
ISSN 0002-306X. Proc, of the RA NAS and NPUA Ser. of tech. sc. 2020. V. LXXIII, N2

UDC 621.337 AUTOMATION
AND CONTROL SYSTEMS

K.H. NIKOGHOSYAN, V.T. BEJANYAN

ANALYSIS OF K-NEAREST NEIGHBOR AND ARTIFICIAL NEURAL
NETWORK FOR MULTICLASS CLASSIFICATION OF HIGH

DIMENSIONAL DATA

In this article, we present two techniques for the multiclass classification of high
dimensional data based on the K-Nearest Neighbors algorithm and Artificial Neural
Network model. The incremental construction of mathematical models and a careful
analysis of the experimental results are presented.

Keywords, classification, neural networks, large amount of data, mathematical
modeling, algorithms, high-performance computing.

Introduction. In the last decade, the amount of data stored on the service
side has become tremendous. ML algorithms for datasets with such properties
should be extremely fast, scaled up easily with volume and dimensionality of input,
should be able to learn from streaming data without introducing performance
bottlenecks, and which is most important, should be easily deployable on hyper­
scale cloud computing systems, which are widely used in high-performance
computing problems. Deep Learning (DL), as a subset of ML, is well positioned to
address these challenges. ML algorithms have a wide application range and are
highly successful in handling high dimensional data classification problems.
Classifiers can be split into two main categories: binary classifiers, which are used
when there is only one feature of interest under the scope, and multiclass
classifiers, which are the generalization of the classifiers described previously.
There are two main choices for implementing pattern classifiers: Artificial Neural
Networks and classification algorithms.

In this paper, we analyze the algorithm called k-Nearest Neighbors (k-NN)
and Artificial Neural Networks (ANN), using the high dimensional dataset called
CIEAR-10.

The k-NN is a supervised method which is rather simple to implement and
train. But, on the other hand, time overhead during the classification process can be
very high, especially with very large datasets. The main aim of this work is to give
the comparative analysis of accuracies that can be achieved while applying this and
other methods based on ANN. In case of non-linear classification problems, ANNs
seem to be a more robust solution. Theoretically, an ANN is capable of learning the

214

215

shape of just any function, given enough computational power. ANNs, able to deal
with complex relations between variables, non-exhaustive category sets and
complex functions relating input to output variables, can show very high accuracies
on the problems of high dimensional data classification. But on the other hand, on
many datasets, a careful tuning should be done to prevent over- and under-fitting.

K-Nearest Neighbors (kNN). K-NN [1] is one of the widely used algorithm
for classification problems. By its non-probabilistic nature, kNN is unaware of any
possible distribution with the help of which data can be described. In other words,
the model structure is determined by the data. The purpose of kNN is to use a
labeled dataset in which data points are already labeled with correct classes and
later can use this data to carry out classification. So there is no place for
generalization of data, as with Artificial Neural Networks. In other words, there is
no explicit training phase or it is very minimal. This also means that the training
phase is pretty fast. The lack of generalization means that kNN keeps the training
data. To be more exact, all (or most) training data are needed during the testing
phase. In Figure 1 let us assume the green-colored point ܲ, for which the label
needs to be predicted. First, the algorithm finds the ݇ closest points to ܲ, after
which it determines the most common label through all ݇ closest points or ‘nearest
neighbors’ and assigns that label to the data point ܲ.

Fig 1. An example of kNN in a two dimensional space

To find the closest points, one can calculate the distance between the points
using the distance measures such as Euclidean (1), Manhattan (2) or Minkowski (3)
distance:

 ∑ ሺݔ௜ െ ௜ሻଶݕ
௡
௜ୀଵ , (1)

 ∑ ሺ|ݔ௜ െ ௜|ሻݕ
୬
୧ୀଵ , (2)

 ሺ∑ ሺ|x୧ െ y୧|ሻ୯
௡
௜ୀଵ ሻଵ ௤⁄ . (3)

216

In this article, we use CIFAR-10 dataset. The dataset was formed by
collecting 60.000 images each of which is 32 pixels high and wide. Each image is
labeled with one of 10 classes. To perform a train/val/test stages, the dataset was
split into two parts with respectively 50.000 and 10.000 images in each.

As we have already said, kNN does not do any generalization of the data. In
essence, kNN computes the distances between each pair of vectors, chooses the k
nearest neighbors for the current one and assigns to it a most common label.

To compute the distance between two images we represented each image as
the vector of pixels and then computed the distance between these two vectors ܫଵ, ଶܫ
using Euclidean (1) distance.

For the kNN, the training phase simply consists of remembering all the
training data.

In Figure 2 implementation of cross validation with 5 folds for different
choices of ݇ is given. Differences between training and test vectors were calculated
using the vectorized approach.

num_folds = 5

k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

for step_k in k_choices:

 accuracies = []

 for fold_step in range(num_folds):

 test_data = X_train_folds[fold_step]

 test_labels = y_train_folds[fold_step]

 train_data = np.vstack(X_train_folds[0:fold_step] +

 X_train_folds[fold_step + 1:])

 train_labels = np.hstack(y_train_folds[0:fold_step]

 + y_train_folds[fold_step + 1:])

 classifier.train(train_data, train_labels)

 dists = classifier.compute_distances_no_loops(test_data)

 y_test_pred, _ = classifier.predict_labels(dists, k=step_k)

 num_correct = np.sum(y_test_pred == test_labels)

 accuracy = float(num_correct / test_labels.shape[0])

 accuracies.append(accuracy)

 k_to_accuracies[step_k] = accuracies

Fig. 2. Implementation of kNN cross validation

Cross-validation. To apply the cross-validation technique, the dataset was
split into 5 folds. On each iteration of cross-validation, 1 fold was used for
validation and the remaining 4 folds - for training. In Figure 3 an example of 5-fold
cross-validation run for the parameter k is shown. For every value of k starting
from 0, the model is training on already specified 4 folds. When training is done,

217

the validation is done on the remaining fold. The trend line is drawn through the
average of the results for each k and the error bars indicate the standard deviation.
With the help of experimentation for a specific dataset, the best value for k can be
derived. So, in this particular case it equals to k =7. If we used more than 5 folds,
we might expect to see a smoother (i.e. less noisy) curve.

Fig. 3. Accuracies obtained during cross-validation

Artificial Neural Network. The model of an artificial neuron used for the
construction of an artificial neural network (ANN) presented in Figure 4 is based
on the formalization of the biological neuron, also known as perceptron [2,3]. In a
trivial case ANN can be represented as a single-layer single-neuron network where
neuron is represented by the model of perceptron. The perceptron itself can be
decomposed into the following parts: input connections, vector of weights
associated with them, bias, activation function and output connection.

The perceptron has the following mathematical model:

,ܹ,ሺܺݕ ܾሻ ൌ ሺܹܽ݉݃݅ݏ ∗ ்ܺ ൅ ௕ݓ ∗ ܾሻ, (4)

where ܺ is the matrix of input features, ܹ - the matrix vector of weights and
finally ܾ - the non-zero bias applied to that sum to avoid zero as a result in the case
when one of the input vectors is a zero column vector.

218

Fig. 4. Model of an artificial neuron

From formula (4) it is clear that perceptron represents the affine
transformation to which the sigmoid function is applied to normalize the output of
the matrix multiplication. A single artificial neuron can be used to implement a
linear binary classifier such as SVM [5] or Softmax [6]. In case of multiple classes
the multilayered, fully-connected, non-linear architecture of ANN was selected.
The number of neurons in input and output layers are usually fixed. In case of the
input layer, the number of neurons depends on the dimensionality of the input data.
In case of very high dimensional data, various techniques of dimensionality
reduction such as Principal Component Analysis(PCA) or t-Distributed Stochastic
Neighbor Embedding(t-SNE)[7] can be applied to perform dimensionality
reduction on part of or entire dataset to gain some knowledge of patterns present in
the data. Due to its linearity, PCA is not able to present polynomial relationships
between the features in the area of interest. In the presence of such correlations
between the features, the t-SNE is mostly preferred because of its ability to
preserve geometry at all scales. In other words, to present high dimensional data on
non-linear manifold, it is important to place similar points close together, which is
not possible by the linear algorithm, such as PCA. In Figure 5, an example of a
result that can be obtained using the t-SNE technique for dimensionality reduction
of high dimensional data is shown.

Fig. 5. t-SNE applied to CIFAR-10

219

ANN also consists of a hidden layer(s) and an output layer. The number of
units in the output layer of ANN used for classification is roughly determined by
the number of classes. The proposed ANN uses Rectified Linear Unit(ReLU) (5) to
embed non-linearity. Formally ReLU can be represented by the following function:

ሻݔሺܷܮܴ݁ ൌ ,ሺ0ݔܽ݉ ሻ. (5)ݔ

The network uses ReLU (Figure 6 a) after the first fully-connected layer.

 a) b)

Fig 6. a - ReLU activation function; b - Normalized logistic sigmoid function

Softmax function was used to make the interpretation of class scores more
intuitive. Particularly, Softmax allows to interpret the scores as probabilities
assigned to training scores, which are obtained after each iteration of the ANN
training. Suppose, the score column vector obtained after one iteration of training is
denoted by ࢟ and has the size ࡯, where ࡯ is the number of classes, then Softmax
for a particular class ࢉ and input vector ࢄ can be presented by the following
formula:

 PሺC ൌ cሻଡ଼ ൌ
ୣ౯ౙ

∑ ୣ౯౟౟
	. (6)

The loss function negative log-likelihood was selected. In case of Softmax
function it is presented by the following formula:

ܮ ൌ ∑ ݈݊௦ ൬ ௘ሺೢೣೞశ್ሻೞ

∑ ௘ሺೢೣೞశ್ሻ೔೔
൰. (7)

The loss function presented in formula (7) is not stable regarding to the
changes in ܾ, so any addition to it will affect the solution space. As already noted,
term ܾ turns linear transformation into affine transformation which causes a change
in the solution space for the linear model. In other words, presented as it is, loss
function has multiple solutions, due to the fact that affine transformation can have
different origins. To solve this problem, regularization techniques were used. The
more robust version of the loss function also includes a regularization term
ܴሺݓ, ܾሻ. This dependence makes the optimization process more computationally
intensive, but the results become more stable. The regulation term can be expressed
by the following formula:

220

 ܴሺݓ, ܾሻ ൌ ଶ‖ݓ‖
ଶ ൅ ‖ܾ‖ଶ

ଶ, (8)

where

ଶ‖ݔ‖ ൌ ට∑ ௞ݔ
ଶ௡

௞ . .(9)

The purpose of neural network training is to tune hyperparameters(e.g.
weights, biases, learning rate) to minimize the given loss function. The most
common way of finding such parameters is called Gradient Descent (GD). In
practice, a modification of GD called Stochastic Gradient Descent (SGD) is used.
The refinement of weights and biases using SGD is presented by the following
formulas:

ሬሬԦݓ ൌ ሬሬԦݓ െ ,ܮ௪ሬሬሬሬԦߘߟ

ሬܾԦ ൌ ሬܾԦ െ ,ܮ௕ሬሬሬሬԦߘߟ

where ߟ presents the learning rate of the algorithm, nabla operator ߘ௪ሬሬሬሬԦ is the
gradient of the given matrix ݓ. It is worth mentioning that a careful choice of
learning rate should be made to better the chances in the search of local minima for
the loss function. ANN implemented for classification problems is constructed out
of 3 layers. It contains one input layer. The number of neurons in the input layer is
roughly determined by the dataset. In case of CIFAR-10, each image contains 3
layers and 32 * 32 pixels within each layer, so the size of the input layer is equal to
3072. The input layer is fully-connected to the hidden layer. The number of
neurons in the hidden layer, another hyperparameter for ANN, is randomly chosen
from a predefined range and initialized once when the network is created. The
network is finalized with an output layer with 10 output neurons. The number of
the output neurons is equal to the number of the output classes against which
classification is done.

In Figure 7, a Python implementation of the training code for a fully
connected Artificial Neural Network is given. To optimize the Softmax function,
Minibatch Gradient Descent with default batch size equal to 200 is used.

(10)

221

def train(self, X, y, X_val, y_val,

 learning_rate=1e‐3, learning_rate_decay=0.95,

 reg=5e‐6, num_iters=100,

 batch_size=200, verbose=False):

 num_train = X.shape[0]

 iterations_per_epoch = max(num_train / batch_size, 1)

 loss_history = []

 train_acc_history = []

 val_acc_history = []

 for it in range(num_iters):

 X_batch = None

 y_batch = None

 batch_indices = np.random.choice(num_train, batch_size)

 X_batch = X[batch_indices]

 y_batch = y[batch_indices]

 loss, grads = self.loss(X_batch, y=y_batch, reg=reg)

 loss_history.append(loss)

 for key in self.params:

 self.params[key] ‐= learning_rate * grads[key]

 if verbose and it % 100 == 0:

 print('iteration %d / %d: loss %f' % (it, num_iters, loss))

 if it % iterations_per_epoch == 0:

 train_acc = (self.predict(X_batch) == y_batch).mean()

 val_acc = (self.predict(X_val) == y_val).mean()

 train_acc_history.append(train_acc)

 val_acc_history.append(val_acc)

 learning_rate *= learning_rate_decay

 return { 'loss_history': loss_history, 'train_acc_history': train_acc_history, 'val_acc_hi

story': val_acc_history}

Fig. 7. Implementation of the ANN training

Analysis. The aim of this section is to show how techniques presented above
are used to obtain experimental results on the multiclass dataset. Specifically, how
do the accuracies of kNN and ANN depend on the size of the training data and how
the relative accuracy is changed during the increase of the training data. All
experiments were carried out inside Jupyter Notebooks environment. For
vectorized calculations, libraries such as Numpy were widely used. All plots were
created with Matplotlib library using the data obtained during the experiments. The
analysis was performed on the dataset called CIFAR-10. This dataset is widely
used in ML research, especially for supervised learning problems. It consists of 10
classes, where each class contains 6000 images. Each image is represented by
32 ∗ 32 ∗ 3 pixels. So, accumulative we have 60000 images. To solve the first
analysis problem, the dataset was split into chunks of different sizes and training
and validation methods for each technique presented below are used separately on
each chunk to find out the best accuracy that can be achieved on the test data for
that chunk or for that size of training data. In Figure 8 you can see the dependence
which we described above:

222

Fig. 8. The best accuracies of kNN and ANN on test data depending on the number of the
training examples

To solve the second analysis problem, the accuracies obtained above are
used to calculate the absolute difference of accuracies at all points (Figure 9).

Fig. 9. The absolute differences of accuracies achieved during the train/val/test stages for
kNN and ANN

Conclusion. The analysis of completely different methods was done on the
CIFAR-10 dataset. From the analysis results, we can see that even on datasets with
a small number of training examples, ANN always shows a better test accuracy
than kNN. But on the other hand, the accuracies obtained using kNN are more
stable in their growth as opposed to ANN, although it uses more computational
resources to pass the first part of the analysis than ANN.

223

REFERENCES

1. Okfalisa, Ikbal G., Mustakim, Nurul G.I.R. Comparative analysis of k-nearest
neighbor and modified k-nearest neighbor algorithm for data classification // 2017 2nd
International conferences on Information Technology, Information Systems and
Electrical Engineering (ICITISEE). - 2017. - P. 294-298.

2. Lek S., Park Y.S. Artificial Neural Networks // Reference Module in Earth Systems and
Environmental Sciences. - 2008. - P. 237-245.

3. Leonardo V., Mauro C. Multilayer Perceptrons // Encyclopedia of Bioinformatics and
Computational Biology. - 2019. – Vol. 1. - P. 612-620.

4. Zhangyang W., Ding L., Thomas S.H. Deep Learning Through Sparse and Low-Rank
Modeling. - Academic Press, 2019. - 296 p.

5. Byvatov E., Fechner U., Sadowski J., Schneider G. Comparison of Support Vector
Machine and Artificial Neural Network Systems for Drug/Nondrug Classification //
Journal of Chemical Information and Computer Sciences. - 2003. – Vol. 43. - P. 1882-1889.

6. Maida A.S. Handbook of Statistics. - Elsevier Science Pub Co, 2016. - 314p.
7. Roman-Rangela E., Marchand-Mailletb S. Inductive t-SNE via deep learning to

visualize multi-label images. - Elsevier Science Pub Co, 2019. - 10 p.

National Polytechnic University of Armenia. The material is received on 21.01.2020.

Կ.Հ. ՆԻԿՈՂՈՍՅԱՆ, Վ.Տ. ԲԵՋԱՆՅԱՆ

K- ՄԵՐՁԱԿԱ ՀԱՐԵՎԱՆՆԵՐԻ ԵՎ ԱՐՀԵՍՏԱԿԱՆ ՆԵՅՐՈՆԱՅԻՆ ՑԱՆՑԻ

ԲԱԶՄԱՏԵՍԱԿ ԴԱՍԱԿԱՐԳՄԱՆ ՎԵՐԼՈՒԾՈՒԹՅՈՒՆԸ ՄԵԾ ԾԱՎԱԼԱՅԻՆ

ՏՎՅԱԼՆԵՐԻ ԴԵՊՔՈՒՄ

Ներկայացվում է մեծ չափայնություն ունեցող տվյալների բազմատեսակ դասա-

կարգման երկու մոտեցում ՝ հիմնված K- մերձակա հարևաններ ալգորիթմի և արհեստա-

կան նեյրոնային ցանցի մոդելի վրա: Ներկայացված են մաթեմատիկական մոդելների աս-

տիճանական կառուցումը և փորձնական արդյունքների վերլուծությունը:

Առանցքային բառեր. դասակարգում, նեյրոնային ցանցեր, մեծ տվյալներ, մաթեմա-

տիկական մոդելավորում, ալգորիթմներ, բարձր արտադրողականությամբ հաշվարկ:

К.Г. НИКОГОСЯН, В.Т. БЕДЖАНЯН

АНАЛИЗ K-БЛИЖАЙШЕГО СОСЕДА И ИСКУССТВЕННОЙ НЕЙРОННОЙ
СЕТИ ДЛЯ МУЛЬТИКЛАССОВОЙ КЛАССИФИКАЦИИ МНОГОМЕРНЫХ

ДАННЫХ

Представлены два метода мультиклассовой классификации многомерных дан-
ных на основе алгоритма k-ближайших соседей и модели искусственной нейронной
сети. Приведено пошаговое построение математических моделей и дан детальный
анализ результатов эксперимента.

Ключевые слова: классификация, нейронные сети, большие данные, математи-
ческое моделирование, алгоритмы, высокопроизводительные вычисления.

