ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈԻԹՅԱՆ ԳԻՏՈԻԹՅՈԻՆՆԵՐԻ ԱՁԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

۲шјшиџшնի քիմիшկшն hшնդես Химический журнал Армении 73, №2-3, 2020 Chemical Journal of Armenia

УДК 661.183.1

СИНТЕЗ ГИДРОМОНОСИЛИКАТОВ КАЛЬЦИЯ В ГИДРОХИМИЧЕСКИХ УСЛОВИЯХ ПРИ ПОЛУЧЕНИИ КАЛИЙНОГО УДОБРЕНИЯ ИЗ ТУФА И ИЗВЕСТИ

К. Г. ГРИГОРЯН, Л. Г. БАГИНОВА, С. М. АЙРАПЕТЯН, Г. А. АРУТЮНЯН, А. А. ХАЧАТРЯН и А. Н. АЗНАУРЯН

Институт общей и неорганической химии им. М.Г.Манвеляна НАН Республики Армения Армения, 0051, Ереван, ул.Аргутяна, II пер., д. 10 Факс: (374-10)231275, E-mail: Khachatryanannn@mail.ru

Исследовано взаимодействие измельченного до ≤ 20 *мк* дацитового туфа с гидроксидом кальция в гидрохимических условиях. При соотношениях CaO/SiO₂=0.3 и жидкой фазы к твердой 6:1, через 150 *мин* и при 90°С гидроксид кальция связывается полностью с образованием гидроалюмосиликата калия и гидромоносиликата кальция.

Рис. 4, табл. 3, библ. ссылок 11.

Известно, что растворимые соли калия, особенно бесхлорные, в природе весьма ограничены. Поэтому растет интерес к использованию алюмосиликатов калия в качестве бесхлорных удобрений, имеющих щелочную реакцию и представляющих интерес для мелиорации, особенно для кислотных почв.

Трудность освоения растениями калиевых алюмосиликатов объясняется их структурой. Калий высвобождается, в первую очередь, с наружных поверхностей, а с внутренних – только после разрушения связей Al-O и Si-O, составляющих защитную оболочку зерен минерала [1].

Гидролиз полевого шпата идет в два этапа:

KAlSi₃O₈ + 4HOH \leftrightarrows HAlSiO₈ + K⁺ + 4OH – быстро протекающая реакция,

HAlSi₃O₈ + 4HOH \leftrightarrows Al(OH)₃ + 3H₂SiO₃ – очень медленная реакция.

Разрыв прочных -Si-O-Si- связей достигается воздействием OH⁻ ионов с образованием Si-OH групп [2].

Ранее нами был разработан и опробован способ получения медленно и продолжительно действующего удобрения из калийсодержащих алюмосиликатов. Удобрение получалось в гидротермальных условиях, при температуре 150-200°С, в автоклаве, путем перевода безводных калийсодержащих алюмосиликатов в гидроалюмосиликат калия и гидромоносиликат кальция, при взаимодействии дацитового туфа с гидроксидом кальция [3]. В результате образующихся соединений с пониженным содержанием диоксида кремния калий становится более подвижным:

 $\begin{array}{l} K_2 O \cdot Al_2 O_3 \cdot 6SiO_2 + 2Ca(OH)_2 + 3H_2 O \rightarrow K_2 O \cdot Al_2 O_3 \cdot 4SiO_2 \cdot H_2 O + \\ 2(CaO \cdot SiO_2 \cdot 2H_2 O) \end{array}$

Поскольку процесс перехода калия в подвижную форму сочетается с образованием гидросиликатов кальция, важно также уделить внимание на процессы образования гидромоносиликатов кальция как при взаимодействии калиевого полевого шпата, так и кварца с гидрокидом кальция, т. к. полевой шпат в туфах сильно окварцован.

Если в ходе реакции образуется моносиликат кальция, та же степень разложения калиевого полевого шпата обеспечивается в два раза малым количеством кальция, чем при образовании двухкальциевого силиката. При этом улучшаются физико-химические свойства удобрения [4].

Ускорить процесс образования гидромоносиликатов можно не только путем повышения температуры в реакционной системе (автоклав), но и с использованием различных активных добавок – минерализаторов [5].

Целью данного исследования являлось изучение упрощенного, безавтоклавного способа взаимодействия туфа с гидроксидом кальция с получением моносиликата кальция и гидроалюмосиликатов калия.

Известно [6,7], что тонкое измельчение приводит к изменению структурных и физико-химических свойств минералов, особенно поверхностных слоев, что, в свою очередь, существенно повышает их реакционную способность.

В случае дацитового туфа структурные изменения, происходящие в результате измельчения, способствуют частичному переходу K₂O из породы в раствор, в результате чего идет процесс синтеза гидромоносиликата кальция (CSH), минуя стадию образования двухкальциевого гидросиликата (C₂SH) [5, 8].

В работе установлено, что при измельчении дацитового туфа до $\leq 20 \ \text{мкм}$ в водной среде при соотношении жидкой фазы к твердой (Ж:Т) – 6:1 и температуре 90°С происходит процесс перехода КОН, который является минерализатором процесса, в водную среду, что в значительной мере способствует синтезу гидросиликата кальция из дацитовых туфов при низких температурах, минуя стадию образования двухкальциевого гидросиликата (C₂SH).

Экспериментальная часть

В опытах использовался риолит-дацитовый туф Таширского месторождения Республики Армения. Главными породообразующими минералами туфов являются окварцованный калиевый полевой шпат (K₂O·Al₂O₃·6H₂O) и кварц. Содержание полевого шпата в туфе составляет 58-77 масс.%, а кварца 12-32 масс.%. Калий входит в состав калиевого полевого шпата, а также, частично, плагиоклаза, серицита и мусковита. Средний химический состав дацитового туфа представлен в табл. 1.

Таблица 1

SiO ₂	Al_2O_3	Fe ₂ O ₃	MgO	CaO	Na ₂ O	K ₂ O
70.6	12.8	2.3	0.3	0.9	0.5	10.6

Химический состав туфа, масс.%

Оксид кальция получен прокаливанием карбоната кальция при 1000°С в течение 3 ч.

Измельчение дацитового туфа (20 г) проводилась путем сухого помола в вибромельнице типа "CBM-04" с внутренним объемом камеры 150 см³ и мелющими шарами диаметром 10 и 14 мм. Соотношение между массой навески туфа и шаров ~ 1:25, а время помола 12-15 мин.

Микроскопический анализ готовой пробы показал, что более 80% частиц измельченного дацитового туфа имеют размер ≤ 20 *мкм*.

Для оценки изменений, происходящих в процессе измельчения дацитового туфа, использовались методы рентгенографического и электронно-микроскопического анализов.

Взаимодействие измельченного дацитового туфа с оксидом кальция проводилось в реакторе с магнитной мешалкой при 90 ± 2 °C. Соотношение жидкой фазы к твердой – 6:1, молярное соотношение CaO/SiO₂ – 0.3. По окончании опыта пульпа отфильтровывалась под вакуумом и осадок высушивался при 100°С до постоянного веса. Степень протекания реакции количественно оценивали по содержанию свободного оксида кальция (не связанного с SiO₂) в образцах.

Содержание свободного CaO в образцах определяли этилглицератным методом [9], а количество K₂O, перешедшего в раствор, – методом пламенной фотометрии.

Результаты и их обсуждение

На рис. 1 приведена рентгенограмма исходного туфа с размером частиц $\leq 100 \ \text{мкм}$ (кр. 1) и туфа после 15 *мин* тонкого помола (размер частиц $\leq 20 \ \text{мкм}$) (кр. 2).

Рис. 1. Рентгенограмма исходного туфа с размером частиц ≤ 100 *мкм* (кр. 1) и ≤ 20 *мкм* (кр. 2)

На рентгенограмме измельченного туфа наблюдается некоторое изменение интенсивностей рефлексов в интервале d/n 6.62-2.57 Å. Площади этих рефлексов, подсчитанные с помощью программы Origin Pro, представлены в табл. 2.

Различия в площадях пиков на рентгенограммах туфа до и после измельчения обусловлены, по нашему мнению, разупорядочиванием структуры туфа в процессе тонкого помола и образованием аморфизированных слоев, обладающих повышенной реакционной способностью. Одним из признаков аморфизации является уменьшение интенсивности или исчезновение некоторых рефлексов на рентгенограмме туфа с размером частиц $\leq 20 \ MKM$. В частности, на рентгенограмме измельченного туфа интенсивность пика с d/n 3.31 Å уменьшается на 10.5%, а пиков с d/n 4.24 и 1.79 – на 26 и 63% по сравнению с соответствующими пиками туфа с размером частиц $\leq 100 \ MKM$. Пики полевого шпата с d/n 1.92 и 7.95 Å исчезают на рентгенограмме измельченного туфа.

Таблица 2

d/n, Å	Площадь пиков		
	Размер частиц туфа, мкм		
	100 мкм	20 мкм	
6.6	10.4	2.5	
4.3	55.5	29.9	
3.8	47.3	27.4	
3.3	146.7	137.4	
2.6	42.2	18.4	

Диффракционные характеристики туфа

Электронно-микроскопическое исследование образца дацитового туфа (рис. 2), полученного после сухого, тонкого измельчения, показывает, что наряду с аморфной фазой наблюдаются мелкозернистые кристаллические структуры калиевого полевого шпата.

Тонкий помол в вибромельнице приводит к частичному разрушению окварцованных оболочек полевого шпата и к открытию новой поверхности. Такие структурные изменения в дацитовом туфе способствуют выходу калия из полевого шпата при дальнейшей обработке в реакторе.

Рис. 2. Электронно-микроскопический снимок измельченного туфа.

Данные анализов продуктов реакции измельченного дацитового туфа с оксидом кальция в зависимости от продолжительности процесса представлены в табл. 3.

Время реакции, мин	Содержание СаО _{св} , масс.%	
30	7.3	
60	4.4	
90	3.6	
120	1.7	
150	OTC.	

Содержание СаОсв в конечном продукте от времени реакции

Из приведенных результатов следует, что в реакторе при 90°С в течение 150 *мин* практически весь гидроксид кальция связывается с кремнеземом полевого шпата, на что указывает отсутствие свободного оксида кальция в образце.

При взаимодействии дацитового туфа с оксидом кальция в реакторе в течение 150 *мин* образуется продукт, на рентгенограмме которого (рис. 3) присутствуют интенсивные линии, характерные для низкоосновных гидросиликатов кальция. Так, интенсивные пики с d/n 4.52; 3.58; 3.02; 2.78 Å принадлежат гидромоносиликату кальция; пики с d/n 5.60; 3.07; 1.83 Å можно приписать тобермориту, а пики с d/n 5.35; 4.75; 3.79 и 2.55 Å характерны для однокальциевого гидроалюмината [10, 11].

Рис. 3. Рентгенограмма продукта реакции дацитового туфа (размер частиц ≤20 *µк*) с оксидом кальция при 90⁰С в течение 150 *мин.*

Дифференциально-термический анализ полученного в реакторе продукта представлен на рис. 4. Эндоэффект при относительно низкой температуре (150°С) связан с потерей адсорбционной воды однокальциевым гидроалюминатом. Эндоэффект при 390°С обусловлен удалением межслоевой воды из гидромоносиликата кальция. Большой эндотермический пик при 750°С соответствует потере химически связанной воды гидромоносиликата кальция. Экзоэффект при 810°C обусловлен переходом моносиликатов кальция в волластонит [9, 10].

Рис. 4. Термограмма продукта реакции дацитового туфа (размер частиц ≤20 *µк*) с оксидом кальция при 90°С в течение 150 *мин*.

Для определения степени структурных изменений в дацитовом туфе, способствующих выходу калия из породы, проведены следующие исследования.

Дацитовый туф (20 *мкм*) обрабатывался в водной среде при Ж:Т = 6:1 в реакторе при 90°С в течение 30-120 *мин*.

Содержание КОН в фильтрате в зависимости от продолжительности опыта составляло 0.28, 0.30 и 0.33% через 30, 60 и 120 *мин*, соответственно.

В работах [4, 7] показано, что присутствие в системе CaO-SiO₂-H₂O гидроксида калия в количестве 2 масс.% по отношению к твердой фазе позволяет осуществить 100% синтез гидромоносиликата кальция, минуя стадию образования C_2 SH.

Поэтому к реакционной смеси добавляли КОН в количестве 1.6 масс.% по отношению к твердой фазе, что с учетом калия, высвобождающегося в процессе помола туфа, составляет 2 масс.%

Взаимодействие измельченного туфа с оксидом кальция в присутствии 2% добавки КОН проводилось в реакторе в аналогичных условиях в течение 60 *мин* (см. табл. 3). Содержание непрореагировавшего СаО после реакции в этом случае составило 4.1%, против 4.4 без добавки дополнительного КОН.

То есть с учетом дисперсности и аморфизации дацитового туфа количество высвобождающегося КОН достаточно для взаимодействия туфа с СаО с образованием гидромоносиликата кальция.

Таким образом, структурные изменения в дацитовом туфе (рис. 1), протекающие в процессе его тонкого измельчения способствуют

частичному переходу ионов калия в раствор. Ионы калия, высвобождающиеся и переходящие в раствор в процессе измельчения дацитового туфа, достаточны для влияния на кинетику реакции CaO с SiO₂ и способствуют целенаправленному синтезу гидромоносиликата кальция, минуя промежуточную фазу C₂SH. Тонкое измельчение приводит также к тому, что снижается температура взаимодействия дацитового туфа с оксидом кальция и появляется возможность проводить синтез гидромоносиликата кальция при атмосферном давлении и температуре 90°C взамен автоклавного процесса при 150-200°C.

ԿԱԼՑԻՈԻՄԻ ՄՈՆՈՍԻԼԻԿԱՏՆԵՐԻ ՋԵՐՄԱՔԻՄԻԱԿԱՆ ՍԻՆԹԵԶԸ՝ ՏՈԻՖԻՑ ՈԻ ԿՐԻՑ ԿԱԼԻՈԻՄԱԿԱՆ ՊԱՐԱՐՏԱՆՅՈԻԹԻ ՍՏԱՑՄԱՆ ԺԱՄԱՆԱԿ

Կ. Գ. ԳՐԻԳՈՐՅԱՆ, Լ. Գ. ԲԱԳԻՆՈՎԱ, Ս. Մ. ৲ԱՅՐԱՊԵՏՅԱՆ, Գ. Ա. ৲ԱՐՈՒԹՅՈՒՆՅԱՆ, Ա. Ա. ԽԱՉԱՏՐՅԱՆ և Ա. Ն. ԱՉՆԱՈՒՐՅԱՆ

Ուսումնասիրվել է մինչև ≤20 մկ մանրացված դացիտային տուֆի փոխազդեցուԹյունը կալցիումի Հիդրօջսիդի Հետ՝ Հիդրոջիմիական պայմաններում։ CaO/siO₂=0.3 մոլային և Հեղուկ/պինդ=6:1 ՀարաբերուԹյան դեպքում, 90°С-ում, 150 ր ընԹացքում կալցիումի Հիդրօջսիդը ամբողջուԹյամբ փոխազդում է տուֆի Հետ, առաջացնելով կալիումի Հիդրոալյումոսիլիկատ և կալցիումի Հիդրոմոնոսիլիկատ:

SYNTHESIS OF CALCIUM HYDROMONOSILICATES UNDER HYDROCHEMICAL CONDITIONS, UPON RECEIPT OF POTASH FERTILIZER FROM TUFF AND LIME

K. G. GRIGORYAN, L. G. BAGINOVA, S. M. HAYRAPETYAN, G. A. HARUTYUNYAN, A. A. KHACHATRYAN and A. N. AZNAURYAN

Institute of General and Inorganic Chemistry NAS RA 10, II lane, Argutyan Str., Yerevan, 0051, Armenia E-mail: khachatryanannn@mail.ru

The interaction of ground to $\leq 20 \ \mu m$ dacitic tuff with calcium hydroxide under hydrochemical conditions was studied. At the ratios of CaO / SiO₂ = 0.3 and the liquid phase to solid one 6:1, after 150 *min* at 90°C, calcium hydroxide completely binds resulting in potassium hydroaluminosilicate and calcium hydromonosilicate formation.

ЛИТЕРАТУРА

- [1] Galstyan M.H., Yeritsyan S.K., Grigoryan K.G., Pagliari P.H. // Agriscience and Technology, 2019, №4, p. 1.
- [2] Some Observations on the Stoichiometry of Feldspar Hydrolysis in Granitic Soil. // J. Environ. Quat., 1988, v. 17, No1, p.153.
- [3] Григорян К.Г., Багинова Л.Г., Хачатрян А.А., Айрапетян С.М., Арутюнян Г.А., Костанян А.К., Азнаурян А.Н. // Химическая технология, 2018, №9, с. 391.
- [4] Хачатрян В.С., Ерицян С.К., Бартикян П.М. // Агронаука, 1996, №9-10, с. 601.
- [5] Григорян К.Г., Арутюнян Г.А., Григорян Г.О. // J. Amer. Ceram. Soc., 2006, v. 89, p. 374.

- [6] Kalinkin A.M., Politov A.A., Kalinkina E.V., Zalkind O.A., Boldyrev V.V. // Chemistry for Sustainable Development, 2006, №14, p. 333.
- [7] Усов Б.А., Гуринович Л.С. // Системные технологии, 2015, №16, с. 48.
- [8] Григорян К.Г., Арутюнян Г.А., Багинова Л.Г., Григорян Г.О. // Химическая технология, 2008, №3, с. 101.
- [9] Бутт Ю.М., Тимашев В.В. Практикум по технологии вяжущих материалов, М., Высшая школа, 1973, с. 82.
- [10] Hartmann A., Schulenberg D. // Journal of Materials Science and Chemical Engineering, 2015, №3, p. 39.
- [11] Baltakys K., Prichockiene E. // Materials science Poland, 2010, v.28, №1, p. 295.