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Abstract. In the present paper a formula for calculation of the density function folx)
of the distance between two independent points randomly and uniformly chosen in a
bounded convex body D is given. The formula permits to find an explicit form of density
function f,(z) for body with known chord length distributions. In particular, we obtain
an explicit expression for f,(z) in the case of a ball of diameter d. A simulation model is
suggested to calculate empirically the cumulative distribution function of the distance
between two points in a body from R"™, where explicit form of the function is hard to

obtain. In particular, simulation is performed for balls and ellipsoids in R™.
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1. INTRODUCTION

In the present paper we continue investigations of [10] and [11]. In the previous two
papers a similar problem was considered. In this paper we generalize those results
for the bodies in n-dimensional Euclidean space.

Let D be a bounded, convex body in n-dimensional Euclidean space, with the
volume V(D) and the surface area S(D). Let P; and P, be two points chosen at
random, independently and with uniform distribution in D. Firstly, we are going to
find the probability that the distance p(P;, P2) between P; and P is less or equal
to x, that is we would like to find the distribution function F,(z) of p(Pi, P2). By
definition, we have

dPdP;
APy, P2) : p(P1,P2)<w}
o ff dP,dP; ’
{P1,P,eD}

(11)  F,(z)=P(P,Pye D:p(P,P,) < z)

where dP;, i = 1,2 is an element of Lebesgue measure in R™. As
dPydP, = V*(D)
{P., PeD}
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(here we use that points P; and P, select independently in D) we get
1

V2(D)
{P1,P2) : p(P1,P2)<z}

(1.2) F,(x) = dPydP;.
From the expression of the volume element in spherical coordinate where as the
origin we select the point P;, we have
r1 = rcos
ZTo = 1rSin cos Py
T3 = rsin 1y sin Y9 cos Y3
Tp_1 = Tsinty...sinY,_ocos Y, _1
Ty = 1rsinyy...sin, _osiny,, 1,
where r is the distance between P; and P,. Thus, using transformation from the
Cartesian coordinate system to spherical coordinate system, we obtain
(1.3)
dPy = dxo1des....dxa, = "1 sin™ 2 ¢y sin® " ¢y.... sin ¥y, _odrdip dibs....d1, 1.

Using (1.3) expression we have
(1.4)  dPydPy = r" sin™ % 4py sin™ 3 4. sin ¢, _odPrdrdipidipy....diy, 1,

where dK is an element of kinematic measure in R".

The kinematic density in Euclidean space was first introduced by Poincare. In
modern terminology it is the Haar measure of the group of motions (translations
and rotations) which acts on R"™. Let R™ be the Euclidean n-space, and let dK be
the kinematic density. We know that

(1.5) dK = sin" 291 sin" "3 )y.... sin ¢, _od Prdibdips....d1, .
Using (1.4) and (1.5) we can rewrite (1.2) in the following form:

F,(x) = VztD)/oxr"_lK(D,r)dr,

where K(D,r) is the kinematic measure of all oriented segments of length r that

lie inside D. Therefore, we obtain a relationship between the density function f,(z)
of p(Py, P;) and the kinematic measure K (D, z):

zn=t x
(1.6 fole) =

It should be noted that we can calculate the kinematic measure of all the unoriented
segments that lie inside D and then multiply the result by 2.

Let S; = MS be the image of segment S under an Euclidean motion. M is the
group of all Eculidean motions in the space R™. For the locally compact group M,
there is a locally finite Haar measure, i.e. a locally finite, non identically zero Borel

measure, invariant both from the left and the right. Segment S; can be defined by
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means of the two coordinates (v, t), where v € J (J is the space of all straight lines
in R™) contains segment S; , and t is the one dimensional coordinate of the center
of the segment S; on the line . In the space M, we define a measure by its element
in the following way:

K(dSy) = dyadt,

where dv is an element in a locally finite measure in the space J, which is invariant
with respect to the group M and dt is the one-dimensional Lebesgue measure on

~. The measure K (-,-) is said to be a kinematic measure on the group M.

2. THE MAIN FORMULA

This section gives a main formula for calculating the kinematic measure K (D, )

in terms of chord length distribution function of body D. Obviously,
K(D,r)=0, ifr>diam(D)

where diam(D) is the diameter of D, i.e. diam(D) = maz{p(x,y) : z,y € D},
where p(z,y) is the distance between the points z and y . Therefore, only the case
0 < r < diam(D) is considered in the paper. It is evident that in the mentioned

case
(2.1 ko= [ [ avas [ ao)-nte
[Dlte(x(v)—r)
where [D] = {y € J: yN D # @} is the set of lines in R" intersecting body D,
x(y) =N D is achord in D, while

X 0, if <0
xr =
x, if x>0.

Let O, be the surface area of the n-dimensional unit sphere. O,, is defined [1]
27T(n+1)/2
where I" is the gamma function which satisfies the recursion formula,

P(n+1) =nl'(n)

especially, I'(n + 1) = n! and I'(1/2) = /7.

Consequently,
K(D,r) = / X(y)dy — 7‘/ dy =
x(y)>r x(v)>r
Onfl On72
(22) = Z5AV(D) - GOr) - g P2 S(D)L - Fo ()
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where
Gw =[x
x(v) <z

and Fp(+) is the chord length distribution function of body D, defined as

2(n—1) /
F = ——" d
o) On—2 xX(7)<y !

. On—
(since [y dv = 505555 - S(D)).
Now we will prove the following formula:

On—2 v
2(n_l)S(D)/O ufp(u)du,

where fp(z) is the chord length density function of body D, i.e. fp(z) = Fp(x)

G(x) =

is the first derivative of the distribution function. Afterwards, for calculating the

derivative of the function G(z) we observe that

G(r+Az) - G(z) 1 _
A = Ar /1<X(7)<$+Aw x(v)y =
— (x +0AR) 2(?1”_21) s(pyfolet AA“””J): ~ @)

Then, assuming that the distribution function Fp(z) possesses the density fp(z),
when Az — 0, we get G/(z) = -22=2.8(D)x fp(z) which implies

2(n—1)
On—2 * o On—2 zu w)du
&&Gw=ﬂw%——fw%uhww—%;jﬂm4fﬂﬂ,

2(n—1

since G(0) = fx(w)<0X(7) dy = 0. Now, we transform formula (2.3) by means of

integration by parts:

Gz) = 2(?1":21)S(D)/0qup(u)du = 2(2;‘:21);9(1))/:@[1 — Fp(u)] =
(2.4) = —xz(%’_Ql)S(D)[l — Fp(x)] + 2(%1_21)S(D)/0w[1 — Fp(u)]du.
At last, substituting (2.4) into formula (2.2) we come to the main formula of this
section:
K(D,r) = OT;‘I V(D) — 2(%“21)5(1))/0 [1 — Fp(u)]du.

Theorem 2.1. For any body D in R"

On—l

(2.5) K(D,r) = =%

V(D) — On—2 )S(D)/Or[l — Fp(u)]du.

2(n—1
Thus, if the explicit form of the function K(D,r) is given, then we can derive

the explicit expression for the density function by means of (2.5). Formula (2.5) has

been obtained for unoriented segments. For oriented segments this formula should
6
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be multiplied by 2. Substituting (2.5) into (1.6) (and multiplying by 2) we obtain
the main formula of the present paper:
(26)  folx) =
If n=2 then
1

folz) = W

where Oy = 2 and O; = 27. This result is proved in [9].

If n=3 then
LEQ 1 x
folo) = gy (02v (D) = =22 [T~ Fp(ula).

where O; = 27 and Oy = 47. This result is proved in [11].

xn—lon_Q

(m"—lOn_lv(D) - (n—l)S(D)/Om[l - FD(u)]du).

V(D)

(leV(D) — 20,S(D) /0 - FD(u)]du),

3. THE CASE OF A BALL IN R"

In case of the ball D = By with diameter d, the chord length distribution function

has the following form

0, if y<0
2 n—1
(3.1) Fp,(y) = 1—[1—(%” i 0<y<d
1, if r>d.

Consequently, substituting (3.1) into (2.5) we obtain

K(D,r) = %V(D) - 2(?L"‘Ql)ks*(D)/or[l - (%)2} 7

Substituting this result in (1.6) or (2.6) we obtain the density function of the

distance between two points chosen independently in the ball of diameter d

This formula for n=2 and n=3 was obtained in [10] and [11].

n—1

’ du).

4. MOMENTS OF DISTANCE BETWEEN TWO POINTS IN R"

Oune of the simplest applications of the formulae (2.6) is the calculation of the
k-th moment between two points randomly and independently distributed on the
bounded convex domain. To find the k-th moment between points (we denote it by

M}, where n is the dimension of space) we need to calculate the following integral

d
(4.1) Mg:/o xkf;l(x)dx.

Using (2.6) we rewrite the last equation in the following form:
‘ k On-1 [* +k—1
M":/x "xdx:L/x" “da—
£ )y = Ey ),
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0,,_25 D d e z
__Opqdt* 0,—25(D L
_V(D)(n+/€)_(n—1)n+kv2 / / [1— Fp(u)]du =
= On*ldnJrk On— 25 n+k
_V(D)(n+k)_(n—1)n+k;v2 /dw / [1— Fp(u

O dn+k n 25(

VD)t k) (n—1)(n+KVED)
d d
[dn+k / [1— Fp(u)]du — / a (1 — FD(u)du)].

0 0
In (4.2) we can calculate the integral fod[l — Fp(u)]du. Consider the value of G(x)
function at point 2 = d. Since G(d) = O"%V(D) we get
. n QS o n 25( )/ _
G(d) = = / ufp(u 1) ), ud(1 — Fp(u)) =
On_2S( ) On—QS(D) /d

=——d(1-F 1-F T YAt 1-F

a2 (1 = Fp(d) - / (1= Fpu)du) = 222 [0 = Py
therefore

d _
(4.3) /0 (1 — Fp(u)]du = O"—Olf:(f; & D
Putting (4.3) in (4.2) we obtain

d
(4.4) M = = 10)’2;25 E:;‘)/Q D) /0 "R (1 — Fp(u)du).

5. MEAN DISTANCE BETWEEN TWO POINTS IN A DOMAIN AND THE CASE OF

BALL IN R"

Using (4.4) for k=1 we obtain a formula for calculating the mean distance
between two points uniformly and independently distributed in a bounded convex

domain :

d
(5.1) M} = o g’gnf(f;‘)ﬂw) /O 2"t (1 — Fp(u))du.

In case of the ball D = By with diameter d, putting (3.1) in (5.1) we obtain

n—1

d x 2
M= 8?;25(11))1)/2(17) /0 1= ()] e

If n=2 then 4
4r z\273 64
2 _ 3[4 _ (T _ o=
My = 37r2r4/0 * {1 (d) } de =5

This is the result from [9].

If n = 3 then ;
2
M= g e (5) = e
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