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1. Introduction

The �nal purpose of this paper is to derive the existence of a solution to the

Maxwell-Stokes type system.

First, we consider the following quasilinear magneto-static problem:

curl [G(x, curlu)] = f in Ω,(1.1a)

divu = 0 in Ω,(1.1b)

uT = u0
T on Γ,(1.1c)

where Ω is a bounded domain in R3 with a boundary Γ = ∂Ω, uT denotes the

tangent component of u, namely, if we write the unit outer normal vector of the

boundary by n, then uT = (n× u)× n, and u0
T is a given tangential vector �eld,

that is, n · u0
T = 0 on Γ.

This system is interesting in physics, and may be viewed as the stationary version

of the eddy current model, where the relation between the magnetic �eld H and

the magnetic induction B is de�ned by the nonlinear B-H-curve. For the physical

nature of the nonlinear B-H-curve, see Kaltenbacher et al. [14] and Pechstein and

J�utter [19]. The eddy-current problem is a quasi-static approximation at very low

frequency of the Maxwell equation, and the approximation is obtained by neglecting

the displacement current in the Maxwell-Amp�ere law. Here we want to say that the

solvability of (1.1a)-(1.1b) depends on the nonlinearity of a vector function G(x, z),

the boundary conditions and the shape of the domain Ω with special emphasis,

Such system are investigated by many authors, for example, Pan [18], Miranda
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et al. [15, 16], Yin [21, 23], Yin et al. [22]. If a given function f does not satisfy

div f = 0 in Ω, or Ω has holes, then the system (1.1a)-(1.1c) are not nicely posed

problem, so we may introduce an unknown scalar function π to the system, which

may be called a potential.

To overcome such di�culty, we consider the following Maxwell-Stokes type system:

curl [St(x, |curlu|2)curlu] +∇π = f in Ω,(1.2a)

divu = 0 in Ω,(1.2b)

u× n = 0 on Γ,(1.2c)

u · n = g on Γ,(1.2d)

where f and g are given functions, and S(x, t) is a Carath�eodory function on

Ω × [0,∞) satisfying some structure conditions (see section 3). According to the

conditions on a function S(x, t), we can see that the equation (1.2a) contains a

p-curlcurl equation:

curl [|curlu|p−2curlu] +∇π = f in Ω (1 < p <∞).

If we impose the Dirichlet boundary condition to π, then we derived the solvability of

the system (1.2a)-(1.2c) in a multi-connected domain without holes in the author's

previous paper Aramaki [8]. The de Rham theorem used there was rather restrictive

(cf. Aramaki [6]).

However, in the case where Ω has holes, it is necessary to impose the boundary

condition (1.2d) for g satisfying some conditions. For this purpose, we have to derive

a more general de Rham theorem.

In this paper, we do not impose any boundary condition to the potential, and we

derive the existence of solution to the system (1.2a)-(1.2d). To do so, it is necessary

to derive an Lp version of de Rham theorem.

The paper is organized as follows. In section 2, we give an Lp version of the de

Rham theorem which is ushered by an Lp version of the celebrated Ne�cas inequality.

In section 3, we give some preliminaries for the Maxwell-Stokes type system. Section

4 is devoted to the existence theory of a solution to the Maxwell-Stokes system,

using the de Rham theorem given in section 2.

2. A coarse version of the de Rham theorem

In this section, let Ω be a bounded domain which means a bounded, connected

open subset of Rd (d ≥ 2) with a Lipschitz boundary Γ, 1 < q < ∞, and let q′ be

the conjugate exponent i.e., (1/q) + (1/q′) = 1.
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From now on we use Lq(Ω), Wm,q(Ω) (m ≥ 0, integer), W s,q(Γ) (s ∈ R), and so

on, for the standard real Lq and Sobolev spaces of real valued functions. For any

real Banach space B, we denote Bd by boldface character B. Hereafter, we use this

character to denote vector and vector-valued functions, and we denote the standard

inner product of vectors a and b in Rd by a · b. Moreover, for the dual space B′,

we denote the duality bracket between B′ and B by 〈·, ·〉B′,B.
We consider a coarse version of the de Rham theorem. In order to do so, we �rst

state the Ne�cas inequality which takes an important role for the proof of a coarse

version of the de Rham theorem.

Theorem 2.1 (Ne�cas inequality). Let Ω is a bounded domain of Rd with a Lipschitz
boundary Γ and 1 < q <∞. Then the set

{π ∈W−1,q(Ω);∇π ∈W−1,q(Ω)}

is equal to Lq(Ω), and there exists a constant C > 0 depending only on q and Ω

such that

‖π‖Lq(Ω) ≤ C(‖π‖W−1,q(Ω) + ‖∇π‖W−1.q(Ω)).

For the proof, see Theorem IV.1.1 for q = 2 and Remark IV.1.1 for general

1 < q <∞ in Boyer and Fabrie [10].

The Ne�cas inequality now allow the following Poincar�e type inequality for the

function of Lq(Ω).

Proposition 2.1. Let Ω be a bounded domain of Rd with a Lipschitz boundary Γ

and let 1 < q <∞. Then there exists a constant C > 0 depending only on q and Ω

such that

‖π‖W−1,q(Ω) ≤ C
(

1

|Ω|

∣∣∣∣∫
Ω

πdx

∣∣∣∣+ ‖∇π‖W−1,q(Ω)

)
for all π ∈ Lq(Ω),

where |Ω| denotes the volume of Ω.

Proof. Assume that the conclusion is false. Then there exists {πn}∞n=1 ⊂ Lq(Ω)

such that

‖πn‖W−1,q(Ω) ≥ n
(

1

|Ω|

∣∣∣∣∫
Ω

πndx

∣∣∣∣+ ‖∇πn‖W−1,q(Ω)

)
.

By homogeneity, we may assume that ‖πn‖W−1,q(Ω) = 1. From Ne�cas inequality

(Theorem 2.1), we can deduce that {πn} is bounded in Lq(Ω). Passing to a subsequence,

we may assume that πn → π weakly in Lq(Ω). Since the embedding W 1,q′

0 (Ω) ↪→
Lq
′
(Ω) is compact and dense, we can see the embedding Lq(Ω) ↪→W−1,q(Ω) is also

compact. Therefore, πn → π strongly in W−1,q(Ω). Since ‖∇πn‖W−1,q(Ω) → 0 as
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n→∞, we obtain ∇π = 0 in the distribution sense and therefore π = c = const. .

However, we also have
1

|Ω|

∣∣∣∣∫
Ω

πndx

∣∣∣∣ ≤ 1

n
.

Since πn → π = c weakly in Lq(Ω), we obtain c = 0, so π = 0. On the other hand,

since ‖π‖W−1,q(Ω) = limn→∞ ‖πn‖W−1,q(Ω) = 1, this leads to a contradiction. �

Next we derive that the gradient operator from Lq(Ω) to W−1,q(Ω) has a closed

range.

Proposition 2.2. Let Ω be a bounded domain of Rd with a Lipschitz boundary Γ

and 1 < q < ∞. Then the gradient operator grad = ∇ : Lq(Ω) →W−1.q(Ω) has a

closed range in W−1,q(Ω).

Proof. Let πn ∈ Lq(Ω) and ∇πn → f in W−1,q(Ω) as n → ∞. Then we may

assume that
∫

Ω
πndx = 0 for all n ∈ N. By Ne�cas inequality, we have

‖πn − πm‖Lq(Ω) ≤ C(‖πn − πm‖W−1,q(Ω) + ‖∇(πn − πm)‖W−1,q(Ω)).

However, it follows from Proposition 2.1 that we have

‖πn − πm‖W−1,q(Ω) ≤ C‖∇(πn − πm)‖W−1,q(Ω)).

Thus we obtain

‖πn − πm‖Lq(Ω) ≤ C1‖∇(πn − πm)‖W−1,q(Ω)).

Since ∇πn → f in W−1.q(Ω), {πn} is a Cauchy sequence in Lq(Ω). Therefore, there

exists π ∈ Lq(Ω) such that πn → π in Lq(Ω). So we have f = ∇π ∈ ∇(Lq(Ω)). �

We are in a position to state a coarse version of the de Rham theorem.

Theorem 2.2 (A coarse version of the de Rham theorem). Let Ω be a bounded

domain of Rd with a Lipschitz boundary Γ, 1 < q < ∞ and let h ∈W−1,q′(Ω). If

h satis�es

(2.1) 〈h,v〉W−1,q′ (Ω),W 1,q
0 (Ω) = 0

for all v ∈W 1,q
0 (Ω) satisfying div v = 0 in Ω,

then there exists a function π ∈ Lq
′

0 (Ω) :=
{
q ∈ Lq′(Ω);

∫
Ω
qdx = 0

}
such that

(2.2) h = ∇π in Ω.

Conversely, if (2.2) holds, then clearly (2.1) holds.

Proof. In general, for any subset A of a normed linear space X, de�ne

A⊥ = {f ∈ X ′; 〈f, x〉X′,X = 0 for all x ∈ A},
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and for any subset A′ of the dual space X ′, de�ne

⊥(A′) = {x ∈ X; 〈f, x〉X′,X = 0 for all f ∈ A′}.

It is well known that if A is a closed subspace of X, then it holds that ⊥(A⊥) = A

(cf. Taylor and Lay [20, p. 164]).

De�ne X = W−1,q′(Ω) and

Y q′(Ω) = {∇π : π ∈ Lq
′
(Ω)}.

Then it follows from Proposition 2.2 that Y q′(Ω) is a closed subspace of X =

W−1,q′(Ω), so

(2.3) ⊥(Y q′(Ω)⊥) = Y q′(Ω).

If we de�ne

Zq(Ω) = {v ∈W 1,q
0 (Ω); div v = 0 in Ω},

then Zq(Ω) is a closed subspace of X ′ = W−1,q′(Ω)′ = W 1,q
0 (Ω). The theorem

clearly means that

(2.4) ⊥Zq(Ω) ⊂ Y q′(Ω).

To derive (2.4), it su�ces to show that Y q′(Ω)⊥ ⊂ Zq(Ω) since (2.3) holds. Assume

that v ∈ Y q′(Ω)⊥ ⊂ X ′ = W 1,q
0 (Ω). Then for any π ∈ Lq′(Ω),

−
∫

Ω

πdiv vdx = 〈∇π,v〉W−1,q′ (Ω),W 1,q
0 (Ω) = 0.

This implies that

〈div v, π〉D′(Ω),D(Ω) = 0 for all π ∈ D(Ω),

where D(Ω) is the space of C∞ functions with compact supports in Ω, and D′(Ω) is

the space of distributions in Ω. Therefore, div v = 0 in D′(Ω). Since div v ∈ Lq(Ω),

we obtain that div v = 0 in Lq(Ω), so v ∈ Zq(Ω). �

Remark 2.1. To tell the truth, the Ne�cas inequality (Theorem 2.1), Proposition

2.1 and a coarse version of the de Rham theorem (Theorem 2.2) are equivalent. For

this facts, see Amrouche et al. [4] for q = 2, and see [6] for genaral 1 < q <∞

3. Preliminaries for the Maxwell-Stokes type problem

In this section, we give preliminaries for the Maxwell-Stokes type problem as an

application of a coarse version of the de Rham theorem (Theorem 2.2). To do so, we

assume that Ω is a bounded domain (connected open subset) of R3 with a Lipschitz

boundary Γ satisfying the following conditions as in Amrouche and Seloula [2] (cf.

Amrouche and Seloula [3] and Girault and Raviart [13]).

Assume that Ω is locally situated on one side of Γ. In addition,

27



J. ARAMAKI

(O1) Γ has a �nite number of connected components Γ0,Γ1, . . . ,ΓI with Γ0

denoting the boundary of the in�nite connected component of R3 \ Ω.

(O2) There exist J connected open surfaces Σj , (j = 1, . . . , J), called cuts,

contained in Ω such that

(a) Σj is an open subset of a smooth manifoldMj .

(b) ∂Σj ⊂ Γ (j = 1, . . . , J), where ∂Σj denotes the boundary of Σj , and

Σj is non-tangential to Γ.

(c) Σj ∩ Σk = ∅ (j 6= k).

(d) The open set Ω̇ = Ω \ (∪Jj=1Σj) is simply connected and of Lipschitz

class.

The number J is called the �rst Betti number which is equal to the number of

handles of Ω, and I is called the second Betti number which is equal to the number

of holes. We say that if J = 0, Ω is simply connected, and if I = 0, Ω has no holes.

De�ne two spaces by

KpN (Ω) = {v ∈ Lp(Ω); div v = 0, curlv = 0 in Ω,v × n = 0 on Γ},

KpT (Ω) = {v ∈ Lp(Ω); div v = 0, curlv = 0 in Ω,v · n = 0 on Γ}.

Then it is well known that dimKpT (Ω) = J and dimKpN (Ω) = I.

We assume that a Carath�eodory function S(x, t) satis�es the following conditions:

There exist 1 < p < ∞ and positive constants 0 < λ ≤ Λ < ∞ such that for a.e.

x ∈ Ω, S(x, ·) ∈ C2((0,∞))∩C0([0,∞)) as a function of t, and S(x, t) satis�es that

S(x, 0) = 0 and λt(p−2)/2 ≤ St(x, t) ≤ Λt(p−2)/2 for t > 0.(3.1a)

λt(p−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ Λt(p−2)/2 for t > 0.(3.1b)

If 1 < p < 2, Stt(x, t) < 0, and if p ≥ 2, Stt(x, t) ≥ 0 for t > 0.(3.1c)

Here St = ∂S/∂t, Stt = ∂2S/∂t2. We note that from (3.1a), we have

(3.2)
2

p
λtp/2 ≤ S(x, t) ≤ 2

p
Λtp/2 for t ≥ 0 and a.e. x ∈ Ω.

Example 3.1. If S(x, t) = ν(x)tp/2, where ν is a measurable function in Ω and

satis�es 0 < ν∗ ≤ ν(x) ≤ ν∗ <∞, then it follows from elementary calculations that

(3.1a)-(3.1c) hold.

We have the following lemma with respect to the monotonicity of St.

Lemma 3.1. There exists a constant c > 0 such that for all a, b ∈ R3,(
St(x, |a|2)a− St(x, |b|2)b

)
· (a− b)

≥
{
c|a− b|p if p ≥ 2,
c(|a|+ |b|)p−2|a− b|2 if 1 < p < 2.
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In particular, St is strictly monotone, that is,(
St(x, |a|2)a− St(x, |b|2)b

)
· (a− b) > 0 if a 6= b.

For the proof, see Aramaki [7, Lemma 3.5].

Next, we show that S(x, |a|2) is strictly convex with respect to a ∈ R3.

Lemma 3.2. For a.e. x ∈ Ω, S(x, |a|2) is strictly convex with respect to a ∈ R3,

that is, for a, b ∈ R3 and 0 ≤ θ ≤ 1,

(3.3) S(x, |θa + (1− θ)b|2) ≤ θS(x, |a|2) + (1− θ)S(x, |b|2),

and in particular, if a 6= b and 0 < θ < 1, then we have

(3.4) S(x, |θa + (1− θ)b|2) < θS(x, |a|2) + (1− θ)S(x, |b|2).

Proof. For brevity of notation, we put F (x, t) = S(x, t2). Since

Ft(x, t) = 2tSt(x, t
2) ≥ 2λtp−1 > 0 a.e. x ∈ Ω and t > 0

from (3.1a), and

Ftt(x, t) = 2(St(x, t
2) + 2t2Stt(x, t

2)) ≥ 2λtp−2 > 0 a.e. x ∈ Ω and t > 0

from (3.1b), we see that for a.e. x ∈ Ω, F (x, t) is strictly increasing and strictly

convex as a function ot t ∈ [0,∞). Therefore, for a.e. x ∈ Ω, a, b ∈ R3 and 0 ≤ θ ≤ 1,

we have

F (x, |θa + (1− θ)b|) ≤ F (x, θ|a|+ (1− θ)|b|) ≤ θF (x, |a|) + (1− θ)F (x, |b|).

Thus F (x, |a|) = S(x, |a|2) is a convex function of a ∈ R3.

Let a 6= b and 0 < θ < 1, Without loss of generality, we may assume a 6= 0. If

|θa + (1− θ)b| < θ|a|+ (1− θ)|b|, then we have

F (x, |θa + (1− θ)b|) < F (x, θ|a|+ (1− θ)|b|) ≤ θF (x, |a|) + (1− θ)F (x, |b|).

If |θa + (1 − θ)b| = θ|a| + (1 − θ)|b|, then this implies that a · b = |a||b|. By the

Schwarz inequality, a and b are linearly dependent, so we can write b = ca, where

c ≥ 0 and c 6= 1. This implies |a| 6= |b|. Thus it follow from the strict convexity of

F (x, t) as a function ot t that

F (x, |θa + (1− θ)b|) = F (x, θ|a|+ (1− θ)|b|) < θF (x, |a|) + (1− θ)F (x, |b|).

�
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4. Existence of a solution to the Maxwell-Stokes type system

In this section, we derive the existence of a solution to the Maxwell-Stokes type

system. Let Ω be a bounded domain in R3 satisfying (O1) and (O2), 1 < p < ∞
and let a Carath�eodory function S(x, t) satisfy (3.1a)-(3.1c).

We consider the following Maxwell-Stokes type problem: for given f and g, �nd

(u, π) such that

curl [St(x, |curlu|2)curlu] +∇π = f in Ω,(4.1a)

divu = 0 in Ω,(4.1b)

u = gn on Γ.(4.1c)

De�ne a space

Vp(Ω) = {v ∈W 1,p(Ω); div v = 0 in Ω,v × n = 0 on Γ,

〈v · n, 1〉Γi
= 0 for i = 1, . . . , I}.

Then we can see that Vp(Ω) is a separable, re�exive Banach space equipped with

the semi-norm

(4.2) ‖v‖Vp(Ω) = ‖curlv‖Lp(Ω).

By [3, p. 40], since we have

‖v‖W 1,p(Ω) ≤ C(p,Ω)‖curlv‖Lp(Ω) for all v ∈ Vp(Ω),

the de�nition (4.2) is, in fact, the norm and ‖v‖Vp(Ω) and ‖v‖W 1,p(Ω) are equivalent

(cf. [15, 16]).

Assume that a given function f satis�es that f ∈ Vp(Ω)′ ∩W−1,p′(Ω), where p′

denotes the conjugate exponent of p, and

f
∣∣
Vp(Ω)∩W 1,p

0 (Ω)
in W−1,p′(Ω) = f

∣∣
Vp(Ω)∩W 1,p

0 (Ω)
in Vp(Ω)′,

that is,

(4.3) 〈f ,v〉Vp(Ω)′,Vp(Ω) = 〈f ,v〉W−1,p′ (Ω)′,W 1,p
0 (Ω)

for all v ∈ Vp(Ω) ∩W 1,p
0 (Ω).

Moreover, we assume that g ∈W 1−1/p,p(Γ) and satis�es that

(4.4)

∫
Γi

gdσ = 0 for every i = 0, 1, . . . , I,

where dσ denotes the surface area of Γ. We de�ne a space

Up
g (Ω) = {v ∈W 1,p(Ω); div v = 0 in Ω,v = gn on Γ}.
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If v ∈ Up
g (Ω), then v × n = 0 and 〈v · n, 1〉Γi

=
∫

Γi
gdσ = 0, and so we can easily

see that Up
g (Ω) is a closed, convex subset of Vp(Ω). If we put g = gn on Γ, then

from (4.4), we have ∫
Γ

g · ndσ =

∫
Γ

gdσ =

I∑
i=0

∫
Γi

gdσ = 0.

Therefore, it follows from Amrouche and Girault [1, Lemma 3.3] that there exists

v ∈W 1,p(Ω) such that div v = 0 in Ω and v = g = gn on Γ. Thus v ∈ Up
g (Ω), so

Up
g (Ω) is a non-empty set. Since Up

g (Ω) is a closed and convex subset of Vp(Ω), we

can see that Up
g (Ω) is sequentially weakly closed subset of Vp(Ω) (cf. Ciarlet [12,

Theorem 5.13-1]).

We are in a position to state a main theorem.

Theorem 4.1. Assume that Ω is a bounded domain of R3 with a Lipschitz boundary

Γ and satis�es (O1) and (O2), 1 < p < ∞ and a Carath�eodory function S(x, t)

satis�es (3.1a)-(3.1c). Moreover, assume that f ∈ Vp(Ω)′ ∩W−1,p′(Ω) satis�es

(4.3) and g ∈ W 1−1/p,p(Γ) satis�es (4.4). Then the Maxwell-Stokes type system

(4.1a)-(4.1c) has a unique weak solution (u, π) ∈ W 1,p(Ω) × Lp′(Ω)/R, and there

exists a constant C > 0 dependent only on p and Ω such that

(4.5) ‖u‖pW 1,p(Ω) + ‖π‖p
′

Lp′ (Ω)/R

≤ C(‖f‖p
′

W−1,p′ (Ω)
+ ‖f‖p

′

Vp(Ω)′ + ‖g‖p
W 1−1/p,p(Γ)

).

Proof. We prove this theorem using the direct method of calculus of variation

and using a coarse version of the de Rham theorem. In order to do so, we consider

a functional

(4.6) J [v] =
1

2

∫
Ω

S(x, |curlv|2)dx− 〈f ,v〉Vp(Ω)′,Vp(Ω) for v ∈ Up
g (Ω).

Step 1. J has a unique minimizer u ∈ Up
g (Ω), that is,

J(u) = inf
v∈Up

g (Ω)
J(v).

From (3.2), the duality and the Young inequality, for any ε > 0, there exists a

constant C(ε) > 0 such that for all v ∈ Up
g (Ω),

J [v] ≥ λ

p
‖curlv‖pLp(Ω) − ‖f‖Vp(Ω)′‖v‖Vp(Ω)

≥ λ

p
‖v‖pVp(Ω) − C(ε)‖f‖p

′

Vp(Ω)′ − ε‖v‖
p
Vp(Ω).

If we put ε = λ/2p, we have

(4.7) J [v] ≥ λ

2p
‖v‖pVp(Ω) − C‖f‖

p′

Vp(Ω)′ > −∞ for v ∈ Up
g (Ω).
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Thus we see that J is coercive on Up
g (Ω).

Next we show that J : Up
g (Ω)→ R is sequentially weakly lower semi-continuous.

Let vj → v weakly in Vp(Ω). Since curl : Vp(Ω) → Lp(Ω) is linear and bounded,

it is clear that curlvj → curlv weakly in Lp(Ω).

Then it follows from Aramaki [5] that∫
Ω

S(x, |curlv|2)dx ≤ lim inf
j→∞

∫
Ω

S(x, |curlvj |2)dx.

On the other hand, since f ∈ Vp(Ω)′ and vj → v weakly in Vp(Ω), we have

〈f ,v〉Vp(Ω)′,Vp(Ω) = lim
j→∞
〈f ,vj〉Vp(Ω)′,Vp(Ω).

Thus we have

J(v) ≤ lim inf
j→∞

J(vj),

that is, J : Up
g (Ω)→ R is sequentially weakly lower semi-continuous. Therefore, J

has a minimizer u ∈ Up
g (Ω). See, for example, Ciarlet [12, Theorem 9.3-1].

Using (3.3), we can easily see that J is a convex functional on Up
g (Ω). Moreover,

since ‖v‖Vp(Ω) and ‖v‖W 1,p(Ω) are equivalent for v ∈ Vp(Ω), it follows that if u 6= v

in Up
g (Ω), then curlu 6= curlv in Lp(Ω). From Lemma 3.2, we see that J is strictly

convex on Up
g (Ω). Thus the minimizer is unique.

Step 2. Let u ∈ Up
g (Ω) be a unique minimizer of J on Up

g (Ω). For any

w ∈ Zp(Ω) = {v ∈W 1,p
0 (Ω); div v = 0 in Ω},

we have u + τw ∈ Up
g (Ω) for all τ ∈ R, and so J(u) ≤ J(u + τw). By the Euler-

Lagrange equation and assumption (4.3), we have

0 =
d

dτ
J [u + τw]

∣∣∣∣
τ=0

=

∫
Ω

St(x, |curlu|2)curlu · curlwdx− 〈f ,w〉Vp(Ω)′,Vp(Ω)

=

∫
Ω

St(x, |curlu|2)curlu · curlwdx− 〈f ,w〉W−1,p′ (Ω)′,W 1,p
0 (Ω).

From a coarse version of the de Rham theorem (Theorem 2.2), we can derive that

there exists a function π ∈ Lp
′

0 (Ω) such that

(4.8) curl [St(x, |curlu|2)curlu] +∇π = f in W−1.p′(Ω).

Thus (u, π) is a solution of the system (4.1a)-(4.1c).

Step 3. We show the uniqueness of a solution of (4.1a)-(4.1c). Let (u1, π1), (u2, π2) ∈
W 1,p(Ω)×Lp′(Ω)/R be two solutions of (4.1a)-(4.1c). Since ui·n = g and ui×n = 0

for i = 1, 2, we see that u1 − u2 = 0 on Γ, so we have u1 − u2 ∈ Zp(Ω). Thus we
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have

〈∇πi,u1 − u2〉W−1,p′ (Ω),W 1,p
0 (Ω) = 0 for i = 1, 2.

Therefore, if we take the inner product of (4.1a) and u1 − u2, and then integrate

over Ω, we have∫
Ω

(
St(x, |curlu1|2)curlu1

− St(x, |curlu2|2)curlu2

)
· curl (u1 − u2)dx = 0.

From this equality and the strictly monotonicity of St (Lemma 3.1), we have

curlu1 = curlu2 in Ω. This implies u1 = u2. From (4.1a), we have ∇π1 = ∇π2 in

W−1,p′(Ω), so in the distribution sense. Since Ω is connected, we have π1 − π2 is

equal to a constant, so π1 = π2 in Lp
′
(Ω)/R.

Step 4. We derive the estimate (4.5). Let u ∈ Up
g (Ω) be the minimizer of J .

Then for any v ∈ Up
g (Ω) and for 0 < θ < 1, since

J(u) ≤ J((1− θ)u + θv) = J(u + θ(v − u)),

we have

0 ≤ d

dθ
J(u + θ(v − u))

∣∣
θ=0+

=

∫
Ω

St(x, |curlu|2)curlu · curl (v − u)dx− 〈f ,v − u〉Vp(Ω)′,Vp(Ω).

Therefore, we have

(4.9)

∫
Ω

St(x, |curlu|2)curlu · curludx− 〈f ,u〉Vp(Ω)′,Vp(Ω)

≤
∫

Ω

St(x, |curlu|2)curlu · curlvdx− 〈f ,v〉Vp(Ω)′,Vp(Ω)

for all v ∈ Up
g (Ω). If we put g = gn ∈W 1−1/p,p(Γ), it follows from [1, Lemma 3.3]

that there exists v ∈W 1,p(Ω) such that div v = 0 in Ω and v = g = gn on Γ, so

v ∈ Up
g (Ω), and there exists a constant C > 0 dependent only on p and Ω such that

inf
w∈Zp(Ω)

‖v + w‖W 1,p(Ω) ≤ ‖g‖W 1−1/p,p(Γ).

Here we can easily show that infw∈Zp(Ω) ‖v + w‖W 1,p(Ω) is achieved. Hence there

exists v0 ∈ Up
g (Ω), and there exists a constant C > 0 depending only on p and Ω

such that

(4.10) ‖v0‖W 1,p(Ω) ≤ C‖g‖W 1−1/p,p(Ω).
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We estimate (4.9) with v = v0. From (3.1a), for any ε > 0, there exists a constant

C(ε) > 0 such that∫
Ω

St(x, |curlu|2)curlu · curludx− 〈f ,u〉Vp(Ω)′,Vp(Ω)

≥ λ
∫

Ω

|curlu|pdx− ‖f‖Vp(Ω)′‖u‖Vp(Ω)

≥ λ‖u‖pVp(Ω) − C(ε)‖f‖p
′

Vp(Ω)′ − ε‖u‖
p
Vp(Ω).

On the other hand, using (3.1a), H�older inequality and (4.10), we have∫
Ω

St(x, |curlu|2)curlu · curlv0dx− 〈f ,v0〉Vp(Ω)′,Vp(Ω)

≤ Λ

∫
Ω

|curlu|p−1|curlv0|dx+ C‖f‖Vp(Ω)′‖v0‖W 1,p(Ω)

≤ Λ‖u‖p−1
Vp(Ω)‖curlv0‖Lp(Ω) + C‖f‖p

′

Vp(Ω)′ + C‖v0‖pVp(Ω)

≤ ε‖u‖pVp(Ω) + C(ε)‖v0‖pW 1,p(Ω) + C‖f‖p
′

Vp(Ω)′

≤ ε‖u‖pVp(Ω) + C1(ε)‖g‖p
W 1−1/p,p(Γ)

+ C‖f‖p
′

Vp(Ω)′ .

Therefore, if we choose ε > 0 small enough, then there exists a constant C > 0

depending only on p and Ω such that

(4.11) ‖u‖pVp(Ω) ≤ C(‖f‖p
′

Vp(Ω)′ + ‖g‖p
W 1−1/p,p(Γ)

).

Since Lp
′
(Ω) ⊂ W−1,p′(Ω), taking the Ne�cas inequality (Theorem 2.1 and the

Poincar�e inequality (Proposition 2.1) into consideration, we have

‖π‖Lp′ (Ω) ≤ C(‖π‖W−1,p′ (Ω) + ‖∇π‖W−1,p′ (Ω))

≤ C1

(
1

|Ω|

∣∣∣∣∫
Ω

πdx

∣∣∣∣+ ‖∇π‖W−1,p′ (Ω)

)
for all π ∈ Lp

′
(Ω). Since curl [St(x, |curlu|2)curlu] + ∇π = f in W−1,p′(Ω), we

have

‖π‖Lp′ (Ω)/R ≤
∥∥∥∥π − ∫

Ω

πdx

∥∥∥∥
Lp′ (Ω)

≤ C‖f‖W−1,p′ (Ω) + ‖curl [St(x, |curlu|2)curlu]‖W−1,p′ (Ω).

Here, if we note that for all v ∈W 1,p
0 (Ω),

|〈curl [St(x, |curlu|2)curlu],v〉W−1,p′ (Ω),W 1,p
0 (Ω)|

=

∣∣∣∣∫
Ω

St(x, |curlu|2)curlu · curlvdx

∣∣∣∣
≤ C‖u‖p−1

Vp(Ω‖v‖W 1,p(Ω),

34



ON THE DE RHAM THEOREM AND AN APPLICATION ...

then we obtain

‖curl [St(x, |curlu|2)curlu]‖W−1,p′ (Ω) ≤ C‖u‖
p−1
Vp(Ω).

Thus we have

(4.12) ‖π‖p
′

Lp′ (Ω)/R ≤ C(‖f‖p
′

W−1,p′ (Ω)
+ ‖u‖pVp(Ω))

≤ C(‖f‖p
′

Vp(Ω)′ + ‖f‖p
′

W−1,p′ (Ω)
+ ‖u‖pVp(Ω).

Summing (4.11) and (4.12), we get the estimate (4.5). �

Remark 4.1. When p = 2 and S(x, t) = t, the equation (4.1a) reduces to the

Stokes equation

−∆u +∇π = F .

For such the Stokes system, there exist many articles, for example, see Cattabriga

[11] and Amrouche and Girault [1] and the references therein.

As a concluding remark, we are sure of a potential application of the developed

theory of this paper for solving more general Maxwell problem in Lp setting, in

particlualr for inclusion and evolutionary variational inequalities (obstacle problems),

and mention recent results in this direction: Azevedo et al. [9], Yousept [24, 25] and

Miranda et al. [17].
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