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1. INTRODUCTION

Reconstruction of convex bodies using random cross-sections makes it possible to
simplify the calculation because the estimates of probability characteristics can be
obtained using the methods of statistics. These type of problems are fundamental
in the theory of geometric tomography and stereology and particularly can be
applied in medicine (see [1] — [3]). Quantities characterizing random sections of
body D carry some information about D. If there is a connection between geometric
characteristics of D and probabilistic characteristics of a random cross-section then
by a sample (of experiments) we can estimate the geometric characteristics of D.

Let R™ be the n-dimensional Euclidean space, D C R™ be a bounded convex body
with inner points, S"~! be the (n — 1)-dimensional unit sphere centered at the

origin, and L, () be the n-dimensional Lebesgue measure in R™. The function
Cp(z) = L,(DN{D+=z}), z€cR"

where D +x ={P+x : P € D}, is called the covariogram of the body D.

There is a one-to-one correspondence between planar convex bodies and the co-

variogram (see [9]). Earlier in [2], a conjecture has been formulated by Matheron

claiming that such correspondence exists in n-dimensional Euclidean spaces for any
IThe research of the first author was partially supported by the RA MES State Committee of
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n. However, in the case n > 4 Matheron’s hypothesis has received a negative answer
(see [1] and [3]). The general 3-dimensional case is still open (see [3]).

This paper continues the research to reconstruct convex bodies in R3 using covari-
ogram (see [6] — [8], [12]) and the orientation-dependent chord length distribution
(see [4], [5], [10], [11], [13], and [14]).

Although the general 3-dimensional case is still open, Matheron’s conjecture has
been confirmed in the case of bounded convex polyhedrons in R3. Actually, the
covariogram problem was found to be equivalent to the problem of rebuilding a
convex domain from the length distribution of its orientation-dependent chords (see
2], [9]).

In the current paper we found explicit expressions for the covariogram and the
orientation-dependent chord length distribution of a right parallelepiped with rect-
angular base. Further, the base is transformed into a right trapezoid with the given
acute angle, and the mentioned expressions are obtained for right prisms with right

trapezoidal bases.

2. CHORD LENGTH DISTRIBUTION IN A RECTANGLE

Let E be a bounded convex subset of R2. Consider the vector
¢ = (cos p,sin p) € S,

and let [, be the subspace of R? spanned by ¢. By ¢ we denote the orthogonal
complement of I,. For any y € o, let l, + vy be the line which is parallel to ¢ and
passes through y. Denote

x(y +y) = Li((l, +y) N E).

If the line I, 4+ y has a common segment with E, then we will say that it makes a
chord in E of length x(l, + y).

Let Iz () be the orthogonal projection of E onto ¢. Assuming that y is uniformly
distributed over IIg (), the chord length distribution function in direction ¢ for E
is defined by

Fo(, ) = Li{y € HE(QZ) xp+y) < x}’
B(p)
where bp(p) = Li(ILe(p)).
When F is a parallelogram, the distribution function Fg(x, ) and the covariogram
Cg(t,¢) (which is an alternative notation for Cg(t¢)), are explicitly found in [15].

In particular, the following results can be extracted from [15], section 2.
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Lemma 2.1. Let R be the rectangle [0,b] x [0,a] C R?, where a < b, and let

mk — arctan § < ¢ < 7(k + 1) — arctan ¢ for some integer k. Then

0, if x<0
2| sin | - | cos |

2.1 Fr(x,p) = - , if O0<z< x
(2.1) R () al cos | + b| sin | U 7 < Tmax(¢)
1, Zf r > xmax(‘P)
and
(2.2)
ab — t(a| cos | + b sinp|) + t2[sinpcos |, if 0<t < Tmax(p)
CR(t»Sﬁ) = . )
0, if > Tmax(p)
where
b N a a
T, if —arctan§ + 7k < ¢ <arctan § + 7wk
(23)  Tmax() = ¢ |€OS¥ .
——, if arctan§ + 7k < < —arctan § +7(k+ 1)
| sin |

Remark 2.1. z.x(p) represents the length of the mazimal chord in R in direction
o, that is

Tmax = max lo +1).
() yenR(q,)X(“" Y)

Remark 2.2. The formula
(2.4) br(p) = alcos | + b| sin g|

holds for any real .

3. CHORD LENGTH DISTRIBUTION IN A RIGHT RECTANGULAR PARALLELEPIPED.

For w € S2, we denote by w' the orthogonal complement of {tw : ¢ € R} in R?.
For a bounded convex body D C R3, let IIp(w) be the orthogonal projection of D

onto the plane w.

Let I, + y be the line passing through y € w*

with direction vector w, and
X(w +v) = L1((lw + y) N D). Assuming y is uniformly distributed in IIp(w), we
define the chord length distribution function in direction w for D by

(3.1) Fo(t.w) = 2 EMpW) : xlo +y) <1}

bp(w) ’
where bp(w) = La(TIp(w)).
Let D be a cylinder with base B (not necessarily convex) placed on the OXY plane,

and height h. If w is given by its spherical coordinates (1, ¢, ), where 1 is the radius,

@ € [0,27) is the azimuthal angle, and 6 € [0, 7] is the elevation angle, then

(3.2) bp(w) = || B|sinf + bg(v)hcosb,
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where || B|| is the area of the base. A relation between orientation-dependent chord

length distribution functions Fp and Fp is found in [7]:

(3.3)
9 if t<0
ot % [(h —tsin)Fp(tcosh, )+
p(t,w) = +tsin0+sin9fg(1~FB(ucost9,<p))du , if 0 <t < Zmax(w)
1, it > Tomax (W)

where z . (w) is the length of the maximal chord in D in direction w.

Theorem 3.1. Let D be the parallelepiped [0,b] x [0,a] x [0,h] C R® and Fp(t,w)
be the orientation-dependent chord length distribution function of D in direction
w = (cos pcosB,sinpcosB,sind) € S?, where 0 < 0 < Z. Then

0, if <0

0 .
absn 0T bn(p) hcosd <(h cos 0] sin 2|+

FD(t,w) =

)

+2bg(p)sind) - t — 2 sin 20| sin 2| -t2>, if 0<t<Tmax(w)
1, if 2 Tmax(w)
where R =10,b] x [0, a].

Proof. The validity of the formula is obvious when ¢ < 0 or ¢t > Tyax(w), so we

assume 0 < ¢t < Tyax(w) hereinafter. Since

cos 6 ax ()
L <9<z

h
sin 0 Tmax(p) —

(3.4) Tmax (W) =

)

zm—x(‘P), if 0<6< arctan%
if arctan

the inequality

ZTmax(w) €080 < Tax(p)

holds for any 6 € [0, §]. Thus, taking into account (2.1), (3.2), and (3.3) we conclude

that
br(p)cosb

= absind + br(p)hcosf

FD(t7w)

t cos 0| sin 2¢|

- |(h — tsin#) br(o)

+2tsin9—sin9/

t .
u cos 0| sin 2¢| du} _
0 br(p)

B cos 0 (
~ absinf + br(p) - hcosh

3
hcos 6| sin 2| + 2bg(¢) sinf) - t — 750 20| sin 2¢| ~t2]

O

Remark 3.1. When 0 = 0 then functions Fp and Fr coincide. If 0 = 5 then
Tmax(w) = h. In this case Fp coincides with the indicator function of (—oo, h]. For

some other special cases the result of Theorem 3.1 is visualized by Figure 1.
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(A) a=5b=10,h=5,p= 3,0 =7 (B) a=5b=10,h=6,0=5,0=7

(¢) a=10,b=10,h =10v2,p =31 0 =% (D) a=10,b=10,h =10v2,0p = 5,0 = %

FIGURE 1. Orientation dependent chord length distribution func-
tion F'p for different cases

Remark 3.2. Direct use of (3.3) in the proof of the theorem avoided computation
of the covariogram of D. The function Cp(tw) could be found explicitly.

Indeed, if 0 < t < Zpax(w) then Cp(tw) = L3(D N {D + tw}) =
=Ly(RN {R+ (tcosf)p}) - (h—tsinh) = (h —tsinh) - Cr(tcosb, p).

Taking into account (3.4) and (2.2) we obtain
(3.5)
(h —tsin®)(ab—tcosb - br(p) + % cos? 0] sin2¢]), if 0 <t < Tmax(e)

Cp(tw) =
p(tw) 0, if > Tmax(9)

4. CHORD LENGTH DISTRIBUTION IN A RIGHT TRAPEZOID

Let T C R? be the right trapezoid with the vertices at O(0,0), A(0,a),C(b —
acoty,a), and B(b,0), where arctany <1 < 7. For every right trapezoid one can
choose the parameters a, b, and v such that it becomes congruent to OACB.

In this section we maintain the notations and terminology introduced earlier in

Section 2 for any bounded convex set F.

Proposition 4.1. Let 7k < ¢ < w(k + 1) for some integer k. Then

al cos | + b sin ¢, if tk<p<Z+7k
br(p) = { bl sing), if T+nk<e<nk+1)—9
alcosp|+ (b—acoty)|sing|, if w(k+1)—¢v <ep<mk+1)
72



ORIENTATION-DEPENDENT CHORD ...

Proof. To reduce the computational burden, from now on we’ll use by for the shorter
base of T, that is by = b — acot 1.
If k < ¢ < § + 7k, then Il7(¢) = Ig(p). Therefore, due to (2.4), we have

br(p) = br(p) = alcos ¢| + b|sin ).
Similarly, if 7(k 4+ 1) — ¢ < ¢ < w(k + 1), then II7(¢) = g 4,1x[0,q)(¢), Which
implies
br(¢) = L1 (Mjo,by]x[0,a) () = a| cosp| + b sin o]
Finally, if § + 7k < ¢ < 7(k+ 1) — 1, then
br(p) = L1 (Ijo,5)x {0} () = beos(p — 7k — g) = (=1)*bsinp = bsin .
g

Let ¢ be the set of vectors y € ¢ so that the line [, + y passes through a vertex
of trapezoid T' and makes a chord of positive Lebesgue measure there. The two

quantities introduced below,
Zo(p) = min x(l, + and z;(¢) = max x(l, +y),
0( ) yEDL X( © y) 1( ) yegL X( ® y)

will play a crucial role in determination of distribution function Fr. The diagrams
shown in Figure 2 facilitate case-by-case computations (see Proposition 4.2) of the

above mentioned quantities.

A C A c
c o
o B o c, B

v
If 7k < @ < =+ k, then [001] = 21(¢),ICC1| = 20(¢)

A C

o A < B

ki
If 2+ 7k S @ < m(k+1) =9, then |Ad1] = |CC1| = 21(p) = zo (%)

A B, C A C
B, A
o] A B o} B

If m(k+1) = < o <w(k+1), then |AA1| = 20(¢), |BB1| = z1(»)

FIGURE 2. Possible dispositions of z(¢) and z1(y)
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Proposition 4.2. x1(p) = Tmax(p) for any angle p. Furthermore, if for some

keZ
(i) 7k < <% + 7k, then
b
—1, if Tk <@ <7k + arctan ;-
zo(p) = § sl 1
T if wk+arctany- <@ < 5+ 7k
| sin @] 1
bei
,Si, if ﬂk§@<7rk+arctanﬁ
Tmax(p) = { [5I(¢ + )|

m, if 7Tk+arctanﬁ§gp<g+7rk

(ii) 5+ 7k <@ <m(k+1) =1, then
a
To(P) = Tmax(p) = m

(i) m(k+1) —¢ < p <7(k+1), then

,L, if m(k4+1) =1 <@ <m(k+1)—arctan ¢
o= P
&, if m(k+1)—arctan § <o <m(k+1)
|sin(p + )]
,L, if m(k+1)—1 <@ <m(k+1)—arctan
Tunxlp) = { |73
— if w(k+1)—arctan§ <o <7(k+1)
| cos ¢

Proof. A chord of maximal length in a convex polygon with direction ¢, also known
as p-diameter of the polygon, is not necessarily unique (this is also seen in Figure 2:
the second, third, and fourth cases) but for any given ¢ there exists a p-diameter
such that at least one endpoint of the chord coincides with a vertex of the given
polygon ([16]). Thus,

Trnax = max lo+y)=max x(l, +vy) =z .
(p) = max x(lp+y) = maxx(ly +y) = 1(p)
Case (i), sub-case 1 (7k < ¢ < mk + arctan 3-). Observe the first trapezoid in

Figure 2. Here we are given Z010B = ¢ — wk. By Sine Rule,

zo(p) = 0G| = cos(p — k) |cos|’
bsin bsin

max =100,| = . = " .

Tmax(i7) = 00| sin(p — 7k +1)  |sin(e + )]

Case (i), sub-case 2 (7k + arctan ;- < ¢ < 7 + mk). Observe the second trapezoid
in Figure 2. Since ZAO,0 = Z010B = ¢ — 7k, from the right triangle AO;0 we

obtain
a a

To(p) = Tmax(p) = |O0:| =
74
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Case (i) is completely proved. The proof of the case (iii) is similar to (i), hence
omitted. It remains to discuss the case (i), where § 4+ 7k < ¢ < 7(k+ 1) — ¢ and
the third (in the middle) trapezoid in Figure 2 is relevant. In this case we have
LAAB =y —7k=/LAA;0 =x(k + 1) — ¢, which implies

a a
sin(m(k+1)—p) |sing|

To(®) = Tmax(p) = |AA1| =
O

By definition, for any angle ¢, if x < 0 then Fr(z,¢) =0, and if > Zyax(p) then
Fr(z,p) =1. The non-trivial case 0 < & < Tmax(p) is explored below.

Lemma 4.1. Fr(z,¢) = 0 if x < 0 and Fr(z,9) = 1 if © > zmax(p). For
0 < 2 < Tmax(9), Fr(z, @) is represented as follows (k € Z) :

(i) For mk < ¢ < § + k,

(4.1)
. zsin SD[Slng)‘i (‘:D;Z’S)i:gowsm vl : if 0<x<zo(p)
FT €T,p)= in2 — in? 2 ;
xsin“ (¢ J;TQZ(J()p) ngfc)ossz 1 cos SD’ if xo(p) < < Tmax(®)

(ii) if T +7k <o <mk+1)—1,

x sin? ¢ cot (8

(iii) if 7k +1) — ¢ < o < 7w(k + 1),
(4.3)

—z sin p[sin(p + 1) + cos @ sin )

_ br () sin |
Fr(z,p) = 2 cos? o sin2:’7:11 — z0(¢p) sin’(p + )

br(p) sin 1) cos ’

Proof. Let’s note that the function Fr(z,-) is m-periodic. This guarantees that

if 0<z<ump)

if 20(0) < T < Tmaxl(9)

generality will not be lost if we restrict the proof to the case k = 0.

Case (i), sub-case 1.1: let 0 < ¢ < arctan - and 0 < z < zo(¢p).

This case is displayed below in Figure 3(A) which shows |[MM;| = |[NNy| =z <
zo(p) = [CC1| <[|001] = Tmax ().

In this case we have Frp(z, p) = ﬁ(w) (bAAMM1 (p)+basnN, (go)) The quantities
baam s, () and bapnn, (@) are equal to the heights of triangles AM M (with base
M M) and BNN; (with base NNj), respectively. Those are computed below:

(4.4) baanm, (@) = xsing cos p.
_ xsinpsin(p + 1)
(4.5) bapNn, (¢) = prawn .
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A M C A d

A M, O.
> @) @ M h
3
C, N & C R O1N T ©
st N M, ) g ! oL )
5 3 : M
p (4
fo) ¥
N B O N 8 5 c
o s
(A) Case (i), sub-case 1.1: (B) Case (i), sub-case 1.2: (C) Case (i), sub-case 2:
O§<p<arctan%, 0§¢<arctan%, arctan%§¢<%,
0 < o < z0(0) 20(9) < & < Tmax(®) 0 < & < 20(#) = Tmax(¥)

FIGURE 3. Chords in trapezoid in direction ¢, where 0 < ¢ < 7.

Case (i), sub-case 1.2: let 0 < ¢ < arctan 3= and 2o(p) < T < Tmax(p)-
This case is displayed in Figure 3(B), where zo(p) = |CCy| < z = |MM,| =

INNi| < |OO1| = Zmax(¢). In this case we have Fr(z,¢) = le(w) (bacnan (@) +
1

basnN, (9)) = 57157 (basce, (9)+bannw, (9)+bocianm(9) = 5755 (2o(y) sin g cos p+

%W + bocy mym (). The quantity

(z — z0(p)) cos psin(p + 1)
cos Y
is computed from the trapezoid CCyM; M with bases CC; and M Mj, as a height.

Case (i), sub-case 2: let arctan ;- < ¢ < 7 and 0 < 2 < 2o(p) = Tmax(¢)-
This case is displayed in Figure 3(C), where x = |MM;| = [NN;| < |00,| =
|CC4| = xo(¢) = Tmax(p). Computation of the chord length distribution function

(4.6) booymm(p) =

in this case is absolutely identical to the case (i), sub-case 1.1.
Combining (4.4), (4.5), and (4.6), for any ¢ € [0, ) we obtain Fr(z,¢) =

zsin g cos @ + Zonesinlety) “Dsfrilnf+w)

bT(w) sin  sin( 7+w> ( ()) cos @ sin(p+1))
xo(cp) singocoscp + X sin LpSlsrlln % + xr—xo(p co:gpsm © )
¢ cos 20(9) < T < Trnax()

br(¢) 7

0<z<zo(p)

which is equivalent to (4.1).
Case (ii): let < ¢ < m — 1 and see Figure 4 below.

0 M, A G N B
Case (ii):

T le<T—1,
0 <z < zo(p) = Tmax(p)

FIGURE 4. Chords in trapezoid in direction ¢, where § < ¢ <7 —1).
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For x = |MM;| = |[NNy| < |AA;| = |CC4| = 2o(¢) = Tmax(p) we have
1
F =——(b b =
T(x,9) bT(tp)( aoma, (@) + ABNN1(<P))
zsin(m — ¢) cos(m — ) + %W - xsin’ o cos 1) _ xsin? ¢ cot ¢

br(p) ~br(p)sing  br(y)
Case (iii): let # — ¢ < ¢ < w. Similar to case (i), the distribution function can be

computed by three sub-cases, as shown in Figure 5.

A B, N, C
/0‘»}
g M
z

o

(A) Case (iii), sub-case 1: (B) Case (iii), sub-case 2.1: (C) Case (iii), sub-case 2.2:
m—1 < ¢ <7 —arctan ¢, m —arctan § < ¢ <, m —arctan § < o <,
0 <z <zo(p) = Tmax () 0<z < zo(p) zo(p) < = < Tmax(p)

F1GURE 5. Chords in trapezoid in direction ¢, where m — ¢ < ¢ < 7.

Ifr—yY<ep<mand 0 <z < x0(p) < Tmax(p), then (sub-cases 1 and 2.1)

zsin(m — @) cos(m — @) — L2 iis:ip(ww)

br ()
Inequality xo(¢) < & < Zmax () is possible if only m — arctan § < ¢ < 7 (sub-case

(4.7) Fr(z,¢) =

2.2). The distribution function in this last case is equal to

(4.8)
zsin(r — @) cos(m — @) — zo(p) sir;iﬁ f;n(w+w) + (ﬂc—ro(v));clslf sin(p+¢)
Fr(z,¢p) =
br ()
By simplifying (4.7) and (4.8), we establish (4.3). O

5. COVARIOGRAM OF A RIGHT PRiSM WITH RIGHT TRAPEZOIDAL BASE.
COMPUTATION OF CHORD LENGTH DISTRIBUTION FUNCTION

Denote by Dy the right prism {(z,y,2) : (z,y) € T, 0 < z < h}.

Due to the Matheron’s formula (see [2]) we have

‘9CT8—<:"P):—L1 ({yeqﬁL:Ll(Tm(lery))Zt}),

which can be rewritten in terms of the orientation-dependent chord length distribu-

tion function as OC(t.0)
t
T = br(e) - L= Fr(t, o).

Integration of both parts of the last formula yields
t
B0 Crlt) = Crl0.9) = brle)- [ (1~ Fr(ug)ldu t>0
0
7
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Using the formula (5.1) and Lemma 4.1 we immediately come to an explicit formula
for Cp(t, ), the covariogram of T'. Since Cr(t,-) has period equal to 7, it is enough
to have it computed for ¢ € [0, 7).

a(b + bl)

Crltp) = gt —thr (o) + br(e) - [ Priwg)du = 52— thr()+

2 . .
t* sin @[sin(p +.1/J) +cos<psm¢]’ i 0<p<Z, 0<t<aoly)
) 2sin
t?sin’(p +¢)  two(p)siny cos? ¢
N f 0< < 3 <t max
2sine) cos ) cos ¥ ;i 0< o< g, 2o(p) <t < Tmax(p)
t
Esin2<pcot¢, if 2<p<m—19, 0<t< Tmax(p)
t2 g : .
- SlnsD[Sln(WZ—;w)w—i- cos p sin | i m—p<p<n 0<t<zols)
in
t?cos? psinty  txo(ep)sin?(¢ + )
B f - < < t < max
2cosy sin v cos ¢ ;i m—Y <e<m 2o(p) St S Tmax(p)

As a result, for any ¢ € [0, Tymax(w)], any ¢ € [rk,m(k+1)), k € Z and any 6 € [0, 7]

the covariogram of Dp is equal to
Cpy(tw) = Lo(TN {T+(tcosf)p}) - (h—tsinf) = (h—tsind)-Cr(tcosb, p —7k),

where w = (cos ¢ cos 8, sin p cos 0, sin ) and xax(p) satisfies (3.4).
Computation of Fp,(z,w) requires more workload. Lemma 4.1 shows that if
k<< §+mkorm(k+1)—vY <@ <m(k+1) then the function Fr(z,¢) is

piecewise linear. To have those pieces written in slope-intercept form let’s denote

_ singlsin(e + 1) + cos psin ] _ sin(p+ )
mo(¢) = br () sine » male) = br(p) sin ¢ cos )’
_ xo(p) tanyp cos? o
(o) = br(p)

Then (4.1) and (4.3) can be represented as

mo(p)x, if 0<x<uzo(p)
5.2 Fr(z,p) =
(52) r(@,¢) {m1(@)$ —c(p), if zo(p) <2 < Tmax(p)
and

—mo(p)z, if 0<z<z0(p)
5.3 Fr(z,p) = . ,
( ) T(IE ) {C(@)m _ ml(sp)’ if 1’0(80) S T < fUmaX(SO)
respectively.

If t <0 then Fp,(t,w) = 0, and if t > Tpax(w) then Fp,(t,w) =1. 0 <t <
ZTmax(w), then Fp,. (unlike Fip) requires several pieces to be written explicitly. The

classification of cases is based on two factors:
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1) the choice of either of the intervals [rk, T + k), [§ + 7k, 7w(k + 1) — 1), or
[7(k+1) —,m(k + 1)) for ¢ to be taken from;
2) the magnitude of the orthogonal projection of za.x(w) onto the base T

compared to zo(yp) for the given ¢ and 6.

The result is formulated below.

Theorem 5.1.

(i) If ik < ¢ < § + 7wk and Tmax(w) cosf < xo(p), then

FDT (t’w) = b?(g)

0 <t < Tmax(w).

((hmo(go) cos® 0 +sin20) - ¢ — %mo(sﬁ) sin 26 cos 0 - t2>,

(ii) If ik < ¢ < § + mk and Tmax(w) cost > xo(p), then

FDT(t,w) = %X

(hmo(p) cos? 0 + sin 20) - t — 2mg(¢) sin 20 cos 6 - t2, if 0<t< D

cos 6

—c(p) (wo(p) sin @ + hcos ) — ng(w) sin 6+
+(hmy () cos? 0 + [c(p) + 1] sin26) - t—
—3my(p)sin26 cosd - 2, if 22 <t < (W)

cos 0

(iii) If T + 7k < o <m(k+1) =1, then

h cos? @ sin” ¢ cot 1 + by (¢) sin 260 _ sin2¢ sin? o cot ¥[2 cos § + 1] .2

FDT (t,w) = bDT (w) 4bDT (w) ’

0 <t < Tmax(w).

(i) Ifr(k+1)— ¢ <p<m(k+1) and Tmax(w) cosl < x2o(p), then

FDT (taw) = b?(g)

0 <t< Tmax(w).

((sin 20 — himo(p) cos® ) -t + %mo(cp) sin 26 cos 6§ - tz),

(W) If r(k+1) —¢ <p<7m(k+1) and xmax(w)cosd > xo(p), then

br(y)
F =
(sin260 — hmg(p) cos® 6) - t + 3mo(p) sin 26 cos 0 - £2, if 0<t< xc%(fo)
—m1 () (zo(y) sinf + hcos ) — M@%(@) sin 6+
+(he(p) cos? 0 + [mq(p) + 1] sin 26) - t—
—3¢(p) sin26 cos b - 2, if 228 <t < Tra(w)
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Proof. Case (i): Since t cos 0 < zo(¢), (5.2) yields Fr(p) = tmo(p) cosf. Then (3.3)

outputs

b 0
FDT(t’w) = %X
T

¢
(54) X <(h —tsin®) - tmo(p) cos O + 2tsin§ — Sin9/ u - mo(p) cos 0du) =
0

- bz (%) ((hmo(@) cos® 0 +sin2) - ¢ — §mo(‘ﬁ) sin 20 cos 6 - t2)'
bDT (w) 2

Case (ii): If 0 < t < ai%(s‘%), then the formula (5.4) still works. But if % <t<

Zmax(w), then there are two expressions for Fr(ucosé, ) to be used under the

integral in (3.3). Due to (5.2), those pieces are

. 0 if zo(p)
(65)  Fr(ucostg) =@ 00
u-my(p)cosf —c(p), if 2L <u

Therefore we get

Fp,(t,w) = br{p) cos {(h —tsind)(mq (@)t cosd — c(p)) + 2t sin H—
bDT (w)
— sin9/ mo () cos Qudu — sin@/ “ [m1(p) cosBu — c(p)]du| =
0 EoT)
= brlp)cost | he(p) — Mw%(gﬁ) + hmy (@) cos@ -t + sinfc(p)t—
bDT (w) 2
. g (Mi@)est k()
sin 6 cos fmy (¢)t* + 2t sin @ — sin 6 ( ) c(p) - t ml(cp)2cose+
()

+ep) )],

and finally

Fip (tw) = —c() (w0(p) sin + h cosg) — ol —ma(?)
(5.6) 3 .
(hmi(p) cos® 0 + [c(p) + 1] sin 260) - ¢ — Zml(go) sin 26 cos 6 - 2.

x2(¢) sin O+

Case (iii): Using (4.2) in (3.3), we obtain

Fp,(t,w) = 757*1)(;0:(0:)))89 [(h — tsin#) - tcos@s;:?g(;)&) coty + 2tsinf —sin @ - gx
sin? ¢ cot 1) br () cos [ [ hcosfsin? ¢ cot v .
br (%) ] b @) K (e o 9) "
B (sin@cosﬁsinzgocotw sin0s1n2<pcot¢> .tQ] _
br () 2br()
_ h cos? fsin? @ cot 1) + by () sin 26 e sin 20 sin” ¢ cot 1)[2 cos O + 1] 2
bp, (w) 4bp (w) .
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ORIENTATION-DEPENDENT CHORD ...

Cases (iv) and (v): Let’s notice that replacing mo(¢) by —mo(p) and interchanging

c(p) with mq () in (5.2) will produce (5.3). Applying the mentioned changes to (5.4)
and (5.6), we complete the proof of the theorem in cases (iv) and (v), respectively.
U

Remark 5.1. It follows from (3.2) that bp,(w) = @ + br(p)hcosf. This

expansion has not been used in the theorem.

Remark 5.2. When 0 =0, one can check that Fp, = Fr. If 0 = 5, then Fp,. is a
step function, which can be seen in Figure 6, example (C). The case (D) illustrates
an example where the graph of the distribution function comprises of 4 pieces, 2

horizontal lines and 2 arcs of parabolas.

o mp ocees st o) = 5T - Aol 25

R EEEEEERERER IBREEEEREEEEREE] 5452101334561 SNNEDUBGU B NARBMBETBED
t t

(A)a=5,b=10,h=5,p=%2,0=2 9 =12 (B) a=10v3,b=20,h =15,p = Z,0 =
arctan%,w: %

o e e Xenal) = 10.09

33 52061 13 4 IBREEEREEEREEEEEREE] R E R EEEEEEREEREREEE E R E R EEEEEE]
v t

() a=5,b=10,h=5,p=%,0=2,9 =% (D) a=5,b=10,h=10,p= 5,0 =%, =12

FIGURE 6. Orientation dependent chord length distribution func-
tion Fp, for different cases
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