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Abstract. The paper considers measures in the space IE of planes in IR3, and

combinatorial decompositions for their values on ”Buffon sets” in IE. These

decompositions, written in terms of a “wedge function” depending on the mea-
sure, have been known since long in Combinatorial Integral Geometry, yet

their explicit expressions have been well established only for “non-degenerate”

Buffon sets. Theorem 1 removes this gap and presents a decomposition al-
gorithm valid with no similar restriction. Theorem 2 presents a result in a

direction converse to Theorem 1. Starting from the decomposition algorithm,

a combinatorial valuation ΨF is defined that depends on ”general” continuous
additive wedge function F (W ). The question is: when ΨF becomes a measure

in the space IE? Theorem 2 points at special ”tetrahedral inequalities”, the

analogues of triangular inequalities of the planar theory. If ΨF satisfies these
“tetrahedral inequalities”, then ΨF becomes a measure and the corresponding

F (W ) is called a “wedge metric” (to stress the connection of the paper’s topic
with Hilbert’s Fourth Problem).
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1. Introduction

The paper considers measures in the space IE of planes in IR3, and combinatorial

decompositions for their values on Buffon sets in IE (i.e. members of Buffon rings

in IE). The existence of similar decompositions in the spaces of Integral Geometry

was first discovered in [5], they together with first applications have been discussed

in the books [6] and [8] (see also [18]). Although later on further applications have

been found (in convexity theory, see [7], [11]-[13], [15], Hilbert’s Fourth problem,

see [4], [13], [14], [17], [19], [20] , tomography, see [9]), in the basic theory the initial

effort left many gaps. The present paper fills some of the gaps by presenting new

results, Theorems 1, 2.

One of the basics of the combinatorial theory for IE known already in [1], [2],

[3] was the so-called ”four indicator rule” valid for ”non-degenerate” Buffon sets.

In Theorem 1 we give its extension for quite general Buffon sets in IE. (The
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corresponding result for the space of lines in the plane have been recently announced

in [10].)

The general combinatorial algorithm given in Theorem 1 permits construction

of the combinatorial valuation ΨF that depends on a continuous additive ”wedge

function” F (W ). The valuation ΨF lives on subsets of IE that make up a special

set ring U3 of Buffon sets, including the degenerate cases. After brief discussion of

the key properties of ΨF , follows demonstration of the role of special ”tetrahedral

inequalities” in the generation of measures by ΨF (Theorem 2). In the author’s

earlier paper [4] a similar theorem was proved about generation of measures in the

space of lines on the plane by linearly additive pseudo-metrics. That theorem was

called in [17] ”the most elegant and natural solution” of Hilbert’s Fourth Prob-

lem. By analogy, an additive F (W ) satisfying the tetrahedral inequalities we call

a ”wedge metric”. The construction of ΨF on the basis of Theorem 1 permits to

essentially simplify the proof of Theorem 2, as compared with the proof of the cor-

responding planar theorem given in [4] that was based on the planar version of the

”four indicator rule”.

2. Wedge combinatorics

2.1. Wedges in IR3. The tool of wedges in IR3 have been shown in [5] and the

books [6], [8] to be a rather effective in the theory of measures in the space

IE = the space of planes in Euclidean 3-space IR3, e ∈ IE.

We consider the spaces

S = the space of directions in IR3, (elliptical plane), ω ∈ S,

sΩ = the circle of spatial directions ω ∈ S orthogonal to some Ω ∈ S,

and use the notation

γ = a line in IR3,

ν = a segment of a line γ ⊂ IR3.

Given a line γ ⊂ IR3 of direction Ω ∈ S or a needle ν ⊂ γ, instead of sΩ we may

write sγ or sν .

A flag f in IR3 is a triad

f = (P, γ,Φ)

consisting of a point P ∈ IR3, a line γ containing P , and Φ ∈ sγ .

Denote by Cγ the following family of flags depending on a line γ ⊂ IR3:

Cγ = {f = (P, γ,Φ) : P ∈ γ and Φ ∈ sγ},
11
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Cγ can be identified with unit radius circular cylinder with axis γ. A wedge is

defined to be a subset of Cγ having the product form

W = {P ∈ ν} × {Φ ∈ λ} = ν × λ ⊂ Cγ ,

where ν ⊂ γ is a needle (= finite open segment of a line in IR3) and λ ⊂ sγ is

an arc (of length not exceeding π). By eν(Φ) we denote the plane containing the

needle ν and the direction Φ ∈ sν . For every edge W = ν × λ the dihedral region

V is defined to be

(2.1) V = ∪Φ∈λ eν(Φ).

2.2. Wedges associated with {Pi}. Let a finite set of points {Pi} be given in

IR3. For a 2-subset {Pi, Pj} from that set, by eij(Φ) we denote the plane containing

the needle ν = {Pi Pj} and the direction Φ ∈ sν . The values of Φ for which the

plane eij(Φ) contains points from {Pi} outside the line carrying Pi and Pj , split sν

into pairwise disjoint open arcs

λ1, ..., λl ⊂ sν .

(they “belong” to {Pi Pj}). Each {Pi, Pj} = ν together with one of the belonging

arcs λr = λ determines a wedge Ws = (ν, λ). In this writing, the index s ”codes”

({ij}, r), i.e. there is a one-to-one correspondence

(2.2) s 7→ ({ij}, r).

All the wedges Ws obtained in this way form the system of wedges associated with

our finite set {Pi}. By the definition of λr, for every associated wedge Ws its

dihedral region

Vs = ∪Φ∈λreij(Φ)

does not contain points from {Pi} in its interior, while each of the two planes bound-

ing Vs necessarily contain points from {Pi} other then those on their intersection

line.

2.3. Buffon rings and sets. Let a finite set of points {Pi} be given in IR3. Two

planes which avoid any of the points Pi we call equivalent if they induce the same

partition of the set {Pi}. An equivalence class Υ (a maximal set of equivalent

planes) is always a connected set in the topology of IE, but its closure will not be

compact if for each plane e ∈ Υ the total {Pi} lies in one of the two half-spaces

separated by e. All other equivalence classes have compact closures: these we call

atoms. By Br{Pi} we denote the minimal ring of subsets of IE which contains all

atoms (they become atoms of the ring Br{Pi} in the usual sense). We call Br{Pi}
the Buffon ring that corresponds to the set {Pi}. A set A ⊂ IE we call Buffon if
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A ∈ Br{Pi} for some point set {Pi} ⊂ IR3. An element A ∈ Br{Pi} necessarily

has the form A =
⋃
ai, where ai are some of the atoms of Br{Pi}.

For the time being, we assume that the number of points in the finite point set

{Pi} exceeds 2.

Let Ws be a wedge form the system of wedges associated with {Pi}, s = ({ij}, r)
in the sense of the map of (2.2), γij = the line through Pi and Pj . Below always

Φ ∈ λr.
If γij contains no points from {Pi} except Pi and Pj , then there exist exactly four

different equivalence classes Υ for which we have eij(Φ) ∈ ∂Υ. They do not depend

on the choice of Φ ∈ λr and we denote them as Υs(+ +), Υs(−−), Υs(+−) and

Υs(−+). The sign rule is as follows (see Figure 1):

Figure 1

every plane e ∈ Υs(+ +) or e ∈ Υs(−−) leaves Pi and Pj in one half-space,

every plane e ∈ Υs(+−) or e ∈ Υs(−+) leaves Pi and Pj in different half-spaces.

Given A ∈ Br{Pi}, the values of the indicator function

IA(e) =

{
1, if e ∈ A,

0, otherwise

on the planes from the above four sets we denote correspondingly as

IA(s,+−) ≡ IA(e) for e ∈ Υs(+−), IA(s,−+) ≡ IA(e) for e ∈ Υs(−+),

IA(s,++) ≡ IA(e) for e ∈ Υs(+ +), IA(s,−−) ≡ IA(e) for e ∈ Υs(−−).

2.4. No collinear triads case. This subsection describes the state of the art in

[5], [6] and [8].

Let M be some locally finite measure in IE that vanishes on every bundle of planes

(bundle= the set of planes that contain some point P ∈ IR3). Let a point set {Pi}
13
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with no three points on a line be given. Then for every Buffon set A ∈ Br{Pi} the

following decomposition is valid:

(2.3) M(A) =
1

2

∑
us(A)F (Ws),

where the summation is over the system of wedges Ws associated with {Pi}. The

coefficients us(A) are integers that do not depend on the choice of measure m and

are given by “four indicator formula”

(2.4) us(A) = IA(s,+−) + IA(s,−+) − IA(s,++) − IA(s,−−).

For the “wedge function” F (W ) the following representation was proposed in [6]:

(2.5) F (W ) = (2π)−1

∫
e hits ν

|W ∩ e|M(de),

where W ∩ e is the angular trace left by the wedge on the plane e, that is, see (2.1)

W ∩ e = e
⋂
V,

while |...| stands for the usual angular measure on sν .

2.5. Euclidean motions invariant measure. In the space IE there exists [18]

unique up to a constant factor Euclidean motions invariant locally finite measure;

we denote it as µ. We assume that the constant factor is chosen in a way to ensure

µ( planes that hit the unit ball in IR3) = 2π.

For M = µ the wedge function F (W ) given by (2.5) reduces to the product of

length of ν and the angular measure of λ:

(2.6) F (W ) = |ν| |λ|.

2.6. More remarks. If the number of points in {Pi} equals 2, i.e. {Pi} = {P1, P2}
then Br{Pi} contains only one element A = the planes that separate P1 from P2,

and their is only one wedge W1 = ν × sν with ν = the needle joining P1 and

P2. Yet (2.3) remains valid since formally IA(1,++) = IA(1,−−) = 0 and we get

u1(A) = 2. If the number of points in {Pi} equals 1, then the corresponding Buffon

ring is empty.

In case the point set {Pi} is confined to some plane in IR3, every wedge associated

with {Pi} gets the form W = ν × sν , hence always F (Ws) = π |νs|. The equation

(2.3) reduces to the four indicator rule for lines in the plane.

The book [6] starts with derivation of decomposition (2.3) for M = µ by direct

analytical ”Invariant Imbedding” method. For general M (2.3) was derived in [2]

basing on the planar decomposition for projection of {Pi} on the plane.
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2.7. Collinear triads permitted. We are going to formulate Theorem 1, which

removes the restrictions on the point set {Pi} present in the formulation of the four

indicators rule. Theorem 1 is instrumental in the construction of the functional Ψ

in the Section 4 below.

For the case where the lines γij may contain points from {Pi} other from Pi and

Pj , a decomposition similar to (2.3) survives. However the sets Υs(+−), Υs(−+),

Υs(++) and Υs(−−) are now no longer well defined, hence the algorithm (2.4)

requires modification.

Let Ws be a wedge form the system of wedges associated with {Pi}, and s = ({ij}, r)
in the sense of (2.2).

The class (+): We say that Ws belongs to the class (+) if the interior of the needle

with endpoints Pi, Pj does not contain any points from {Pi}. For every Ws ∈
(+),we define the equivalence classes Υs(+−) and Υs(−+) in the same way as

above. (That definition is no longer consistent for Ws outside (+)).

The class (−): We say that Ws belongs to the class (-) if the interior of complement

of the needle with endpoints Pi, Pj contains no other points from {Pi}. For every

Ws ∈ (−) we define the equivalence classes Υs(++) and Υs(−−) in the same way

as above. (That definition is no longer consistent for Ws outside (-)).

Let A ∈ Br{Pi} be a Buffon set. For Ws from the class (+) we denote by

u+
s (A) = IA(s,+−) + IA(s,−+),

and for Ws from the class (-) we denote by

u−s (A) = IA(s,++) + IA(s,−−).

Theorem 1. Let M be some locally finite measure in IE that vanishes on every

bundle of planes. For any point set {Pi} and every Buffon set A ∈ Br{Pi} the

following decomposition is valid:

(2.7) M(A) =
1

2

∑
Ws∈(+)

u+
s (A)F (Ws) −

1

2

∑
Ws∈(−)

u−s (A)F (Ws),

where the wedge function F (W ) is given by the integral (2.5).

The proof follows by a simple check of (2.7).

2.8. An example. Let Π be a bounded convex polygon in some plane e0 ⊂ IR3

with vertices v1, ..., vn. Let Q be a point outside e0. The pair (Q,Π) corresponds
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to a pyramid K with apex Q and base Π. We put {Pi} = {Q, v1, ..., vn}; then the

set

B = {e ∈ IE e separates Q from Π}

belongs to Br{Pi}.

For any Ws = (ν, V ) from the system of associated wedges, see (2.1), the needle ν

is always an edge of K. An edge of K we call lateral if it is of Q, vi type and basal

if it is of vivj type. A wedge Ws we call a support wedge if Vs ∩ intK = ∅, and

a covering wedge if intK ⊂ Vs. We write Ws ∈ I if Ws is a support wedge on a

lateral edge and Ws ∈ II if Ws is a covering wedge on a basal edge. We have

us(B) = 1 if Ws ∈ I,

us(B) = −1 if Ws ∈ II, and

us(B) = 0 for all other cases.

We remark, that if we assume that position of the apex Q changes so that Q

tends to some limiting position Q0 ∈ interior of τ , then the ratio M(B)[µ(B)]−1

would tend to the value of the density of the measure M on the plane containing

τ .

3. The valuation ΨF

Below, we use both (equivalent) definitions of a wedge:

W = ν × λ a product set on the unit cylinder Cγ and

W = (ν, V ), definition of V is given in (2.1).

The wedges from the family {W : W ⊂ Cγ} can be described as (P1, P2, ω1, ω2),

where P1, P2 ∈ γ are the endpoints of ν, while ω1, ω2 are the spatial directions

normal to Cγ at the endpoints of the arc λ. This provides a topology in the space of

wedges; so we can speak about continuous ”wedge functions” F (W ) (an F (W ) maps

the space of wedges onto the numerical axis). Within each class {W : W ⊂ Cγ}
the notion of additivity of an F (W ) in both ν and in λ is well defined as usual. In

fact the functions F (W ) generated by means of (2.5) actually generate measures

on the cylinders Cγ .

Let {Pi}1 and {Pi}2 be two finite point sets in IR3. Two sets B1 ∈ Br{Pi}1 and

B2 ∈ Br{Pi}2 we call equivalent if their closures coincide.

We define U3 to be the set of equivalence classes within the
⋃
Br{Pi}, where

the union is taken over all possible choices of finite sets {Pi} ⊂ IR3. For elements

A,B ∈ U3 usual set theoretic operations ∪ and ∩ can be defined. For A, a finite

point set {Pi} ⊂ IR3 can be found, such that (up to equivalence) A ∈ Br{Pi}.
16
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Similarly, B ∈ Br{Qi} for some finite set of points {Qi} ⊂ IR3. Then up to

equivalence

A ∪B ∈ Br[{Pi} ∪ {Qi}] and A ∩B ∈ Br[{Pi} ∪ {Qi}].

Given a continuous wedge function F (W ), for any {Pi} and any A ∈ Br{Pi} we

define a functional

(3.1) ΨF (A; {Pi}) =
1

2

∑
u+
s (A)F (Ws) −

1

2

∑
u−s (A)F (Ws),

where us(A) are calculated according to the rules of (2.7), both sums are over the

system of wedges associated with {Pi} .

Lemma 1. If F (W ) is additive (both in ν and λ) on every cylinder Cγ , then the

value ΨF (A; {Pi}) does not depend on the choice of {Pi}, as long as A ∈ Br{Pi}
holds. This means that

ΨF (A) ≡ ΨF (A; {Pi}),

consistently defines an additive functional ΨF that lives on U3.

The proof of Lemma 1 follows from the ”stability” of the sums (see (2.7))∑
ν⊂γ

u+
s (A)F (Ws) −

∑
ν⊂γ

u−s (A)F (Ws),

where each sum is over all wedges ws that have ν on the same line γ (the later

contains at least two points from {Pi}). Stability means no dependence on the

presence of ”non-essential” points in {Pi}: a point Pi is ”non-essential” for A if the

bundle of planes through Pi is disjoint from ∂A.

Next we formulate a continuity property of ΨF to be used in the measure construc-

tion below.

Let s1, s2, s3 be three linear segments in IR3, while

s
(n)
i ⊂ si, i = 1, 2, 3

be a sequence of needles which approximates νi in the sense of endpoint convergence:

lim ν
(n)
i = νi, i = 1, 2, 3.

In IE we consider the sets

A = ∩[si] and , An = ∩[s
(n)
i ].

Lemma 2. If a wedge function F is continuous and additive and the functional

ΨF is nonnegative, i.e.

ΨF ≥ 0 on U3,
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then the limit of ΨF (An) exists and

lim ΨF (An) = ΨF (A).

Proof. By additivity of ΨF

ΨF (A)−ΨF (An) =
∑
r

ΨF (Br),

where each of the sets Br is necessarily of the form [τ ] ∩ C, with τ = a needle

component of some set differences sk \ s(n)
k , while C ∈ U3. Hence by assumed

nonnegativity of ΨF we have

ΨF ([τ1]∩C) ≤ ΨF ([τ1]∩C) + ΨF ([τ1]∩Cc) = ΨF ([τ1])→ 0, where C = [ν
(n)
1 ]∩[ν

(n)
2 ].

Hence for each r, lim ΨF (Br) = 0 as n→∞ and the lemma is proved.

3.1. Tiling in the elliptical 3-space. The space IE of planes in IR3 is homeo-

morphic to E3 \ N , the three dimensional elliptical space with a point N deleted.

Recall that E3 has the interpretation of the space of diameters of the unit sphere in

IR4. We consider a standard map IE⇒ E3 \N under which the images of bundles

and pencils (a pencil is the set of planes through a line in R3) are the ”planes” and

”lines” in the elliptical geometry of E3

Assume a finite set {Pi} is given in IR3. The corresponding ”planes” produce

a partition of E3 into convex polyhedrons. Except for the cell that contains the

point N , these cells are the images of the atoms of the ring Br{Pi}.To a general

A ∈ Br{Pi} corresponds a union of cells.

Let in IR3 we have a tetrahedron Θ with vertices P1, P2, P3, P4. The number

of atoms in

Br{P1, P2, P3, P4} = Br(Θ)

is seven: an atom of Br(Θ) can be either of 1-3 type (separation of one vertex from

three others) or of 2-2 type (separation of two vertices from two others). The four

bundles

[Pi] = planes through the point Pi, [Pi] ⊂ IE,

split E3 in eight components; each of the eight is a tetrahedron θ ⊂ E3 (each θ is

bounded by four ”planes” in E3). Except for the one which contains N , these θ-s

are images of the atoms of Br(Θ). Those four θ-s which correspond to the atoms

of 1-3 type have a two–dimensional face in common with the cell containing N ,

while those three θ-s which correspond to the atoms of 2-2 type, each have two

one–dimensional edges in common with the letter cell.

18
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Given a tetrahedron θ ⊂ E3 \ N , we write θ ∈ U3 if the IE-image of θ belongs to

U3. In fact θ ∈ U3 occurs whenever among the four planes in IR3 that correspond

to the vertices of θ there are no parallel pairs. So θ ∈ U3 determines a tetrahedron

Θ ⊂ IR3, while θ itself is identified with an atom of Br(Θ).

Assume σ ⊂ E3 \N corresponds to an atom of some Br{Pi}. It is always possible

(“tiling”) to represent σ as a union of pairwise disjoint tetrahedral cells θs ⊂ E3 \N
from the class U3:

σ =
⋃
θs.

It follows that for every A ∈ U3 a representation

(3.2) A =
⋃
As

is valid, where each As ∈ U3 is an atom of some Br(Θs). In terms of the functional

ΨF this rewrites as ΨF (A) =
∑

ΨF (As). Hence the condition

(3.3) ΨF (A) ≥ 0 for any tetrahedron Θ and every atom A ∈ Br(Θ)

guarantees that ΨF (A) ≥ 0 for any A ∈ U3. The actual expression of ΨF (A) in

(3.3) depends on the type (1-3 or 2-2) of the atom A.

3.2. Tetrahedral inequalities. Given a tetrahedron Θ with vertices P1, P2, P3, P4 ⊂
IR3, we denote

]P1[ = the set of planes that separate P1 from P2, P3, P4

]P1, P2[ = the set of planes that separate P1, P2 from P3, P4

In order to explicitly put down ΨF (]P1[) and ΨF (]P1, P2[), we define the following

groups of wedges associated with P1, P2, P3, P4:

I = {w = (ν, V ) : ν is ”lateral”; Θ ∩ V = ∅},

II = {w = (ν, V ) : ν is ”basal”; Θ ⊂ V },

III = {w = (ν, V ) : ν is ”pure”; Θ ∩ V = ∅},

IV = {w = (ν, V ) : ν is ”mixed”; Θ ⊂ V },

where

ν is lateral means that ν = P1, P2, P1, P3 or P1, P4;

ν is basal means that ν = P2, P3, P3, P4 or P4, P1;

ν is pure means that ν = P1, P2 or P3, P4

ν is mixed means that ν = P1, P3 or P1, P4, P2, P3 or P2, P4.

The first kind tetrahedral inequality writes:

(3.4) ΨF (]P1[) =
∑
I

F (ws)−
∑
II

F (ws) ≥ 0.
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The second kind tetrahedral inequality writes:

(3.5) ΨF (]P1, P2[) =
∑
III

F (ws)−
∑
IV

F (ws) ≥ 0.

We came to the following result.

Lemma 3. If a continuous and additive wedge function F satisfies the tetrahe-

dral inequalities (3.4) and (3.5) for any tetrahedron P1, P2, P3, P4 ⊂ IR3 and any

numeration of its vertices, then ΨF the combinatorial valuation is nonnegative on

U3.

3.3. Measure generation. We are now ready to outline the proof of a theorem,

whose role in IE compares with that of the theorem on planar pseudo-metrics proved

in [4]. The continuous and additive wedge functions we consider are “general”, i.e.

they are not supposed to possess any special representation like (2.5).

Theorem 2. Let F be a continuous and additive wedge function that satisfies the

tetrahedral inequalities (3.4) and (3.5) . Then there exists a unique (nonnegative )

measure M in IE whose value on any set A ∈ U3 can be calculated as

M(A) = ΨF (A).

Let F1 be another wedge function possessing the same properties as F , and M1 let

be the corresponding measure in IE. If for some tetrahedron Θ ⊂ IR3 one has

F1(W ) = F (W ) on wedges W = (ν, V ) with endpoints of ν on the edges of Θ,

then the restrictions of M and M1 to the set [Θ] = planes that hit Θ coincide.

Proof. Let Θ = {P1, P2, P3, P4} be a tetrahedron in IR3 with (open) edges νk, k =

1, ..., 6. Given an atom ]Pi, Pj [ of Br{Pi} (a 2-2 tetrahedral set), we choose from

the corresponding collection of “mixed” edges a triad νk, νm, νr. Also, there is

a natural correspondence ]Pi[→ νk, νl, νr where νk, νl, νr are the three edges of Θ

that meet at Pi. So for atoms A ∈ Br(Θ) we get a map

(3.6) A→ (νk, νm, νr).

Now each plane e that hits Θ but avoids any Pi can be described by the points

lk, lm, lr of intersection of e with corresponding νk, νm, νr. For each atom we

consider the usual semi-algebra of subsets of the corresponding product νk×νl×νr
consisting of the products

I1 × I2 × I3 with I1 ⊆ νk, I2 ⊆ νm, I3 ⊆ νr,

where I1, I2, I3 can be open, semi-open or closed intervals. The sets of the type
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[I1]∩[I2]∩[I3] = the image of I1×I2×I3 form a semi-algebra in [Θ]. By (3.6) and

Lemma 3, the valuation ΨF is nonnegative, and so is each value ΨF ([I1]∩[I2]∩[I3]).

By Lemma 2, the latter value can be obtained as a limit of values of ΨF on the

sets belonging to the ”compact class”

{[I1] ∩ [I2] ∩ [I3] : I1, I2, I3 are closed intervals}.

By a standard criterion of measure theory this implies that ΨF is (can be extended

to) a measure MΘ on [Θ], after we additionally put MΘ([Pi]) = 0, i = 1, 2, 3, 4.

The next (and final) step consists in proving that the family of measures MΘ is

consistent: for any tetrahedron Θ1 ⊂ Θ

(3.7) MΘ1 is the restriction of MΘ on the set [Θ1] = {e ∈ IE : e hits Θ1}.

To prove (3.7)) we take three intervals I1, I2, I3 from νk, νl, νr = edges of Θ, and

three intervals J1, J2, J3 from a triad ν′k, ν
′
l , ν
′
r = edges of Θ1. It is enough to show

that for the sets

A1 = [I1] ∩ [I2] ∩ [I3] and A2 = [J1] ∩ [J2] ∩ [J3]

we have

A1 ∩A2 = ∅ implies ΨF (A1 ∩A2) = 0 and

A1 ⊂ A2 implies ΨF (A1 ∩A2) = ΨF (A1).

The last two implications can be seen directly from the algorithm (3.1) as applied

to A1, A2 ∈ Br{Pi}, where {Pi} is the set of endpoints of the intervals I1, I2, I3

and J1, J2, J3.

We note, that this consistency proof implies, that the measure MΘ does not depend

on the map (3.6). Consistency of the measures MΘ implies the existence of some

(unique) measure µ on IE such that MΘ is the restriction of M on the set [Θ].

The second assertion of the theorem follows from our construction of the measure

MΘ and the uniqueness of the measure extension. The proof is complete.

3.4. A uniqueness problem. Assume that we have some wedge function F0(W )

that satisfies the conditions of Theorem 3. Let M(de) be the measure in the space

of planes guaranteed by the Theorem. Using that M(de), we construct the function

F (W ) as given by the integral (2.5). Is it true, that always

F (W ) = F0(W ) ?

In other words, can a measure in the space IE be generated, according to Theorem

2, by two different wedge functions? This seems to be the basic unsolved problem

in the theory of wedge metrics.
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