим особенностям они охватывают почти все типы, т. е. могут быть звездообразными, компактными. спиральными, эллиптическими, иррегулярными и т. д. [17].

Настоящая работа посвящена спектральному и морфологическому исследованию трех галактик с UV избытком, порядковые номера которых в списках [1, 2] № 73, 125 и 229.

Прямой снимок галактики № 73 = NGC 6217 был получен 11 июня 1978 г. в первичном фокусе 6-м телескопа САО АН СССР (оригинальный масштаб 1 мм ≈ 8".7) в фотографических лучах. При фотографировании была использована пластинка ORWO (ZU-2), экспозиция снимка 10 мин.

Спектральные наблюдения галактик № 73, 125 и 229 были проведены на 6-м телескопе САО АН СССР. В табл. 1 приведены сведения об втих наблюдениях.

СПЕКТРАЛЬНЫЕ НАБЛЮДЕНИЯ

• Таблица Т

No razak- then	Дата наблюдения	Спек- трограф	Светоприем- ная аппара- тура	Время на- копления (в мив)	Количество спектров	Спехтраль- ный диапа- зон (A)	
	1.VII.1978	СП-160	эоп-мэшв	10	· 1	7170—5750	
73	**	"	11	10	1	6200-4800	
	4.VII.1978	11	11	10	1	5150-3700	
	n	11	11	5	1	**	
	"	21	и	5	1	7170-5750	
	29.X.1981	UAGS	Сканер	6	2	7100—5630	
		77	n	6	2	5760-4320	
	13	11	- 19	4	2	71005630	
	30.X.1981	м	(m)	10	2	4750—3350	
125	30.V.1982	и	м	10	4	7100—5630	
		11		10	4	5760-4320	
	"	"	11	10	2	5150-3700	
229	30.X.1981	11	11	10	2	7100-5630	
		19	n	10	2	5760-4320	
			11	10	2	5150—37J0	

Щели спектрографов СП-160 и UAGS, с помощью которых были получены спектры, проходили через яркие центральные части галактик и имели ширины 1."3 и 0."9 соответственно. Дисперсия спектрографов СП-160 и UAGS — 65 и 100 А/мм. При получении спектров галактики № 73 со спектрографом СП-160 была использована пленка Kodak 103a-O.

2. Морфологическая структура. Репродукция снимка, полученного на . 6-м телескопе для галактики № 73, приведена на рис. 1. На снимке видно, что галактика имеет спиральную структуру с очень ярким звездообразным ядром, диаметр которого 8". От ядра отходяг два слабых рукава, к северу и к югу соответственно, которые состоят из сгущений и простираются примерно до одинакового расстояния — 40".

Для морфологического описания остальных двух галактик использованы карты Паломарского атласа. На этих картах галактика № 125 имеет вллиптическую структуру с размерами $30'' \times 40''$, а галактика № 229 = MCG2 - 60 - 3—спиральную структуру с размерами $67'' \times 107''$.

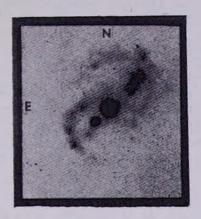


Рис. 1. Репродукция фотографии галактики № 73 (масштаб 1 мм $\approx 2''$).

К ст. М. А. Казаряна, Э. С. Казарян

3. Описание спектров.

Галактика № 73. Ее спектры принадлежат ядру. В них наблюдаются вмиссионные линии [S II] $\lambda\lambda$ 6731, 6717, [N II] $\lambda\lambda$ 6584, 6548, H_{α} , [O I] $\lambda\lambda$ 6364, 6300, [O III] $\lambda\lambda$ 5007, 4959 и [O II] λ 3727. Наблюдаются также линии поглощения Na I λ 5893, Ca II $\lambda\lambda$ 3968, 3934, H_{ϵ} , H_{ϵ} и H_{ϵ} . Линии H_{β} , H_{γ} и H_{δ} габлюдаются как в ъмиссии, так и в поглощении. причем компонент поглощения для каждой линии шире, чем эмиссионный компонент. Последний прямо выходит из центра линии поглощения. Линия H_{α} не имеет компонента поглощения, так как эмиссионный компонент очень сильный и заполняет всю линию. Красное смещение галактики № 73 $z=0.0045\pm0.0001$, а $M_{pg}=-17^m5$.

На рис. 2 приведены спектры галактик № 73, 125 и 229. Каждый из них построен при помощи скана объекта с вычетом фона неба. Эти спектры охватывают область $\lambda\lambda$ 6900—6270 А. На них отмечены вмиссионные линии спектров галактик [S II] $\lambda\lambda$ 6731, 6717, [N II] $\lambda\lambda$ 6584, 6548 и H_a . Так как сканы спектров получены в шкалах интенсивностей в произвольных единицах, то на вертикальной оси этих рисунков приведены интенсивности (I_{λ}) в произвольных единицах.

Галактика № 125. В спектре наблюдаются вмиссионные линии [S II] $\lambda\lambda$ 6731, 6717, [N II] $\lambda\lambda$ 6584, 6548. На, [O II] λ 3727, линин [O III] $\lambda\lambda$ 5007 и 4959 очень слабые и едва заметны. Линии На и Н наблюдаются как в вмиссии, так и в поглощении и по своей структуре похожи на таковые тех же линий в спектре галактики № 73. В спектре галактики № 73. В спектре галактики № 125 наблюдаются также линии поглощения Na I λ 5893, На, На, Са II $\lambda\lambda$ 3968 и 3934. Рядом с эмиссионной линией [N II] λ 6548, с ее коротковолновой стороны, почти с такой же интенсивностью наблюдается эмиссионная линия, которая по длине волны, λ_0 = 6527 A, совпадает с линией [N II] λ 6527. Однако эта линия по интенсивности должна быть очень слабой, поэтому она остается неотождествленной. Она отмечена на рис. 2 стрелкой.

Красное смещение галактики № 125 $z=0.0043\pm0.0001$, а абсолютная величина $M_{\rm Hg}=-18^m0$.

Галактика № 229. В спектре наблюдаются эмиссионные линии [S II] $\lambda\lambda$ 6731, 6717, [N II] $\lambda\lambda$ 6584, 6548, H_{α} , [O III] $\lambda\lambda$ 5007, 4959, H_{α} . Спектр коротковолновой части очень слабый, поэтому на нем едва заметны эмиссионные линии H_{γ} и [O II] λ 3727. В отличие от предыдущих галактик в спектре № 229 линии поглощения не обнаружены.

Красное смещение галактики № 229, $z=0.0215\pm0.0001$, а абсолютная величина $M_{\rho g}=-21.2^n$

4. Эквивалентные ширины и относительные интенсивности линий. Электронная концентрация и масса газовой составляющей галактик.

Эквивалентные ширины линий и относительные интенсивности эмиссионных линий галактик № 73, 125 и 229 были определены при помощи

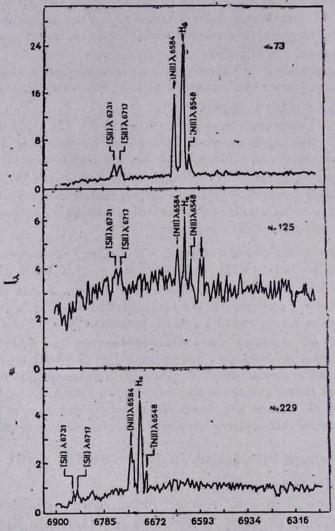


Рис. 2. Спектры галактик № 73, 125 и 229 (в интенсивностях).

сканов их спектров. Эти величины определялись методами, примененными в работе [10]. Значения этих величин приведены в табл. 2.

Как было скаазно выше, линия Н₃ в спектрах галактик № 73 и 125 наблюдается как в эмиссии, так и в поглощении, поэтому эмиссионный

компонент этой линии у обеих галактик выявляется неполностью, так как его некоторая часть идет на заполнение компонента поглощения. Это явление не может существенно влиять на величину интенсивности вмиссионного компонента линии H_3 в спектре галактики № 73, так как она намного больше по сравнению с величиной интенсивности компонента поглощения. Повтому интенсивности вмиссионных линий у галактики № 73 определены относительно линии H_3 , а у галактики № 125 относительно линии H_4 .

Таблица 2
ЭКВИВАЛЕНТНЫЕ ШИРИНЫ ЛИНИЙ И ОТНОСИТЕЛЬНЫЕ
ИНТЕНСИВНОСТИ ЭМИССИОННЫХ ЛИНИЙ

	70	Эмиссия или абсорбция	Галактика					
Ион			№ 73		Nº 125		№ 229	
			\overline{W}_{λ}	$I_{\lambda}/I_{H_{\beta}}$	Wi	$I_{\lambda}/I_{\mathrm{H}_{\mathfrak{F}}}$	Wλ	$I_{\lambda}/I_{H_{\beta}}$
[S II]	6731	вииссия	9.7	1.00	3.1	0.52	3.8	0.77
[S II]	6717	71	9.3	0.95	3.3	0.55	4.6	0.94
[N II]	6584	11	49.2	5.09	5.3	0.71	17.0	3.25
H ₂	6563	11	76.4	7.38	6.9	1.00	32.9	7.38
[N II]	6548	и	17.4	1.71	2.3	0.24	4.2	1.04
	6527	1. No. 10			2.8	0.23	19-11	7114
[0 111]	5007	4	5.6	0.30			9.4	1.05
[O III]	4959	13	1.8	0.10			3.2	0.35
Нз .	4861	11	9.0	1.00	3.1	0.12	8.6	1.00
Нэ -	4861	абсорбия	3.1		1.9		100	
H ₇	4340	винссия	2.6	0.35	0.8	0.06	7	
Нη	4340	абсорбция	2.5		0.7			
Полоса С	4310				4.1		1	100
Ha	4102	винсскя	0.8	0.13			1000	
Hz	4102	абсорбция	2.5		2.3		11977	7.74
H.	3970	n	7				14.14	
Ca II	3968		2.0		5.8		17571	-
Call	3934		2.0		7.4		1000	
[0 11]	3727	винсски	8.7	0.42	6.2	0.24	1	

Для определения спектральной чувствительности системы при наблюдениях со сканером в качестве стандартной звезды была выбрана Kopfi 27. Распределение в ее спектре известно [19]. Ее сканы тоже получены на 6-м телескопе.

Электронная концентрация для газовой составляющей этих галактик определена при помощи отношения интенсивностей линий [S II] $\lambda\lambda$ 6717 и 6731 ($R = I_{ext}/I_{ext}$).

По данным, приведенным в табл. 1, определяются значения R для галактик № 73, 125 и 229, которые оказываются равными 0.95, 1.06 и 1.22 соответственно. Используя теоретическую зависимость между R и $n_{\rm e}$, данную в [17] для $T_{\rm e}=100\,000$ K, мы определили влектронные концентрации газовой составляющей этих галактик. Значение $n_{\rm e}$ для галактики № 73 приблизительно равно 870, а для № 125 и 229—580 и 280 соответственно.

Массы газовой составляющей этих галактик определены обычным методом. Значения масс этих образований, определенные для галактик № 73, 125 и 229 так же, как и в работе [10], приблизительно равны $6.4 \cdot 10^{1} \ \mathrm{M}_{\odot}$, $1.4 \cdot 10^{5} \ \mathrm{M}_{\odot}$ и $1.5 \cdot 10^{9} \ \mathrm{M}_{\odot}$.

5. Обсуждение результатов. В [1, 2] для галактик № 73, 125 и 229 приводятся спектрально-морфологические характеристики s1, d2 и d2 соответственно. Это означает, что все галактики в спектрах имеют сильный UV-избыток. Причем у галактики № 73 избыточное излучение в ультрафиолетовой части спектра наблюдается в ярком компактном ядре, угловой диаметр которого составляет 8". Такое излучение в галактиках № 125 и 229 наблюдается в более обширных областях, угловые размеры которых согласно [3] должны быть больше 10". На рис. За и в приведены контуры линий галактик № 73 и 125. Каждый из них был построен при помощи одного спектра.

Контуры линий галактики № 73 очень разнообразны. Контур линии [О III] λ 5067 грубо можно разделить на две части — верхнюю узкую и нижнюю широкую. Причем нижняя часть примерно в три раза шире верхней части. Если предполагать, что линии расширяются по эффекту Доплера, то полуширине нижней части линии [О III] λ 5007 на уровне непрерывного спектра будет соответствовать скорость расширения 860 км/с. С другой стороны контур втой линии асимметричен, так как коротковолновая область его нижней части, начиная от максимальной точки линии длиннее, чем длинноволновая.

Другая линия [О III] λ 4959 тоже широкая, ее полуширине, на уровне непрерывного спектра, соответствует скорость расширения 620 км/с. Так как она в три раза слабее линии [О III] λ 5007, то на ее контуре трудно эгфиксировать указанные выше структурные особенности, наблюдающиеся в линии [О III] λ 5007.

Из рис. 2 видно, что в спектре галактики № 73 нижние части линий [S II] $\lambda\lambda$ 6731 и 6717, а также [N II] $\lambda\lambda$ 6584, 6548 и H_a сливаются. Гакое явление не наблюдается в спектрах галактик № 125 и 229. Там эти линии наблюдаются отдельно (см. рис. 2), так как они ўже, чем таковые у галактики № 73. Это говорит о том, что нижние части втих линий в спектре галактики № 73 тоже широкие. В спектрах галактики № 73, полученных на 6-м телескопе со спектрографом СП-160, тоже наблюдаются

нижние широкие части, так как эмиссионные линии [N II] хл 6584, 6548, На, [О III] 2.2. 5007 и 4959 широкие. Репродукция одного из этих спектров, которому соответствует длинноволновый диапазон, приведена в работе [21]. На ней видны первые три линии, они также широкие. В этих спектрах вышеотмеченные линии поглощения тоже широкие. На этот факт было обращено внимание впервые в работе [1].

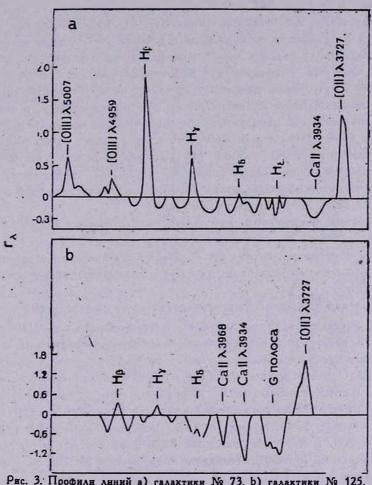


Рис. 3. Профили линий а) галактики № 73, b) галактики № 125.

Широкие нижние части невозможно обнаружить у линий Нв, Н, и На, так как они наблюдаются как в эмиссии, так и в поглощении. Причем, как было отмечено выше, компонент поглощения каждой линии шире, чем эмиссионный компонент. Последний прямо выходит из центральной части линии поглощения.

Если предполагать, что компоненты поглощения линий H_3 , H_7 и H_8 также расширялись по закону Доплера, то их полуширинам на уровне непрерывного спектра будут соответствовать скорости расширения, равные примерно 730, 710 и 540 км/с соответственно. Их среднее значение, 660 км/с, приблизительно такое же, как у линии [O III] λ 4959. Другие линии поглощения, кроме линий Na I λ 5893 и Ca II λ 3934, тоже широкие.

Исходя из вышеприведенных результатов можно заключить, что контуры линий [О III] $\lambda\lambda$ 5007 и 4959 и скорости их расширения ядра галактики № 73 такие, как у галактик типа Sy2. Наличие линий поглощения, которые наблюдаются в спектре ядра галактики № 73, тоже не противоречит этому выводу, так как линии поглощения наблюдаются также у двух галактик типа Sy2, Маркарян 744 и 1066 [22—24]. В спектре ядра галактики № 73 эти линии очень широкие. Они, по всей вероятности, имеют звездное происхождение и возникают во всех областях ядра, в том числе и в тех областях, где образуются широкие нижние части линий [О III] $\lambda\lambda$ 5007 и 4959. Электронная плотность в этих частях столь высока, что в них не может возникнуть линия [О II] λ 3727, так как у нее не наблюдается широкой нижней части. Линия [О II] λ 3727, по-видимому, возникает в тех областях ядра галактики № 73, где образуются линии поглощения № 1 $\lambda\lambda$ 5890, 5896, которые тоже узки.

По линиям поглощения, наблюдавшимся в спектре ядра галактики № 73, определяется его спектральный класс — типа А.

Таким образом, галактика № 73 имеет особенности галактик типа Sy2, но по физическим условиям она более походит на галактики Маркарян 744 и 1066.

Теперь перейдем к обсуждению результатов исследования галактики № 125. В ее спектре контуры линий H_3 и H_7 похожи на таковые у галактики № 73, только доля вмиссионного компонента по сравнению с компонентами поглощения в каждой из втих линий намного меньше, чем у галактики № 73. Повтому коротковолновые линии бальмеровской серии, начиная с H_3 , в спектре галактики № 125 наблюдаются только в поглощении. Эти линии, как и линии поглощения в спектре галактики № 73, тоже широкие. В отличие от галактики № 73 в спектре галактики № 125 линии [О III] $\lambda\lambda$ 5007 и 4959 едва заметны. Этот факт говорит о том, что степень возбуждения газовой составляющей галактики № 125 ниже, чем таковая у галактики № 73.

Спектральный класс галактики № 125 более поздний, чем галактики № 73, так как в спектре первой из них наблюдается полоса поглощения G, которая является признаком спектральных классов F и G. К втим результатам добавим еще то, что линейные размеры областей, излучающих ультрафиолетовый избыток, у галактики № 73 примерно в 4—5 раз меньше, чем у галактики № 125.

Исходя из вышеприведенных результатов можно заключить, что по некоторым особенностям галактика № 125 похожа на галактику № 73, только она, по-видимому, находится на более поздней стадии развития. чем галактика № 73.

Из табл. 2 видно, что значение отношения $I_{H_0}I_{H_0}$ у галактик № 73 и 229 намного больше значения, полученного для газовых туманностей для модели «В». Повтому можно считать, что одной из причин такого значения $I_{H_0}I_{H_0}$ является наличие пыли, поглощение со стороны которой, по всей вероятности, имеет место в галактиках № 73 и 229.

Ереванский государственный университет Бюраканская астрофизическая обсерватория

SPECTROPHOTOMETRY AND MORPHOLOGY OF THE GALAXIES WITH UV EXCESS. VI

M. A. KAZARIAN, E. S. KAZARIAN

The results of spectrophotometry and morphology of galaxies No, 73, 125 and 229 from lists [1, 2] are presented. The masses of the gaseous component of these galaxies are obtained, which are $6.4 \cdot 10^4 \, \mathrm{M}_{\odot}$, $1.5 \cdot 10^5 \, \mathrm{M}_{\odot}$ and $1.5 \cdot 10^6 \, \mathrm{M}_{\odot}$ respectively. It has heen established that galaxy No. 73 is of Sy 2 type and by its physical properties is similar to the Sy 2 type galaxies Mark 744 and 1066. Though the galaxy No. 125 by its several properties is similar to No. 73, however it is evidently, in a later stage of evolution than galaxy No. 73.

ЛИТЕРАТУРА

- 1. М. А. Каварян, Астрофизика, 15, 5, 1979.
- 2. М. А. Казарян, Астрофизика, 15, 193, 1979.
- 3. М. А. Каварян, Э. С. Казарян, Астрофизика, 16, 17, 1980.
- 4. М. А. Казарян, Э. С. Казарян, Астрофизика, 18, 512, 1982.
- М. А. Казарян, Э. С. Казарян, Астрофизика, 19, 213, 1983.
 М. А. Казарян, Э. Е. Хачикян, Астрофизика, 17, 661, 1981.
- 7. М. А. Каварян, Э. Л. Карапетян, В. С. Тамазян, Астрон. цирк., № 1154, 6, 1981.
- 8. М. А. Казаряч. Астрофизика, 19, 411, 1983.
- 9. М. А. Казарян, Астрофизика, 20, 35, 1984.
- 10. М. А. Казарян, Э. С. Казарян, Письма АЖ, 9, 648, 1983.
- 11. М. А. Казарян, В. С. Тамавян, Письма АЖ, 7, 276, 1981.
- 12. M. A. Kazartan, E. Ye. Khachikian, A. A. Yegiazartan, Astrophys., Space Sci., 82, 105, 1982.
- 13. М. А. Казарян, Э. Е. Хачикян, Астрофизика, 13, 415, 1977.

- 14. А. А. Егиазарян, М. А. Казарян, Э. Е. Хачикян, Астрофизика, 14, 263, 1978.
- 15. М. А. Казарян, В. С. Тамазян, Письма АЖ, 8, 454, 1982.
- 16. М. А. Казарян, В. С. Тамазян, Астрофизика, 18, 192, 1982.
- 17. М. А. Казарян. А. Р. Петросян, В. С. Тамазян, Письма АЖ, 7, 648, 1981.
- 18. И. И. Балега, Р. Г. Верещагина, С. В. Маркелов, В. Б. Небелицкий и др., Астро физические исследования (Изв. САО), 11, 248, 1979.
- 19. R. P. S. Stone, Ap. J., 218, 767, 1977.
- 20. И. В. Носов, Астрон. цирк., № 1050, 1979.
- 21. E. Ye. Khachiktan, Stars and Star Systems, Copyright 1979 by D. Reidel Publishing Company, ed. B. E. Westerlund.
- 22. В. Л. Афанасьев, В. А. Липовецкий, А. И. Шаповалова. Астрофизика, 15, 557, 1979.
- 23. В. А. Афанасьев, В. А. Липовецкий, А. И. Шаповалова, Астрофизика, 17, 643, 1981.
- 24. R. W. Goodrich, D. E. Osterbrock, Ap J. 269, 416, 1983.