АСТРОФИЗИКА

TOM 22

АПРЕЛЬ, 1985

ВЫПУСК 2

УДК: 530.145.6

ВЕРОЯТНОСТЬ РАССЕЯНИЯ ФОТОНА НА ЭЛЕКТРОНАХ. СЛУЧАЙ ХАОТИЧЕСКИ ДВИЖУЩИХСЯ МОНОЭНЕРГЕТИЧЕСКИХ ЭЛЕКТРОНОВ

Г. А. АРУТЮНЯН, В. А. ДЖРБАШЯН Поступила 25 сентября 1984 Прянята к печати 10 октября 1984

При достаточно общих предположениях относительно физики и геометрии задачи исследуется вопрос о нахождении вероятности рассеяния фотона совокупностью свободных влектронов. Для хаотически движущихся моновнергетических влектронов получена формула, описывающая данную вероятность, рассчитанную в единицу времени. В классическом пределе маловнергетических влектронов эта формула переходит в известное выражение.

1. Введение. В астрофизике часто рассматриваются задачи многократного рассеяния излучения на свободных влектронах. Повтому существует достаточно большое количество работ, посвященных подробному обсуждению проблемы спределения и вычисления закона перераспределения внергии и направления падающего фотона вследствие влементарного акта рассеяния. Подобная задача впервые была рассмотрена Дираком [1] для одного частного случая. Первой работой, в которой задача рассмотрена в общей постановке, по-видимому, можно считать статью Помранинга [2], где искомый закон задается с помощью трехкратного интеграла. Арутюнян [3], а также Агаронян и Атоян [4] для искомой величины нашли более простые выражения, не прибегая при этом ни к каким упрощающим предположениям относительно физики и геометрии задачи. Однако недавно в печати появилась работа [5], которая ставит под сомнение все результаты, полученные в данной области до настоящего времени.

Целью настоящей работы является последовательное исследование и четкое определение искомого закона на основе квантовой электродинамики. Отметим, что для различных практических целей эта величина применяется по разному, и в каждом конкретном случае необходимо использовать соответствующую данной задаче форму закона. С этой точки эрения единственным недостатком большинства процитированных в [5] работ

является не очень четкое определение искомой величины. Здесь же мы укажем и на математическую некорректность, которая была допущена в упомянутой работе и ввела автора в досадное заблуждение.

2. Вероятность рассеяния фотона на электронах с данной плотностью. Рассмотрим взаимодействие двух потоков, состоящих из влектронов и фотонов, общее число которых в объеме V соответственно равно N_9 (p_1) и $N_{\Phi}(\vec{k}_1)$. Число фотонов, рассеянных в единицу времени на свободных электронах, согласно [6], равно произведению числа рассеивающих электронов N_9 (p_1), плотности потока падающих фотонов $N_{\Phi}(\vec{k}_1)$ с/V (равной числу фотонов, падающих в единицу времени на единицу площади, перпендикулярной направлению движения фотонов) и эффективного сечения рассеяния d_{σ} :

$$dN_{\phi}(\vec{k}_{2}) = \frac{N_{\phi}(\vec{p}_{1}) N_{\phi}(\vec{k}_{1}) c}{V} d\sigma.$$
 (1)

Здесь (и далее) индексами 1 и 2 обозначены величины соответственно до и после рассеяния. Из соотношения (1) непосредственно следует, что вероятность рассеяния одного фотона можно определить следующим образом:

$$dW = \frac{dN_{\phi}}{N_{\phi}} = \frac{N_{\phi}(\vec{p}_{1})c}{V} dz = n(\vec{p}_{1})cdz, \qquad (2)$$

где $n(p_1) = N_s(p_1)/V$ — плотность влектронов. Эффективное сечение фотон-влектронного взаимодействия d^c , фигурирующее в соотношениях (1)—(2), в случае неполяризованных влектронов и фотонов дается выражением [7]*

$$d\sigma = \frac{c^3}{h^2} \frac{e^4}{4\nu_1\nu_2} \frac{U_0}{2E_1E_2} \frac{d\vec{p}_2d\vec{k}_2}{(2\pi)^2} \delta(\vec{p}_1 + \vec{k}_1 - \vec{p}_2 - \vec{k}_2) \delta(E_1 + h\nu_1 - E_2 - h\nu_2),$$
(3)

где δ — дельта-функция Дирака, а величина $U_{\mathfrak{o}}$ может быть представлена в виде [3]

^{*} Отношение илотности потока к числу фотонов в объеме V, входящее в выражение для эффективного сечения в соотношении (3), принято равным c/V, а в монографии [7] втой величине приписано эначение $\frac{c}{V} \left(1 - \frac{v_1}{c} \cos \theta_1\right)$.

$$U_{0} = 1 - \frac{h_{\gamma_{2}}}{y_{1}E_{1}} (1 - \cos \theta) + \left[1 - \frac{h_{\gamma_{2}}}{y_{1}E_{1}} (1 - \cos \theta)\right]^{-1} - 2\frac{1 - \cos \theta}{\gamma^{2}y_{1}y_{2}} + \left(\frac{1 - \cos \theta}{\gamma^{2}y_{1}y_{2}}\right)^{2}$$
(4)

В приведенных формулах нами использованы следующие обозначения:

$$y_{1,2} = 1 - \beta \cos \theta_{1,2}; \ \gamma = (1 - \beta^2)^{-1/2}; \ \beta = v_1/c = |p_1| c/E_1,$$

где $p_{1,\,2}$, $E_{1,\,2}$ — импульс и энергия начального и конечного электронов, $k_{1,\,2}$ и $v_{1,\,2}$ — импульс и частота начального и конечного фотонов, $\theta_{1,\,2}$ — угол между направлением движения начального электрона и направлением движения начального и конечнего фотонов, $\theta=$

 $= \operatorname{arc} \cos (\vec{k}_1 \cdot \vec{k}_2) -$ угол рассеяния фотона.

Плотность влектронов, фигурирующая в выражении (2), может быть представлена в виде

$$n(\overrightarrow{p_1}) = nf(\overrightarrow{p_1}) d\overrightarrow{p_1}, \qquad (5)$$

где n — полное число электронов в единичном объеме, $f(p_1)$ — функция распределения электронов по импульсам, удовлетворяющая следующему условию нормировки: $\int f(p_1) \, dp_1 = 1$. Наиболее часто на практике рассматриваются следующие законы распределения электронов:

а) Мононаправленные моноэнергетические электроны:

$$f(\vec{p}_1) = \delta(\vec{p}_1 - \vec{p}_0). \tag{6}$$

6) Электроны с одинаковой внергией и равновероятными направлениями движения:

$$f(\vec{p}_1) = \frac{\delta(p_1 - p)}{4\pi p^2}. (7)$$

в) Максвелловское распределение по импульсам:

$$f(\vec{p}_1) = \frac{\alpha}{4\pi m_s^3 c^3 K_2(\alpha)} \exp\left[-\alpha \sqrt{1 + (p_1/m_s c)^2}\right],$$
 (8)

тде $\alpha = m_e c^3/k T_e$, а $K_3(a)$ — модифицированная функция Бесселя 2-го порядка (см., например, [2-3, 8]).

В настоящей работе мы ограничимся рассмотрением случая (6). Поскольку в литературе [7] имеется выражение для интегрированного по p_2 сечения d^{c} , то результат для случая (а) непосредственно следует из правой части соотношения (2). Переход от случая (6) к случаю (в) совершается с помощью интегрирования по абсолютным значениям импульсов согласно закону распределения (8).

3. Случай хаотически движущихся влектронов. Пусть теперь рассматривается совокупность влектронов, центр тяжести которой покоится в интересующей нас лабораторной системе. Данная совокупность характеризуется плотностью п и распределением (7). Тогда на основе формул (2), (3) и (7) для вероятности рассеяния фотона мы можем написать

$$dW = nr_0^2 c \frac{(m_e c^2)^2}{2EE_2} \frac{v_2}{v_1} U_0 \frac{\sin \theta_1 d\theta_1 d\phi_1}{4\pi} d(hv_2) \sin \theta d\theta d\phi \times \\ \times \delta (E + hv_1 - E_2 - hv_2), \tag{9}$$

где уже совершено интегрирование по p_1 и p_2 , а $r_0 = e^2/(4\pi m_e c^2)$ — классический радиус электрона и $E = (m^2 c^4 + p^2 c^2)^{1/2}$. В силу того, что в рассматриваемой задаче единственным фиксированным направлением является направление движения первоначального фотона, оно выбрано в качестве полярной оси для используемой системы отсчета.

При интегрировании по направлениям движений первоначальных электронов должна быть учтена зависимость угла θ_2 от величин θ_1 , θ и $(\phi_1 - \phi)$:

$$p_1 k_2 = \cos \theta_2 = \cos \theta_1 \cos \theta + \sin \theta_1 \sin \theta \cos (\varphi_1 - \varphi). \tag{10}$$

Учитывая также, что $E_2 = c \left[m^2 c^2 + (p_1 + k_1 - k_2)^2 \right]^{1/2}$, в (9) можно произвести интегрирование по φ_1 . Не останавливаясь на деталях, приведем лишь окончательный результат, который получается после интегрирования вероятности dW по φ_1 и θ_1 ;

$$dW = nr_0^2 c dx_2 \sin \theta d\theta dx \frac{1}{4\gamma \sqrt{\gamma^2 - 1}} \frac{x_2}{x_1} \left\{ \frac{2}{\sqrt{x_1^2 + x_2^2 - 2x_1 x_2 \cos \theta}} + \left[1 - \frac{1}{x_1 x_2 \sin^2 \frac{\theta}{2}} - \frac{1}{2\left(x_1 x_2 \sin^2 \frac{\theta}{2}\right)^2} \right] (Z_2 - Z_1) + \right\}$$

$$+\frac{1}{\left(2x_{1}x_{2}\sin^{2}\frac{\theta}{2}\right)^{2}}\left[\left(\gamma\left(x_{1}+x_{2}\right)-x_{2}^{2}+x_{1}x_{2}\cos\theta\right)Z_{2}^{3}+\right.\\\left.+\left(\gamma\left(x_{1}+x_{2}\right)+x_{1}^{2}-x_{1}x_{2}\cos\theta\right)Z_{1}^{3}\right]\right\},\tag{11}$$

где $x_{1,2} = hv_{1,2}/m_ec^2$, а $x_2 \in [x_-, x_+]$. Если же внергия фотона послерассеяния x_2 не принадлежит данному отрезку, вероятность dW равна нулю. Границы отрезка $[x_-, x_+]$ определяются следующим соотношением [3]:

$$x_{\pm} = x_{1} \frac{1 + 2\sin^{2}\frac{\theta}{2} \left(\gamma^{2} - 1 + \gamma x_{1} \pm Z_{1}^{-1} \sqrt{\gamma^{2} - 1}\right)}{1 + 4x_{1}\sin^{2}\frac{\theta}{2} \left(\gamma + x_{1}\sin^{2}\frac{\theta}{2}\right)}$$
(12)

Остается добавить, что величины $Z_{1,2}$, фигурирующие в соотношениях (11) и (12), даются выражением

$$Z_{1,2} = \left[\operatorname{ctg}^2 \frac{\theta}{2} + (\gamma \pm x_{1,2})^2 \right]^{-1/2}$$
 (13)

Формула (11) дает искомую вероятность и с точностью до множителя $\frac{8\pi}{3} r_0^2 nc$ совпадает с результатом, полученным в работе [3] для относительной вероятности (см. также [9]). На роли этого множителя более подробно мы остановимся в следующей работе, посвященной рассматриваемой проблеме. Отметим, что понятие «дифференциальный спектр», рассматриваемое в [4], на основе выражения (11) следует понимать как вероятность рассеяния фотона в единицу времени на влектронах с единичной средней плотностью.

С помощью выражения (11) легко можно получить формулу для описания частного случая рассеяния низкочастотного, скажем, оптического излучения, рассмотренного в работе [8]. Для этого разложим в степенные ряды величины $Z_{1,\,2}$ соответственно, вокруг точек $x_{1,\,2}=0$. Тогда, сохранив лишь первый неисчезающий член, будем иметь

$$dW_{x_{1,2} \to 0} = nr_0^2 c dx_2 \sin \theta \ d\theta \ d\phi \ \frac{1}{4\gamma V \gamma^3 - 1} \frac{x_2}{x_1} \left\{ \frac{2}{V x_1^2 + x_2^2 - 2x_1 x_2 \cos \theta} + \frac{1}{x_1 x_2} \left[Y_{1,3} + \frac{1}{8x_1 x_2} (3(x_1^2 + x_2^2) Y_{1,5} - \frac{1$$

$$-5\gamma^{2}(x_{1}+x_{2})^{2}Y_{3,7})-\frac{3}{4}(Y_{1,5}-2Y_{3,5})$$

где
$$Y_{k,n} = \sin k \frac{\theta}{2} \left[1 + (\gamma^2 - 1) \sin^2 \frac{\theta}{2} \right]^{-\frac{n}{2}}$$
. Естественно, что соответ-

ствующим образом преобразуется также формула (12). Нетрудно видеть, что первый член правой части (14) с точностью до множителя n_0c совпадает с результатом, полученным в [8]. Отсутствие остальных членов является следствием оговоренного в втой работе приближения. Следовательно, результаты, полученные в [8], несомненно верны в рамках приближений, указанных в этой работе.

Что же касается результатов, полученных в [5] и качественно отличающихся от всех результатов, известных до настоящего времени, то они являются прямым следствием досадной ошибки. Дело в том, что знаменатель второго из соотношений (5) работы [5] через величину D_f (у нас обозначена y_2) зависит от угла рассеяния θ . Эта зависимость дается с помощью известной формулы сферической тригонометрии, которая в настоящей работе числится под номером (10). Не обращая на вто внимания, автор продифференцировал по θ лишь числитель упомянутого выражения. вследствие чего получил заведомо неправильную формулу преобразования телесного угла и с ее помощью — все остальные результаты.

4. Случай медленных электронов. Вкратце остановимся также на исследовании полученной функции в случае медленных электронов. Для втого заметим, что при малых значениях кинетической внергии влектронов интервал изменения внергии конечных фотонов, определяемый соотношением (12), уменьшается и в предельном случае свертывается в точку

$$\lim_{\tau \to 1} x_{\pm} = \frac{x_1}{1 + 2x_1 \sin^2 \frac{\theta}{2}} \equiv x_2. \tag{15}$$

Выражение (15) представляет собой хорошо известную из классической физики формулу Комптона.

На основе (15) мы можем в соотношении (11) совершить замену

$$dx_{2} \to \Delta x = x_{+} - x_{-} = \frac{4 x_{1} Z_{1}^{-1} \sqrt{\gamma^{2} - 1} \sin^{2} \frac{\theta}{2}}{1 + 4x_{1} \sin^{2} \frac{\theta}{2} \left(\gamma + x_{1} \sin^{2} \frac{\theta}{2}\right)}$$
(16)

и перейти к предельному случаю. Для этого заметим, что из (15) и (16) непосредственно можно получить

$$\lim_{\gamma \to 1} \frac{\Delta_{x}}{2\gamma \sqrt{\gamma^{2} - 1}} = \lim_{\gamma \to 1} \frac{2x_{1}\sin^{2}\frac{\theta}{2}Z_{1}^{-1}}{1 + 4x_{1}\sin^{2}\frac{\theta}{2}\left(\gamma + x_{1}\sin^{2}\frac{\theta}{2}\right)} =$$

$$= \lim_{\gamma \to 1} Z_{1}^{-1} \frac{x_{2}}{x_{1}}\left(1 - \frac{x_{2}}{x_{1}}\right) \tag{17}$$

Подставляя выражение (17) в соотношение (11), мы находим

$$\lim_{\tau \to 1} dW = nc \frac{r_0^2}{2} \sin \theta d\theta d\tau \left(\frac{x_2}{x_1}\right)^2 \lim_{\tau \to 1} Z_1^{-1} \left(1 - \frac{x_2}{x_1}\right) \Psi_0, \tag{18}$$

где через Ψ_0 обозначено выражение, заключенное в фигурные скобки в (11). Далее, учитывая, что

$$\lim_{\gamma \to 1} \left(1 - \frac{x_2}{x_1}\right) \frac{1}{\sqrt{x_1^2 + x_2^2 - 2x_1 x_2 \cos \theta}} = \frac{x_2}{x_1} \lim_{\gamma \to 1} Z_2 = \lim_{\gamma \to 1} Z_1, \quad (19)$$

после некоторых преобразований из (18) получаем результат, аналогичный формуле (2):

$$dW_{\beta=0} = ncd\sigma_{KH}, \tag{20}$$

где do KH, как и следовало ожидать, задается хорошо известной формулой Клейна—Нишины.

В заключение авторы выражают искреннюю признательность академику В. А. Амбарцумяну за полезные обсуждения, а также академику АН Арм.ССР Г. М. Гарибяну за проявленный интерес к работе.

Бюраканская астрофизическая обсерватория

PROBABILITY OF PHOTON SCATTERING BY ELECTRONS. A CASE OF CHAOTICALLY MOVING MONOENERGETIC ELECTRONS

H. A. HARUTYUNIAN, V. A. DJRBASHIAN

The question of finding the probability of photon scattering by free electron ensemble is investigated for cases of rather general assuptions concerning the physics and geometry of the problem. A formula describing the given probability calculated for unit time is received in the case of chaotically moving monoenergetic electrons. It has

been shown that for the classical limit of low-energy electrons this formula turns into a known expression.

ЛИТЕРАТУРА

- 1. P. A. M. Dirac, M. N. RAS, 85, 825, 1925.
- 2. G. C. Pomraning, JQSRT, 12, 1047, 1972.
- 3. Г. А. Арутюнян. Некогерентное рассеяние при общих законах перераспределения излучения по частотам. Диссертация, Ереван, 1981.
- 4. F. A. Aharonian, A. M. Atoyan, Astrophys. Space Sci., 79, 321, 1981.
- 5. Г. Т. Тер-Казарян, ДАН СССР, 276, 106, 1984.
- 6. Л. Шифф, Квантовая механика, ИЛ, М., 1959.
- 7. А. И. Ахиевер, В. Б. Берестецкий, Квантовая влектродинамика, Наука, М., 1969.
- 8. Г. А. Арутюнян, А. Г. Никогосян, ДАН СССР, 255, 86, 1980.
- 9. Г. А. Арутюнян, А. Г. Николосян, Труды симпозиума «Принцип инвариантности мего приложения» (в печати).