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Abstract. In the present paper a formula for calculation of the density function fρ(x)

of the distance between two independent points randomly and uniformly chosen in a

bounded convex body D is given. The formula permits to �nd an explicit form of density

function fρ(x) for body with known chord length distributions. In particular, we obtain

an explicit expression for fρ(x) in the case of a ball of diameter d. A simulation model is

suggested to calculate empirically the cumulative distribution function of the distance

between two points in a body from Rn, where explicit form of the function is hard to

obtain. In particular, simulation is performed for balls and ellipsoids in Rn.
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1. Introduction

In the present paper we continue investigations of [10] and [11]. In the previous two

papers a similar problem was considered. In this paper we generalize those results

for the bodies in n-dimensional Euclidean space.

Let D be a bounded, convex body in n-dimensional Euclidean space, with the

volume V (D) and the surface area S(D). Let P1 and P2 be two points chosen at

random, independently and with uniform distribution in D. Firstly, we are going to

�nd the probability that the distance ρ(P1, P2) between P1 and P2 is less or equal

to x, that is we would like to �nd the distribution function Fρ(x) of ρ(P1, P2). By

de�nition, we have

(1.1) Fρ(x) = P (P1, P2 ∈ D : ρ(P1, P2) ≤ x) =

∫∫
{(P1,P2) : ρ(P1,P2)≤x}

dP1dP2∫∫
{P1,P2∈D}

dP1dP2
,

where dPi, i = 1, 2 is an element of Lebesgue measure in Rn. As∫∫
{P1, P2∈D}

dP1dP2 = V 2(D)
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(here we use that points P1 and P2 select independently in D) we get

(1.2) Fρ(x) =
1

V 2(D)

∫∫
{P1,P2) : ρ(P1,P2)≤x}

dP1dP2.

From the expression of the volume element in spherical coordinate where as the

origin we select the point P1, we have

x1 = r cosψ1

x2 = r sinψ1 cosψ2

x3 = r sinψ1 sinψ2 cosψ3

xn−1 = r sinψ1... sinψn−2 cosψn−1

xn = r sinψ1... sinψn−2 sinψn−1,

where r is the distance between P1 and P2. Thus, using transformation from the

Cartesian coordinate system to spherical coordinate system, we obtain

(1.3)

dP2 = dx21dx22....dx2n = rn−1 sinn−2 ψ1 sinn−3 ψ2.... sinψn−2drdψ1dψ2....dψn−1.

Using (1.3) expression we have

(1.4) dP1dP2 = rn−1 sinn−2 ψ1 sinn−3 ψ2.... sinψn−2dP1drdψ1dψ2....dψn−1,

where dK is an element of kinematic measure in Rn.

The kinematic density in Euclidean space was �rst introduced by Poincare. In

modern terminology it is the Haar measure of the group of motions (translations

and rotations) which acts on Rn. Let Rn be the Euclidean n-space, and let dK be

the kinematic density. We know that

(1.5) dK = sinn−2 ψ1 sinn−3 ψ2.... sinψn−2dP1dψ1dψ2....dψn−1.

Using (1.4) and (1.5) we can rewrite (1.2) in the following form:

Fρ(x) =
1

V 2(D)

∫
0

x

rn−1K(D, r)dr,

where K(D, r) is the kinematic measure of all oriented segments of length r that

lie inside D. Therefore, we obtain a relationship between the density function fρ(x)

of ρ(P1, P2) and the kinematic measure K(D,x):

(1.6) fρ(x) =
xn−1K(D,x)

V 2(D)
.

It should be noted that we can calculate the kinematic measure of all the unoriented

segments that lie inside D and then multiply the result by 2.

Let S1 = MS be the image of segment S under an Euclidean motion. M is the

group of all Eculidean motions in the space Rn. For the locally compact group M,

there is a locally �nite Haar measure, i.e. a locally �nite, non identically zero Borel

measure, invariant both from the left and the right. Segment S1 can be de�ned by
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means of the two coordinates (γ, t), where γ ∈ J (J is the space of all straight lines

in Rn) contains segment S1 , and t is the one dimensional coordinate of the center

of the segment S1 on the line γ. In the spaceM , we de�ne a measure by its element

in the following way:

K(dS1) = dγ dt,

where dγ is an element in a locally �nite measure in the space J , which is invariant

with respect to the group M and dt is the one-dimensional Lebesgue measure on

γ. The measure K(·, ·) is said to be a kinematic measure on the group M .

2. The main formula

This section gives a main formula for calculating the kinematic measure K(D, r)

in terms of chord length distribution function of body D. Obviously,

K(D, r) = 0, if r ≥ diam(D)

where diam(D) is the diameter of D, i.e. diam(D) = max{ρ(x, y) : x, y ∈ D},
where ρ(x, y) is the distance between the points x and y . Therefore, only the case

0 ≤ r ≤ diam(D) is considered in the paper. It is evident that in the mentioned

case

(2.1) K(D, r) =

∫
[D]

∫
t∈(χ(γ)−r)

dγ dt =

∫
[D]

(χ(γ)− r)+dγ,

where [D] = {γ ∈ J : γ ∩ D 6= ∅} is the set of lines in Rn intersecting body D,

χ(γ) = γ ∩D is a chord in D, while

x+ =

{
0, if x ≤ 0

x, if x ≥ 0.

Let On be the surface area of the n-dimensional unit sphere. On is de�ned [1]

On =
2π(n+1)/2

Γ(n+1
2 )

,

where Γ is the gamma function which satis�es the recursion formula,

Γ(n+ 1) = nΓ(n)

especially, Γ(n+ 1) = n! and Γ(1/2) =
√
π.

Consequently,

K(D, r) =

∫
χ(γ)>r

χ(γ)dγ − r
∫
χ(γ)>r

dγ =

(2.2) =
On−1

2
V (D)−G(r)− r On−2

2(n− 1)
S(D)[1− FD(r)],
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where

G(x) =

∫
χ(γ)≤x

χ(γ) dγ

and FD(·) is the chord length distribution function of body D, de�ned as

FD(y) =
2(n− 1)

On−2

∫
χ(γ)≤y

dγ

(since
∫

[D]
dγ = On−2

2(n−1) · S(D)).

Now we will prove the following formula:

G(x) =
On−2

2(n− 1)
S(D)

∫
0

x

ufD(u)du,

where fD(x) is the chord length density function of body D, i.e. fD(x) = F ′D(x)

is the �rst derivative of the distribution function. Afterwards, for calculating the

derivative of the function G(x) we observe that

G(x+ ∆x)−G(x)

∆x
=

1

∆x

∫
x<χ(γ)≤x+∆x

χ(γ)γ =

= (x+ θ∆x)
On−2

2(n− 1)
S(D)

FD(x+ ∆x)− FD(x)

∆x
.

Then, assuming that the distribution function FD(x) possesses the density fD(x),

when ∆x→ 0, we get G′(x) = On−2

2(n−1)S(D)xfD(x) which implies

(2.3) G(x) = G(0) +
On−2

2(n− 1)
S(D)

∫
0

x

ufD(u)du =
On−2

2(n− 1)
S(D)

∫
0

x

ufD(u)du,

since G(0) =
∫
χ(γ)≤0

χ(γ) dγ = 0. Now, we transform formula (2.3) by means of

integration by parts:

G(x) =
On−2

2(n− 1)
S(D)

∫
0

x

ufD(u)du = − On−2

2(n− 1)
S(D)

∫
0

x

ud[1− FD(u)] =

(2.4) = −x On−2

2(n− 1)
S(D)[1− FD(x)] +

On−2

2(n− 1)
S(D)

∫
0

x

[1− FD(u)]du.

At last, substituting (2.4) into formula (2.2) we come to the main formula of this

section:

K(D, r) =
On−1

2
V (D)− On−2

2(n− 1)
S(D)

∫
0

r

[1− FD(u)]du.

Theorem 2.1. For any body D in Rn

(2.5) K(D, r) =
On−1

2
V (D)− On−2

2(n− 1)
S(D)

∫
0

r

[1− FD(u)]du.

Thus, if the explicit form of the function K(D, r) is given, then we can derive

the explicit expression for the density function by means of (2.5). Formula (2.5) has

been obtained for unoriented segments. For oriented segments this formula should
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be multiplied by 2. Substituting (2.5) into (1.6) (and multiplying by 2) we obtain

the main formula of the present paper:

(2.6) fρ(x) =
1

V 2(D)

(
xn−1On−1V (D)− xn−1On−2

(n− 1)
S(D)

∫
0

x

[1− FD(u)]du
)
.

If n=2 then

fρ(x) =
1

V 2(D)

(
O1xV (D)− xO0S(D)

∫
0

x

[1− FD(u)]du
)
,

where O0 = 2 and O1 = 2π. This result is proved in [9].

If n=3 then

fρ(x) =
1

V 2(D)

(
x2O2V (D)− x2O1S(D)

2

∫
0

x

[1− FD(u)]du
)
,

where O1 = 2π and O2 = 4π. This result is proved in [11].

3. The case of a ball in Rn

In case of the ballD = Bd with diameter d, the chord length distribution function

has the following form

(3.1) FBd
(y) =


0, if y ≤ 0

1−
[
1−

(
y
d

)2]n−1
2

, if 0 ≤ y ≤ d
1, if r ≥ d.

Consequently, substituting (3.1) into (2.5) we obtain

K(D, r) =
On−1

2
V (D)− On−2

2(n− 1)
S(D)

∫
0

r

[1−
(u
d

)2]n−1
2

du.

Substituting this result in (1.6) or (2.6) we obtain the density function of the

distance between two points chosen independently in the ball of diameter d

fρ(x) =
1

V 2(D)

(
xn−1On−1V (D)− xn−1On−2

(n− 1)
S(D)

∫
0

x

[1−
(u
d

)2]n−1
2

du
)
.

This formula for n=2 and n=3 was obtained in [10] and [11].

4. Moments of distance between two points in Rn

One of the simplest applications of the formulae (2.6) is the calculation of the

k-th moment between two points randomly and independently distributed on the

bounded convex domain. To �nd the k-th moment between points (we denote it by

Mn
k , where n is the dimension of space) we need to calculate the following integral

(4.1) Mn
k =

∫ d

0

xkfnρ (x)dx.

Using (2.6) we rewrite the last equation in the following form:

Mn
k =

∫ d

0

xkfnρ (x)dx =
On−1

V (D)

∫ d

0

xn+k−1dx−
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(4.2) − On−2S(D)

(n− 1)V 2(D)

∫ d

0

xn+k−1dx

∫
0

x

[1− FD(u)]du) =

=
On−1d

n+k

V (D)(n+ k)
− On−2S(D)

(n− 1)(n+ k)V 2(D)

∫ d

0

dxn+k

∫
0

x

[1− FD(u)]du =

=
On−1d

n+k

V (D)(n+ k)
− On−2S(D)

(n− 1)(n+ k)V 2(D)

∫ d

0

dxn+k

∫
0

x

[1− FD(u)]du =

=
On−1d

n+k

V (D)(n+ k)
− On−2S(D)

(n− 1)(n+ k)V 2(D)
×[

dn+k

∫ d

0

[1− FD(u)]du−
∫ d

0

xn+k(1− FD(u)du)
]
.

In (4.2) we can calculate the integral
∫ d

0
[1− FD(u)]du. Consider the value of G(x)

function at point x = d. Since G(d) = On−1V (D)
2 , we get

G(d) =
On−2S(D)

2(n− 1)

∫
0

d

ufD(u)du = −On−2S(D)

2(n− 1)

∫
0

d

ud(1− FD(u)) =

= −On−2S(D)

2(n− 1)
(d(1− FD(d))−

∫
0

d

(1− FD(u)du) =
On−2S(D)

2(n− 1)

∫
0

d

(1− FD(u)du

therefore

(4.3)

∫ d

0

[1− FD(u)]du =
On−1V (D)(n− 1)

On−2S(D)

Putting (4.3) in (4.2) we obtain

(4.4) Mn
k =

On−2S(D)

(n− 1)(n+ k)V 2(D)

∫ d

0

xn+k(1− FD(u)du).

5. Mean distance between two points in a domain and the case of

ball in Rn

Using (4.4) for k=1 we obtain a formula for calculating the mean distance

between two points uniformly and independently distributed in a bounded convex

domain :

(5.1) Mn
1 =

On−2S(D)

(n− 1)(n+ 1)V 2(D)

∫ d

0

xn+1(1− FD(u))du.

In case of the ball D = Bd with diameter d, putting (3.1) in (5.1) we obtain

Mn
1 =

On−2S(D)

(n− 1)(n+ 1)V 2(D)

∫ d

0

xn+1
[
1−

(x
d

)2]n−1
2

dx.

If n=2 then

M2
1 =

4πr

3π2r4

∫ d

0

x3
[
1−

(x
d

)2] 1
2

dx =
64

45
d.

This is the result from [9].

If n = 3 then

M3
1 =

9

16r4

∫ d

0

x4
[
1−

(x
d

)2]
dx =

18

35
d.
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