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1. INTRODUCTION

The final purpose of this paper is to derive the existence of a solution to the
Maxwell-Stokes type system.

First, we consider the following quasilinear magneto-static problem:

(1.1a) curl [G(z, curlu)] = f in Q,
(1.1b) dive =0 1in £,
(1.1c) ur =uy on T,

where ) is a bounded domain in R? with a boundary I' = 0, ur denotes the
tangent component of u, namely, if we write the unit outer normal vector of the
boundary by m, then ur = (n x u) x n, and u% is a given tangential vector field,
that is, n-u% = 0 on T

This system is interesting in physics, and may be viewed as the stationary version
of the eddy current model, where the relation between the magnetic field H and
the magnetic induction B is defined by the nonlinear B-H-curve. For the physical
nature of the nonlinear B-H-curve, see Kaltenbacher et al. [14] and Pechstein and
Jiitter [19]. The eddy-current problem is a quasi-static approximation at very low
frequency of the Maxwell equation, and the approximation is obtained by neglecting
the displacement current in the Maxwell-Ampere law. Here we want to say that the
solvability of (1.1a)-(1.1b) depends on the nonlinearity of a vector function G(z, z),
the boundary conditions and the shape of the domain 2 with special emphasis,

Such system are investigated by many authors, for example, Pan [18], Miranda
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et al. [15, 16], Yin [21, 23], Yin et al. [22]. If a given function f does not satisfy
div f =0 in Q, or  has holes, then the system (1.1a)-(1.1c) are not nicely posed
problem, so we may introduce an unknown scalar function 7 to the system, which
may be called a potential.

To overcome such difficulty, we consider the following Maxwell-Stokes type system:

(1.2a) curl [Sy(z, |curl w|?)curlu] + V7 = f in Q,
(1.2b) dive = 01in ,
(1.2¢) uxn=0onT,
(1.2d) u-n=gonl,

where f and ¢ are given functions, and S(z,t) is a Carathéodory function on
2 x [0,00) satisfying some structure conditions (see section 3). According to the
conditions on a function S(z,t), we can see that the equation (1.2a) contains a

p-curlcurl equation:
curl [[curl wP~2curlu] + Vr = f in Q (1 < p < 00).

If we impose the Dirichlet boundary condition to 7, then we derived the solvability of
the system (1.2a)-(1.2c) in a multi-connected domain without holes in the author’s
previous paper Aramaki [8]. The de Rham theorem used there was rather restrictive
(cf. Aramaki [6]).

However, in the case where {2 has holes, it is necessary to impose the boundary
condition (1.2d) for g satisfying some conditions. For this purpose, we have to derive
a more general de Rham theorem.

In this paper, we do not impose any boundary condition to the potential, and we
derive the existence of solution to the system (1.2a)-(1.2d). To do so, it is necessary
to derive an LP version of de Rham theorem.

The paper is organized as follows. In section 2, we give an LP version of the de
Rham theorem which is ushered by an LP version of the celebrated Necas inequality.
In section 3, we give some preliminaries for the Maxwell-Stokes type system. Section
4 is devoted to the existence theory of a solution to the Maxwell-Stokes system,

using the de Rham theorem given in section 2.

2. A COARSE VERSION OF THE DE RHAM THEOREM

In this section, let 2 be a bounded domain which means a bounded, connected
open subset of R? (d > 2) with a Lipschitz boundary I', 1 < ¢ < oo, and let ¢’ be
the conjugate exponent i.e., (1/q) + (1/¢") = 1.
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From now on we use L4(Q), W™2(Q) (m > 0, integer), W*4(T") (s € R), and so
on, for the standard real L? and Sobolev spaces of real valued functions. For any
real Banach space B, we denote B? by boldface character B. Hereafter, we use this
character to denote vector and vector-valued functions, and we denote the standard
inner product of vectors a and b in R¢ by a - b. Moreover, for the dual space B,
we denote the duality bracket between B’ and B by (-, )5’ B.

We consider a coarse version of the de Rham theorem. In order to do so, we first
state the Necas inequality which takes an important role for the proof of a coarse

version of the de Rham theorem.

Theorem 2.1 (Necas inequality). Let Q is a bounded domain of R® with a Lipschitz
boundary I' and 1 < q < co. Then the set

{r e W H(Q); Vr € W H4(Q)}
is equal to LI(QY), and there exists a constant C > 0 depending only on q and Q
such that
I7llLage) < CImllw-1a(0) + [[VTllw-1.0(0))-
For the proof, see Theorem IV.1.1 for ¢ = 2 and Remark IV.1.1 for general
1 < ¢ < oo in Boyer and Fabrie [10].

The Necas inequality now allow the following Poincaré type inequality for the
function of LI().

Proposition 2.1. Let Q be a bounded domain of R with a Lipschitz boundary T
and let 1 < g < co. Then there exists a constant C > 0 depending only on q and )
such that

1
ell gy < C (IQI ‘/ﬂ rdo

where |Q] denotes the volume of Q.

+ |V7T||W1,q(g)> for all m € L9(Q),

Proof. Assume that the conclusion is false. Then there exists {m,}5%,; C L9(2)

such that
/ Tpdx
Q

By homogeneity, we may assume that [|m,|/y-1.a() = 1. From Necas inequality

1
Il sy > n (Q

4 ||v7rn||W1,q<m) .

(Theorem 2.1), we can deduce that {r,, } is bounded in L(2). Passing to a subsequence,

we may assume that m, — 7 weakly in L9(€2). Since the embedding Wol’q,(Q) —

L9 (Q) is compact and dense, we can see the embedding L7(Q) — W~14(Q) is also

compact. Therefore, 7, — m strongly in W~19(€). Since ||V, |lw-1.4(q) — 0 as
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n — oo, we obtain Vo = 0 in the distribution sense and therefore # = ¢ = const. .
However, we also have
1

— Tpdx
jol /Q

Since 7, — 7 = ¢ weakly in L4(Q2), we obtain ¢ = 0, so 7 = 0. On the other hand,

<=,
n

since [|7][w-1.a(0) = limy o0 |70l -1.0(0) = 1, this leads to a contradiction. [
Next we derive that the gradient operator from L4(Q) to W ~14(Q) has a closed

range.

Proposition 2.2. Let Q be a bounded domain of R® with a Lipschitz boundary T’
and 1 < q < oo. Then the gradient operator grad = V : L1(Q) — W29(Q) has a
closed range in W=19(0Q).

Proof. Let 7, € L4(2) and V7, — f in W=19(Q) as n — co. Then we may

assume that fQ mpdx = 0 for all n € N. By Necas inequality, we have
17 = Tl zao) < CllTn — mmllw-19(0) + IV (T0 — ) lw-1.0(0))-
However, it follows from Proposition 2.1 that we have
|7 — 7rm||W*1v<1(Q) < COIV(mn — WM)”W*M(Q))'
Thus we obtain
|70 = TmllLa) < C1lIV(mn — mm)[lw-1.0(0))-

Since Vm,, — fin W=14(Q), {m,} is a Cauchy sequence in L9((2). Therefore, there
exists m € L1(f2) such that m, — 7 in L(2). So we have f = V7 € V(L1(Q2)). O

We are in a position to state a coarse version of the de Rham theorem.

Theorem 2.2 (A coarse version of the de Rham theorem). Let Q be a bounded
domain of R% with a Lipschitz boundary T', 1 < q < 0o and let h € W‘lvq/(Q). If
h satisfies

(2.1) (R V) yyra () wa () =0

for all v € Wy U(Q) satisfying dive = 0 in €,
then there exists a function 7 € Lg/(Q) = {q e LY (Q); Jo qdx = 0} such that
(2.2) h =V in Q.

Conversely, if (2.2) holds, then clearly (2.1) holds.

Proof. In general, for any subset A of a normed linear space X, define

At ={feX';(fa)xx =0forall x € A},
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and for any subset A’ of the dual space X', define
LAY ={z e X;(f,x)x x =0 forall fec A'}.
It is well known that if A is a closed subspace of X, then it holds that +(A+) = A
(cf. Taylor and Lay [20, p. 164]).
Define X = W~19(Q) and
Y9(Q) = {Vr:7e LI (Q)}
Then it follows from Proposition 2.2 that Y (Q) is a closed subspace of X =
W-L4(Q), so
(2.3) YT =Y (D).
If we define
Z9(Q) = {v € Wy (Q);dive = 0 in Q},
then Z9() is a closed subspace of X’ = W~14(Q) = W;*Y(Q). The theorem
clearly means that
(2.4) LZ1Q) cY?(Q).

To derive (2.4), it suffices to show that Y9 ()1 C Z%(2) since (2.3) holds. Assume
that v € Y9 (Q)+ ¢ X' = W;"9(Q). Then for any 7 € L7 (1),

—/ ndivodr = <V7r,v>W,1,q/(Q)’WO1,4(Q) =0.
Q
This implies that

<diV 'Ua77>D'(Q),D(Q) =0 forall 7 € D(Q),

where D(Q?) is the space of C>° functions with compact supports in 2, and D’'(Q) is
the space of distributions in 2. Therefore, divv = 0 in D’'(f2). Since divev € LI(Q),
we obtain that dive = 0 in L(), so v € Z(Q). O

Remark 2.1. To tell the truth, the Necas inequality (Theorem 2.1), Proposition
2.1 and a coarse version of the de Rham theorem (Theorem 2.2) are equivalent. For

this facts, see Amrouche et al. [4] for ¢ =2, and see [6] for genaral 1 < ¢ < oo

3. PRELIMINARIES FOR THE MAXWELL-STOKES TYPE PROBLEM

In this section, we give preliminaries for the Maxwell-Stokes type problem as an
application of a coarse version of the de Rham theorem (Theorem 2.2). To do so, we
assume that € is a bounded domain (connected open subset) of R® with a Lipschitz
boundary T' satisfying the following conditions as in Amrouche and Seloula [2] (cf.
Amrouche and Seloula [3] and Girault and Raviart [13]).

Assume that €2 is locally situated on one side of I'. In addition,
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(O1) T has a finite number of connected components I'g,T'y,...,T'; with Ty
denoting the boundary of the infinite connected component of R3 \ Q.
(O2) There exist J connected open surfaces ¥;, (j = 1,...,J), called cuts,
contained in 2 such that
(a) X; is an open subset of a smooth manifold M.
(b) 9%, Cc T (j =1,...,J), where 0%, denotes the boundary of ¥;, and
Y5 is non-tangential to I'.
(© S0 T =0(j # k).
(d) The open set Q = Q\ (U/_,%;) is simply connected and of Lipschitz
class.
The number J is called the first Betti number which is equal to the number of
handles of 2, and I is called the second Betti number which is equal to the number
of holes. We say that if J = 0, € is simply connected, and if I = 0, Q2 has no holes.

Define two spaces by

K (Q) = {veLP(Q);dive=0,curlv=0in Qv xn=0o0nT},
KL.(Q) = {veLP(Q);divv=0,curlv=0in Q,v-n=0o0nT}.
Then it is well known that dimK7.(Q) = J and dim K% (Q) = I.

We assume that a Carathéodory function S(z, t) satisfies the following conditions:
There exist 1 < p < oo and positive constants 0 < A < A < oo such that for a.e.
x€Q,S(x,-) € C?((0,00))NC°([0,00)) as a function of ¢, and S(x,t) satisfies that
(3.1a) S(z,0) =0 and AtP~2/2 < S, (x,t) < AtP~2/2 for t > 0.

(3.1b) P22 <8 () + 2t Sy (x,t) < AtP=2D/2 for ¢ > 0.
(3.1c) Ifl<p<2,Su(x,t) <0, and if p > 2, Sy (z,t) >0 for t > 0.
Here S; = 0S/0t, Sy = 0%5/0t?. We note that from (3.1a), we have

2 2
(3.2) ];)\tp/Q < S(x,t) < 2;Atp/Q for t >0 and a.e. z € Q.
Example 3.1. If S(x,t) = v(x)tP/2, where v is a measurable function in Q and

satisfies 0 < v, <wv(x) < v* < oo, then it follows from elementary calculations that
(3.1a)-(3.1c) hold.

We have the following lemma with respect to the monotonicity of S;.
Lemma 3.1. There exists a constant ¢ > 0 such that for all a,b € R3,

(St(@.al*)a — Si(x, [b]*)b) - (a — b)

C‘CL - b‘p pr > 27
=1 c(la| +[b))P"2la—b*> ifl<p<2.
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In particular, Sy is strictly monotone, that is,

(S¢(z,|al*)a — Si(z, |b*)b) - (a — b) > 0 if a # b.

For the proof, see Aramaki [7, Lemma 3.5].

Next, we show that S(z,|a|?) is strictly convex with respect to a € R3.

Lemma 3.2. For a.e. v € Q, S(z,|a|?) is strictly convex with respect to a € R3,
that is, fora,b € R and 0 < 6 < 1,

(3.3) S(x,|0a+ (1 —0)b|?) < 0S(z,|al?) + (1 —0)S(z, |b]?),
and in particular, if a # b and 0 < 0 < 1, then we have
(3.4) S(z,10a + (1 —0)b]*) < 0S(z,|al’) + (1 — 0)S(z, [b]*).
Proof. For brevity of notation, we put F(z,t) = S(z,t?). Since
Fi(x,t) = 2tSy(2,t*) > 20" >0 ae. 2 € Qand t > 0
from (3.1a), and
Fi(x,t) = 2(Ss (2, %) + 2t Sy (2, 1%)) > 2MP "2 > 0 ae. € Qand t > 0

from (3.1b), we see that for a.e. x € Q, F(x,t) is strictly increasing and strictly
convex as a function ot ¢ € [0, 00). Therefore, fora.e. z € Q,a,b € R3and 0 < 0 < 1,

we have
F(z,|0a+ (1 —-0)b]) < F(z,0lal + (1 —6)|b]) < O0F(z,|a|) + (1 — 0)F(z, |b]).

Thus F(z,|a|) = S(x,|al?) is a convex function of a € R3.
Let a # b and 0 < 6 < 1, Without loss of generality, we may assume a # 0. If
|0a + (1 — 0)b| < lal + (1 — 6)|b|, then we have

F(z,|0a+ (1 —0)b|) < F(z,0|a| + (1 —0)|b|]) < 0F(z,|a|) + (1 — 0)F(z, |b]).

If |fa + (1 — 0)b] = Ola| + (1 — 0)|b]|, then this implies that a - b = |a||b|. By the
Schwarz inequality, a and b are linearly dependent, so we can write b = ca, where
¢ > 0 and ¢ # 1. This implies |a| # |b|. Thus it follow from the strict convexity of
F(z,t) as a function ot ¢ that

F(z,|0a+ (1 —0)b]) = F(z,0la| + (1 —0)b]) < 0F (z,|a|) + (1 — 0)F(x, |b]).

]
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4. EXISTENCE OF A SOLUTION TO THE MAXWELL-STOKES TYPE SYSTEM

In this section, we derive the existence of a solution to the Maxwell-Stokes type
system. Let Q be a bounded domain in R? satisfying (01) and (02), 1 < p <
and let a Carathéodory function S(z,t) satisfy (3.1a)-(3.1c).

We consider the following Maxwell-Stokes type problem: for given f and g, find
(u, ) such that

(4.1a) curl [Sy(z, |curl w|?)curl u] + V7 = f in Q,
(4.1b) dive =0 in ,
(4.1¢) u=gnonl.

Define a space

VP(Q) = {ve WHP(Q);divv=0in Q,v xn=0onT,
(v-n,l)pr,=0fori=1,...,I}.
Then we can see that VP() is a separable, reflexive Banach space equipped with
the semi-norm
(4.2) [vllve (o) = lleurlv||Lr(q)-.
By [3, p. 40], since we have
lvllwreo) < C(p, Q)|[curl v gr(q) for all v € VP(Q),

the definition (4.2) is, in fact, the norm and ||[v||y»q) and ||v|w1.»(q) are equivalent
(cf. [15, 16]).
Assume that a given function f satisfies that f € V2(Q) N W~1#'(Q), where p/

denotes the conjugate exponent of p, and

: —1p () — .
f‘VP(Q)ﬂWOLP(Q) in W=5P (Q) = f|Vp(Q)mW01,p(Q) in V?(Q),

that is,
(4.3) (£, 0)ve @y we(0) = (£, 0) w10 @y wir ()
for all v € V() N W, *().

Moreover, we assume that g € W!=1/P2(T) and satisfies that
(4.4) / gdo =0 for every : =0,1,...,1,
r;
where do denotes the surface area of I'. We define a space

_ 1, - i —0; _
Ul(Q) ={ve W*(Q);divv=0in Q,v =gn on I'}.
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If v € UP(Q), then v x n =0 and (v-n,1)r, = [ gdo =0, and so we can easily
see that UP(12) is a closed, convex subset of V7(€2). If we put g = gn on T', then

I
g~nd0:/gd0: /gdcf:O.

Therefore, it follows from Amrouche and Girault [1, Lemma 3.3] that there exists
v € WHP(Q) such that dive = 0in Q and v = g = gn on I'. Thus v € U?(Q2), so
U?P(Q2) is a non-empty set. Since UP(€2) is a closed and convex subset of V?(Q), we
can see that UP((2) is sequentially weakly closed subset of V?(Q) (cf. Ciarlet [12,
Theorem 5.13-1]).

We are in a position to state a main theorem.

from (4.4), we have

Theorem 4.1. Assume that Q is a bounded domain of R? with a Lipschitz boundary
T' and satisfies (01) and (02), 1 < p < o and a Carathéodory function S(x,t)
satisfies (3.1a)-(3.1c). Moreover, assume that f € VP(Q) N W12 (Q) satisfies
(4.3) and g € W'=1/PP(T) satisfies (4.4). Then the Mazwell-Stokes type system
(4.12)-(4.1c) has a unique weak solution (u, ) € WHP(Q) x LV (Q)/R, and there
exists a constant C > 0 dependent only on p and Q such that

P v
(45)  Nullyyre) + 1750 o)
< O+ + 15 By + 190y

Proof. We prove this theorem using the direct method of calculus of variation
and using a coarse version of the de Rham theorem. In order to do so, we consider

a functional

1

(4.6) J[v] = 5/9 S(z, [curlv|?)dz — (f,v Yvr (), ve (o) for v e UY(Q).

Step 1. J has a unique minimizer u € UF(Q), that is,

J(u)= inf J(v).
()= inf o)

From (3.2), the duality and the Young inequality, for any ¢ > 0, there exists a
constant C'(¢) > 0 such that for all v € U2 (Q),

A
el = leutvllyy g ~ [ Flvwy vl

A
[0l 0y ~ CEIF ey = <llolne

If we put € = \/2p, we have
A
(4.7) Jv] > ||v||w,(Q C||f||w(Q , > —oo for v € UP ().
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Thus we see that J is coercive on UP(Q2).

Next we show that J : UJ(Q2) — R is sequentially weakly lower semi-continuous.
Let v; — v weakly in VP(€2). Since curl : V?(Q) — LP(2) is linear and bounded,
it is clear that curlv; — curlv weakly in L?(Q).

Then it follows from Aramaki [5] that

/ S(z, [curlv|*)dx < liminf/ S(z, |curl v;|?)dx.
Q I Ja
On the other hand, since f € V?(Q)’ and v; — v weakly in V?(Q), we have

(f,v)ve(yve(Q) = jli)I{.lo<f,vj>W(Q)gw<Q)~

Thus we have

J(v) < liminf J(v;),

j—roo
that is, J : U} () — R is sequentially weakly lower semi-continuous. Therefore, J
has a minimizer u € UP((2). See, for example, Ciarlet [12, Theorem 9.3-1].

Using (3.3), we can easily see that J is a convex functional on U} (2). Moreover,
since [|[v||y» (o) and [|v||w1.r(q) are equivalent for v € VP(Q), it follows that if u # v
in UP(Q), then curlu # curlv in LP(Q2). From Lemma 3.2, we see that .J is strictly
convex on UP((2). Thus the minimizer is unique.

Step 2. Let w € UP(Q2) be a unique minimizer of J on UP(2). For any
we ZP(N) = {v e WP (Q);dive = 0 in Q},

we have u + 7w € UP(Q) for all 7 € R, and so J(u) < J(u + 7w). By the Euler-

Lagrange equation and assumption (4.3), we have

0= %J[u—i—Tw]

7=0
= / Sy(, [curlul*)curlw - curl wdz — (f, w)ve(qy vo ()
Q
= [ Si(z,|curlu|*)curlu - curlwdz — (f, W) 10 () WP ()
Q '
From a coarse version of the de Rham theorem (Theorem 2.2), we can derive that

there exists a function 7 € Lg/(Q) such that
(4.8) curl [y (z, |curl w|?)curl u] + Vr = f in W12 (Q).

Thus (u, ) is a solution of the system (4.1a)-(4.1c).

Step 3. We show the uniqueness of a solution of (4.1a)-(4.1c). Let (w1, 1), (ug, m2) €
WP (Q)x L (Q) /R be two solutions of (4.1a)-(4.1c). Since u;-n = g and u;xn = 0
for i = 1,2, we see that u; — ua = 0 on I, so we have u; — us € ZP(Q)). Thus we
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have
(Vi uy — u2>W_1,p/(Q)7W01,p(Q) =0for:=1,2.

Therefore, if we take the inner product of (4.1a) and u; — uo, and then integrate

over €2, we have

/(St(;v, |curl wg |*)curl uy
Q

— Si(x, \curluz|2)curlu2) -curl (ug — ug)dx = 0.
From this equality and the strictly monotonicity of S; (Lemma 3.1), we have
curlu; = curlus in Q. This implies u; = us. From (4.1a), we have Vr; = Vg in
W17 (Q), so in the distribution sense. Since 2 is connected, we have m; — my is
equal to a constant, so m; = m in L¥ (Q)/R.

Step 4. We derive the estimate (4.5). Let u € U} ((2) be the minimizer of .J.
Then for any v € UP(€2) and for 0 < 6 < 1, since

J(u) < J(1-0)u+0v)=J(u+0(v-—u))),
we have

d
0 < @J('uﬂrﬁ('u—u))|9:OJr

= / Sy(z, [eurl ul*)curlw - curl (v — w)dz — (f,v — W)yr () vo(Q)-
Q

Therefore, we have

(4.9) / S, (z, |curlu|?)curlw - curl udz — (f, WYyr(Q) Ve (Q)
Q
< / Sy (x, |curl u|?)curl w - curl vde — (f, V)yr(Q) VP (Q)
Q

for all v € UP(Q). If we put g = gn € W1=1/pP(T), it follows from [1, Lemma 3.3
that there exists v € W1?(Q) such that dive = 0in Q and v = g = gn on T, so
v € U} (Q), and there exists a constant C' > 0 dependent only on p and €2 such that

weiélpf(g) lo +wllwir@) < Hg”Wl*l/p,p(p).

Here we can easily show that inf,ez» () [|v + w||w1r(q) is achieved. Hence there
exists vg € U} (12), and there exists a constant C' > 0 depending only on p and
such that

(4.10) [vollwe (o) < Cllgllwr-1/v0(0)-
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We estimate (4.9) with v = vg. From (3.1a), for any ¢ > 0, there exists a constant
C(e) > 0 such that

/QSt(a:, |curl w|?)curlw - curludz — (f, W)yr (), vr(Q)
> [ JeurluPde = | oy o)
> Ml 0, = CENF Iy — lulu o
On the other hand, using (3.1a), Holder inequality and (4.10), we have
/QSt(a:, lcurlu|?)eurl w - curlwodz — (f, vo)ve(q) vo ()

< A/ |curlu\p*1|curlvo\dx + C| fllve oy lvollw e )
Q
—1 /
< AH“ng(Q)||Cur1v0||LP(Q) + C|\f||§p(g)/ + C||vO||€/p(Q)
< 5||u||€/p(g) + C(E)Hvougvl,p(g) + CHngP(Q)/

< elfulliqy + CLENI 11/ ey + ClE Iy

Therefore, if we choose € > 0 small enough, then there exists a constant C' > 0

depending only on p and 2 such that

(4'11) ||u||€/p(Q) S C(”f”@r(g)/ + ||g||{;l/171/p,p(r‘))'

Since LV (Q) ¢ W~ (Q), taking the Netas inequality (Theorem 2.1 and the

Poincaré inequality (Proposition 2.1) into consideration, we have

||7THLP/(Q) < C(HWHW*I»P/(Q) + ||V7T||W*1fP'(Q))

1
<C —/ﬂ'dm
IQW‘Q

for all = € LP' (). Since curl [Sy(z, [curlu|?)curlu] + Vo = f in W27 (Q), we

have
™= / wdx
Q

<Ol fllw-10 (0 + [leurl [Se(z, |curl w|?)curl ulllyy 1.0 ()

+ ||V7TW1-p’(Q)>

7l Lo () r <

Lr' ()

Here, if we note that for all v € W7 (Q),

[(curl [Sy (x, |eurluf*)eurl ul, v) 1.0 () wie(@)|

/ S (x, |curl u|?)curl w - curl vdz
Q

1
< Ollullgs g llvllwe @),
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then we obtain
leurl [S;(z, [curl ul*)eurl w] ||y -1, () < Cllullfyq,-

Thus we have

(412) 7%, g0 < CUFI oy + 0l )
< CUIF Iy + 1F 1By s g + Il

Summing (4.11) and (4.12), we get the estimate (4.5). O

Remark 4.1. When p = 2 and S(z,t) = t, the equation (4.1a) reduces to the

Stokes equation
—Au+Vr=F

For such the Stokes system, there exist many articles, for example, see Cattabriga

[11] and Amrouche and Girault [1] and the references therein.

As a concluding remark, we are sure of a potential application of the developed
theory of this paper for solving more general Maxwell problem in LP setting, in
particlualr for inclusion and evolutionary variational inequalities (obstacle problems),
and mention recent results in this direction: Azevedo et al. [9], Yousept [24, 25] and
Miranda et al. [17].
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