ISSN 0002-306X. Proc. of the RA NAS and NPUA Ser. of tech. sc. 2020. V. LXXIII, N2

UDC 621.382.13 MICROELECTRONICS

V.A. JANPOLADOV, A A. PETROSYAN;, S.S. ABAZYAN,
H.V. MARGARYAN

RANDOM FAULTS INJECTION AND SIMULATION IN AUTO-
CORRECTION CIRCUITS

The random faults impact on auto-correction circuit, such as the Hamming code
scheme, is demonstrated. For their injection a Verilog model was created which focuses
on the output buses of correctly working Hamming code circuit. The gate level
simulation shows that even verified output data from the auto-correction scheme can be
corrupted under the random faults influence such as radiation effects. The total failure
ratio after random fault injection 1s 61% compared to simulation without faults injection.
As an example of solving the observed issues, the Triple Modular Redundancy (TMR)
methodology implementation with Hamming code circuit 1s presented. The proposed
simulation and implementation methods can be used in modern automotive system
mtegrated circuits (ICs) where data transmission 1s of critical importance and is included
in the standard digital design flow.

Keywords. fault injection, fault generation, radiation, simulation, digital design,
Hamming code, Triple Modular Redundancy, verification.

Introduction. The modern pace of technology progress and technology
node scaling at a tremendous speed bring new challenges to the design of ICs.
In addition, the old problems begin to gain much more weight than before.
Entering the market of automotive system (AS) devices further tightens the
requirements for the design of ICs, as well as for their protection. There are
many types of faults that can affect the normal operation of ICs and data
transmission through them, such as Single Event Effects (SEE) caused by
radiation, stack-at and bridging faults, which appear after the manufacturing
process or under thermal influence. Because of this, verification of the
developed ICs has become one of the most important and resource-demanding
part, since human life is beginning to depend on their correct operation. For
self-verification and assurance in the scheme proper behavior in AS systems
auto-correction circuits are required.

Auto-correction circuits are used for verifying input data and correcting
it. But under the influence of radiation their functionality can be corrupted, in
other words, the already verified or corrected data can be changed in the
outputs of such circuits after all the verification stages which will lead to
failures in the whole system. The Hamming code block was chosen as an
example of auto-correction circuits which can detect and auto-correct single-bit

171

errors. On the other hand, for multibit errors, the reset signal is generated to
report their existence in the input data.

The work [1] presents fault detection and correction by Hamming code.
In work [2] Hamming code and the TMR technique are analyzed separately in
ICs. It is proved that the TMR methodology implemented on registers is more
effective than the single Hamming code circuit usage in multibit systems
because of the area increase. But the input data can not be verified and auto-
corrected in a simple TMR register implementation, that is why such circuits as
Hamming code are required on the inputs of ICs. The Single Event Transient
(SET) influence on voters designed for TMR is described in work [3] when this
paper studies the SET influence on Hamming code block. Automation of the
TMR methodology implementation for complex digital circuits is described in
work [4].

As an example of the mentioned issue solution TMR implementation for
the enhanced data transmission protection is shown. This technique with the
Hamming code can be used in systems where data protection has high priority,
such as AS.

Random faults injection on the Hamming code circuit. To simulate a
random impact on the circuit, the SET injection model is used. For that, an
appropriate Verilog model is created (Fig.1). It randomly chooses a bit from the
output data of the auto-correction circuit, then injects a SET pulse at a random
simulation time and with a random pulse width. The placement of the random
SET injection is shown below.

Data_out[0]

Data_out(0]
T —

Data_out(1] Data_out[1]

Random SET
Injection
model

Data_out[62]

Data_out[62]

Data_out{63] Data_out[63]

Fig. 1. The placement of the created fault injection model
172

The SET pulse width, injection time and probability calculation are based
on the proposed method from [2]. SET can be injected with a frequency twice
as high as the design working frequency (Fig.2).

Injected Faults

1958m _,10582m, .l-pswm"s&%m. Lgs97m, 10504n
Data_out{58] : : ; /[: : : :
Data_out{58] E E / E I E E \6‘ I
Data_out{45) : : : l : : :

Data_out{45] : : : : :

‘ —7 : . : :
Data_out{11] : : J - Ll T L
Data_out{11] K| I | : L : | I .

Fig. 2. An example of waveform comparison of correct and faulted data for
Data _out[11], Data_out[45] and Data_out[58] output signals

Single Hamming code implementation. For a single Hamming code
implementation, a design supporting this structure is developed by using Verilog
Hardware Description Language (HDL). The mentioned design with a single
Hamming Code circuit consists of several modules (Fig.3):

* Input registers module — 64-bit registers for driving the input data;

* Hamming code module — as an example of an auto-correction circuit
which operates with 64-bit data;

» Data capture registers — 64-bit registers for reading data from Hamming
code.

64 bit Input Registers

64 bit Data_in

Hamming Code

64 bit Data_out

64 bit Data Capture Registers

Fig. 3. Hierarchy without TMR

The created Register Transfer Level (RTL) description is verified by
functional simulation for assurance in the expected behavior. The input
registers drive received data to the Hamming code block, which verifies 64-bit

data and then sends it to the output data capture registers.
173

After that logic synthesis is performed to generate the gate level netlist.
14 nanometer FinFET technology node is used as a target library for synthesis
and analysis, which is developed by Synopsys Armenia Educational
Department (SAED) [5]. The operation frequency is 500 MHz. The results are

demonstrated in Table 1.
Table 1

Timing, area, power reports without TMR after logic synthesis

Worst Slack [ns] Total Power [uWV] Total Area [um?]
1,49 56,5189 359,9659

Synthesis was done without collapsing the RTL hierarchy and with a high

mapping effort.
TMR implementation with Hamming code. The idea is to implement the

TMR methodology with the Hamming code circuit for enhanced data
transmission protection in ICs by using Digital Design Flow (Fig.4).

Verilog model creation

Y

Functional Verification

¥

Logic Synthesis

]

Timing/Power/Area
Analyzing .
‘ Comparing waveforms

Gate level simulation l
v Final results analysis

Gate level simulation

Random SET

Injection

A 4

Saving results as
golden reference

L |

Fig. 4. Implementation flow

The developed RTL description for a single Hamming code implementation
was modified to support the TMR methodology (Fig.5).

174

64 bit Input Registers

|64 bit Data_in

Hamming Code 1 Hamming Code 2 Hamming Code 3

[22!

Digital Comparator

1 64 bit Data out

64 bit Data Capture Registers

Fig. 5. The TMR methodology with a Hamming code

The quantity of the Hamming block modules become three. These blocks
are operating parallelly, sending verified data to the created comparator. A
digital comparator is added in the design hierarchy to work as a voter that
chooses the correct data by the majority principle algorithm (Fig.6).

If(data_1 == data_2 == data_3) {
out =data_1
} else if (data_1 ==data_2) {
out==data_1
} else if (data_2 == data_3) {
out == data_2
}else if (data_3 ==data_1) {
out == data_3
Yelse {
//'If all data differs
I report system reset

}

Fig. 6. Comparator algorithm

After the logic synthesis the reports regarding performance, power
consumption and design area are collected and saved for comparison with
synthesis reports of the single Hamming code implementation. Simulation is
done based on the generated gate level netlist with and without random fault
injection to check the stability of this model. Also gate level netlist generated in
the previous single Hamming code implementation is simulated with the same
fault injection mechanism for comparison with the TMR-based design.

Experiment results. Single Hamming code is implemented and simulated
with random fault injection for comparison with the proposed application of
TMR methodology on the Hamming code circuit by tripling its quantity and

175

adding separate comparator block for the output data analysis. The results for
logic synthesis and gate level simulation are provided below.

The target technology and frequency remained the same in comparison
with the single Hamming code circuit implementation results. The results for
timing, area and power factors after synthesis are shown in Table 2.

Table 2

Timing, area, power reports with TMR after logic synthesis

Worst Slack [ns] Total Power [uWV] Total Area [um?]
1,02 137,7133 2058,6153

Gate level netlists for both designs are simulated ~250000 times with and
without SET injection and then compared. The failure ratio in final output data
waveform in comparison with the single Hamming code circuit is 61% (Fig.7).

Result
Diff Points Diff Rate(%)
ITestBench.DUT.Data out{63:0] 154k 61 \

Signal

Fig. 7. Waveform comparison without TMR

In case of the TMR implementation and fault generation on one of the
three Hamming code blocks, 100% valid data will pass through the comparator
and the next stages of the IC (Fig.8).

Result
Diff Points Diff Rate(%)
TestBench.DUT Data_out{63:0] 0 0

Signal

Fig. 8. Waveform comparison with TMR

Sections A and B demonstrate two implementations’ synthesis and
simulation result comparison to understand the difference ratio, advantages and
disadvantages of the proposed method.

A. Synthesis Comparison

As described earlier, two synthesis iterations are performed for the
analysis. The first is with a single Hamming code module and the second one
with the TMR methodology implementation. Logic synthesis is done by using
the Synopsys’ Design Compiler [6] tool.

176

The worst slack comparison is shown in Table 3. Timing degradation is
expected because of additional logic insertion on the critical path.
Table 3

Critical Path Slack Comparison

Report Without TMR With TMR
Worst Slack [ns] 1,49 1,02

Area comparison is illustrated in Table 4. The total area increased
approximately 3 times, which is expected since the number of the Hamming
code blocks increased by two.

Table 4

Area Comparison

Report Without TMR With TMR

Net Interconnect area [um?] 359,9659 1176,2985
Combinational area [um?] 177,2898 7443216
Sequantial area [um?] 119,3471 137,9951
Total Area [um?] 656,602 2058,6153

To analyze the area increase in case of big designs, the ORCA processor
reports were used from work [7], which is designed on the same SAED 14
nanometer FInFET technology node. The total area of proposed circuit with the
TMR implementation is ~0,773% of the ORCA’s total area.

The comparison of static, dynamic and total power consumption is shown
in Table 5. The same reference processor was used for analysis.

Table 5

Power Dissipation Comparison

Report Without TMR With TMR
Cell Leakage Power [nI/] 132,8312 418,8779
Cell Switching Power [ulV] 15,6808 82,3838
Cell Internal Power [uW¥] 40,7052 54,9106
Total Power [ulWV] 56,5189 137,7133

The total power consumption increases approximately 2.4 times. In case
of a single Hamming code circuit total power is equal to 56,5189 uW, which is
only ~0,03% of the ORCA’s total power value, then the TMR implementation
is equal to only ~0,07% of the ORCA’s total power consumption with low power
techniques implementation in it. Power increase is also expected, as a number
of standard cells increase due to the TMR methodology implementation.

177

B. Simulation Results

To prove the effectiveness of the proposed TMR implementation with the
Hamming code circuit in data transmission protection both designs’ gate level
netlists are simulated with the random SET faults injection. For simulation and
waveform analysis Synopsys’ VCS [8] and Custom WaveView [9] tools are used.

After the previously described simulations the final output data is
separated for each design and compared. All failures from the first iteration are
waved with TMR methodology implementation. The results are demonstrated
in Table 6. Error waving is 100% in case of the TMR implementation

Table 6
Waveform Comparison
Signal Iteration Runs Errors
Data out Without TMR 250000 ~154000

Data out With TMR 250000 0

These results clearly demonstrate the effectiveness of the proposed
method in data transmission quality with the expected losses in power
consumption and area.

Conclusion. The paper presents the random faults injection and simulation
method to show the faults’ consequences on the correctly working auto-correction
circuit such as the Hamming Code. The failure ratio observed by using the
proposed method in the final output data with the Hamming code circuit is 61%.
The presented method can be included in the commonly used standard digital
design flow. As an example of solution of the considered issues caused by faults
injection, TMR methodology implementation is used. The total failure waving is
almost 100% compared to the single Hamming code implementation in case if one
Hamming code circuit data is corrupted.

REFERENCES

1. Anil Kumar Singh. Error Detection and Correction by Hamming Code // International
Conference on Global Trends in Signal Processing, Information Computing and
Communication (ICGTSPICC). - 2016. - P. 35-37.

2. Analyzing area and performance penalty of protecting different digital modules with
Hamming code and triple modular redundancy / R. Hentschke, F. Marques, F. Lima,
et al // Proceedings. 15th Symposium on Integrated Circuits and Systems Design. -
2002. - P. 95-100.

3. Danilov Igor A., Gorbunov Maxim S., Antonov Andrey A. SET tolerance of 65 nm
CMOS majority voters: A comparative study // 14th European Conference on Radiation
and Its Effects on Components and Systems (RADECS). - 2013. - P. 1597-1602.

178

4. Benites L.A. C. and Kastensmidt F. L. Automated design flow for applying triple
modular redundancy (TMR) in complex digital circuits / IEEE 19th Latin-American
Test Symposium (LATS). - 2018. - P. 1-4.

5. Melikyan V., Martirosyan M., Piliposyan G. 14nm Educational Design Kit //
Capabilities Deployment and Future Small Systems Simulation Symposium. - 2018. -
P.37-41.

6. Design Compiler® User Guide. - Synopsys Inc., 2019. - P. 90-276.

7. Multi-Voltage and Multi-Threshold Low Power Design Techniques for ORCA
Processor Based on 14 nm Technolog / V. Melikyan, M. Martirosyan, D. Babayan,
et al // 2018 IEEE 38th International Conference on Electronics and Nanotechnology
(ELNANO). - 2018. - P. 116-120.

8. VCS® User Guide. - Synopsys Inc. 2019. - P. 551-562.

9. Custom WaveView™ User Guide, - Synopsys Inc., 2019. - P. 113-124.

Russian-Armenian University, National Polytechnical University of Armenia,
Yerenav State University. The material is received on 20.01.2020.

4.U. QULONLUNNY, U.U. MESLNAUBUYL, U.U. URAULSUN, 2.9. UULAUr3UL

UuvuuuNu UNULLEP LG UNRONRULT B9 UNYSLUYNCNRUL
PLRLNCNGUUL G EULEHNRT

Snigunpynud E wjwint uvppwjubph wqpbkgnipniup hupunpnodwt upbduwgh Jpu,
hswhuht E Zkddhugh §nnh ujubdwi: Tajubnt ujpwgibph tbkpdnsdwl hwdwp twpow-
gdyty E Verilog 1kqyny unpk), npp YEunpnuwind k dogphn wpliwwnng Zeddhugh Ynnh
Entuntbph Jpur Quwljwtubph dwjuppulyh dogbjuynpnudp gnyg b wiwhu, np tnyuhuly
uyl vjjuykpp, npntp unnigmd Eu wgl) puipunpnpdwt ujubdugh vhongny, jupnn b wnu-
Junyl] wiujuint vpwjubph wopgnpjudp, hisyhuhp ki fwnwquypdut EhEjuntbpp:
dhpotmwt Awpinnnidubph mnlnup ujpwikph ubpdnidnidhg htwnn Juqunud k 61%, h
huwdbdwwn wnwtg uppwjubph dnghjuynpdwt: Npybu tjundws dwpinnnidutph juubg-
Uwlb dhong thplujugius E knwhh dngniughtt wwhbunwynpiwl dkpngh Yhpuenodp'
Zhudhugh Ynnh upubdwgh oquuugnpsdudp: Unwgwpljus dnpbjuynpdwt b hpundwi dk-
ponubpp Jupnn i ogqunugnpsyty duwdwtmjulhg wynndwnwugdus hinkqpuy unbdwk-
pnwd, npntn wmbnkynyph &ogphn thnjuwtgnid nith J&rnpny tpwtwlnipinil, htsybtu
twl Jupnn b ogunugnpéyt) pduyhtt twhiwgsdwt pipuguljupgnid:

Unwiigpuyhli punkp. ulouyh bipdnidnud, ujuwh giubpugnid, fwnwgquypnid, Un-
nhjuynpnid, puyhtt twpwgsnwd, ZEddhugh Yng, towlh dnpnyuyhtt ywhbunwynpoud,

uwnniqnuu:

179

B.A. T/ KAHITIOJIAJIOB, A.A. IETPOCSH, C.C. ABA35IH, A.B. MAPI'APSIH

BHEJIPEHUE U CUMYJISILUA CJTYYAHHBIX OILIMBOK B
ABTOKOPPEKTHUPYIOIINX CXEMAX

[Tokazano BiusiHHE CITy4aifHbIX OIIMOOK Ha CXEMY aBTOKOPPEKLIMHM, TAKYIO KaKk cxema
koja XammuHra. [liist ux BHenpeHus paspaboTana MoJesb Ha si3bike Verilog, koTopas ¢oky-
CHpYeTCsl Ha BBIXOAHBIX IIIMHAX KOPPEKTHO paboTaromiel cxemMbl koga Xommunra. CumyJis-
L Ha YPOBHE BEHTHJICH IOKA3bIBAET, YTO AAKE JAaHHbIE, IIPOLICAIINE POBEPKY B aBTO-
KOPPEKTUPYIOIINX CXEMaX, MOT'YT OBITh MCKaKEHBI MOJ BIIMSHUEM CIIy4allHBIX OLIMOOK,
TaKHX Kak paxuanuoHHble d(dexTsl. KoHeuHbIil mpoLueHT cO0eB Mociie BHEAPSHUS CITydaii-
HBIX OMIMOOK COCTaBIsIET 61% B CpaBHEHUM ¢ cUMYIALMel 6e3 BHeapeHHs omnook. B ka-
YecTBe MpUMepa NpeNoTBpalieHusl HabIo1aeMbIX cOOEB MPEACTABICHA peann3anis MeTo-
JIOJIOTHU TPOHHOTO MOIYJIBHOTO PEe3ePBUPOBAHUS CO cXxeMoit koga XammuHra. [Ipenarae-
MBbIE METOJIbI CUMYJISILIK M PEASIM3ALUK MOTYT OBITh UCIOJIb30BaHbI B COBPEMEHHBIX HHTET-
PaJIbHBIX CXEMax HJis1 aBTOMATU3UPOBAHHBIX CUCTEM, I'I€ €peaada TaHHbIX UMCCT KPpUTHU-
YEeCKHM BXHOE 3HAYCHHUE, a TAKXKE MOT'YT ObITh BHEAPEHBI B CTAHIAPTHBINA MapIIPYT MPOCK-
TUPOBAHHS.

Kntouesvie cnosa: BHeapeHne OMNOKY, TeHEPAIUs OMHMOKH, paguanus, CHMYJISAIUS,
mdpoBoe NPOEKTHPOBaHUEe, KOJ X9MMUHIA, TPOHHOE MOJYJIBHOE PE3ePBUPOBAHUE, BEPH-
¢ukars.

180

