

defining the next state, we need to execute an LFSR with one step. The next state
of the LFSR is given in Fig. 2.

The output value is 1

‘ | | |0utput
0 Lpf 1 b 1 [l 1 B 1T [I | 1 1 [1 1 >

»ND¢
<

IS o
A

1 2 3 4 5 6 7 8 9 10

Fig. 2. The LFSR state and output bit after one time processing

As we can see from Fig. 2, the state of the LFSR S; ={0, 1, 1, 1, 1, 1} and
the output value from Sy is “7”. Now, the idea becomes clearer that we can set the
LFSR state and it will start the generation process from that state, and the output
data will be generated from that state, but the problem here is to define the
upcoming state of the LFSR in order to set it. As we can see, for starting generation
from state S,, we need to process the LFSR n times in order to get the S,, but for
parallel generation we cannot go that way. We need some formula that will allow
to define the upcoming state.

From [2] we know that there is a path between the double feedback LFSR
states, which means that we can apply modulo addition for the LFSR’s two states
and the result will be the LFSR’s upcoming state. The formula is given in (1):

Si+»/2 = S @S,‘f/zfﬂ, (1)

where i is the step number, f; and f> are the LFRS’s feedback positions.

However, this formula allows to define the upcoming states only for double
feedback LFSR, but in our case we need a formula that allows to define the
upcoming states for the generic LFSR independent of its feedback count and
register length.

Methodology. For defining the path between the LFSR’s states let’s
consider the LFSR from “Figure 1” and look at its states values for the first 10
steps. The state values for the first 10 steps are displayed in the table below.

Table

LFSR’s states for first 10 processing steps

State State

0 1111111111 6 0001001111
1 0111111111 7 1000100111
2 0011111111 8 1100010011
3 1001111111 9 1110001001
4 0100111111 10 0111000100
5 0010011111

48

Based on discussions from [2], we know that the path between the LFSR’s
states could be found by applying a modulo addition to them. Here we can see the
following path between the states Sy @ S; @ Ss @ Ss @ S7; @ Ss = S0, as shown in
Fig. 3.

v

So=111111111 ® 001111000

®S3=100111111 S7=100010011

® 011000000 @ 101101011

S4=010011111 Sg=110001001

001011111 S10=0111000100
S¢=0001001111
001111000

Fig. 3. The modulo addition between the LFRS'’s states
So@S3@S4@S6@S7@Sg=S10

This path is defined by the program from [3], which makes modulo addition
of the LFSR’s states and the search for the states that are equal to it.

The path that is defined for step zero is also valid for step one, which means
that for step one we have the following result S; @S, @S5 @ S; @ Ss @ So = Si..
We can see that whenever the step increases according to that, the indexes from the
equation increase too. This allow to make the following conclusion:

Si @ Si+3 @ Sivg @ Sive @ Siv7 @ Sivs = Si+10, (2)

where i is the step number.

The questions here is to understand the indexes of the states i+3, i+4, i+3J,
i+6, i+7,i+8, i+10. Let’s start from the last one i+70. By processing program [3]
for different kinds of LFSR with different lengths, we can see that number /0 from
index i+1/0 is equal to the length of the LFSR. Equation (2) could be rewritten as
follows:

S,' 69 Si+3 C‘B Si+4 C‘B Si+5 C‘B Si+7 69 S,'+8 = S,'+n, (3)

where i is the step number, 7 is the length of LFSR.

For the rest of other indexes from the left side of (3) we can see that they are
subtractions between the LFSR’s length and the feedback position. The i+3 comes
from n — f; = 4 where f; is the position of the first feedback and f; = 2. The same
logic is valid for the rest of indexes. Based on this discussions we can say for the
generic LFSR that it has n registers and k number feedback positions,

49

Si+int) @ Sivinpe) @ Sivnpr2) @ .. @ Sivingz) @ Sivnsy) = Siens 4)
Sitn = Zf Si+(n—fy ®)

where i is the step number, # is the length of LFSR, f'is the feedback position, k& is
the index of feedback position.

The sum symbol in (5) indicates the modulo addition. Equation (4) allows
determining the upcoming states Si-+,, which is required for the LFSR parallel
output generation.

Parallel state generation methodology. In a parallel generation program,
we use the java thread pool for making the generation process parallel (Fig. 4).

|:Z| generate(state, feedbacks, step, Start output generation q
v

Define required states for applying

[

A 4

For i = step, i = step +

For i =0, i = feedback.lenght ifi=2m1 ¥
v T -
state[i] = step + (n - | - - . -
—I if states.positions contains i I
v +
states[i].value = I
4 Start new Thread ¢
generate(upcomingState , output/i] = LESR.process() I
feedbacks, currentStep, output) ¢
_I if states.last.position = i I
‘ +

upcomingState = mod(states)

Finish generation <

Fig. 4. Parallel Generation program block diagram

The idea here is to define a java function that will receive the LFSR state and
start to generate the output bits from that state, meanwhile memorizing the states
that are required for defining the upcoming state according to (5). At the point
when the function determines that it has all the required states for defining the
upcoming state, it starts its calculation with (5). After defining the upcoming state
it will start the generation function recursively in the parallel java thread. The
generation program block diagram is shown in Fig. 4, It is divided into 4 steps.
Let’s discuss them separately. The First state is the method structure and it shows

50

the input arguments. The first argument is state, LFSR will start its generation from
this state. The second argument is feedbacks, which is an array of integers where
each integer shows the feedback position of LFSR. The third argument is step,
which shows the step of generation, and it is necessary to put the generated bit in
the correct position inside the output, which is the fourth argument, and simply is
an array which holds the output values of the LFSR for each generation step and
has a length equal to the maximum period number of the LFSR (2"-1).

In the second step of the diagram, we start the definition of the states that are
required for processing (4). After the definition of the states, we start the actual
LFSR output generation, which is the third step. The output generation starts from
a given step to step + n. The first if statement here checks if the program has
generated output data with length 2"-/, which is the maximum period for the given
LFSR and indicates the end of generation. Next, we check if the LFSR’s current
state is one of the required states that we have defined in the second step of the
diagram. If it is, we save the LFSR’s state value. Next, we generate the LFSR’s
output bit and save it in the output array. The generation of the output bit forces the
LFSR to change its state and in the next iteration, the LFSR’s state will be shifted
by one bit to the left and the first bit value will be calculated based on feedback
positions. In the next if statement we check if all states are available for performing
(5), if it is true, and all states are available we process (5) and define one of the
upcoming states of the LFSR and start a new generation with the calculated
upcoming state in the fourth state. This generation is launched on the new thread,
in hardware implementation, the new thread will be replaced by the actual LFSR.

Summary. As a result of discussions above we have equation (5) wich
allows to generate the LFRS’s upcoming state, and by using, that we have written
the universal program that generates the output data of any kind of LFSR
parallelly. Generating the output data of the LFSR parallelly is almost twice faster
than doing it sequentially, which is well described in [4]. All the source codes of
the LFSR parallel output generation are available in the GitHub repository [5].

REFERENCES

1. James Bao-Yen Tsui. Fundamentals of Global Positioning System Receivers. A
Software Approach.- A Wiley intercience publication John Wiley & sons inc., New
York, 2000.-255 p.

2. Gomtsyan H.A., Apikyan R.K., Bayadyan V.H. Double Feedback LFSR Parallel
Output Generation// International Journal of Sciences: Basic and Applied Research
(IJSBAR).- 2019. -Vol. 48, no. 3. -P. 143-149.
link:https://www.gssrr.org/index.php/Journal OfBasicAndApplied/article/view/10308/5436

3. State comparison program’s reference
https://github.com/RobertApikyan/GpsGenerator/blob/parallel_and sequential generati
on/src/src/main/Main.java

51

4. Tomusan O.A., AnuksaH P.K. Brluncnenue u usmepeHue pasHHULBI BpEMEH IIPH IMa-
pajutensHOH U mocinenoBarensHoi reaeparn konoB C/A, Cm u Cl s Gps crytHuKa//
OnexTpoHHBIM HayuHbIl xypHan “Bek KauectBa”.- M., 2020. -N.1. -C. 158-169. -
ccpuika: http://www.agequal.ru/pdf/2020/120012.pdf.

5. Parallel LFSR’s programs reference
https://github.com/RobertApikyan/GpsGenerator/blob/parallel_and sequential generati
on/src/src/main/ParallelLFSR java

National Polytechnic University of Armenia. The material is received on
31.10.2019.

r.4. UNhu8UL

Q0USPUL 26SUNULNR WUNNY SENUTUL G ERRUSOULENE BLRUSPL
PPSEP AELENUSUUL 20k UZENUSNRUL

Qduyghtt hbtnwnuipd juwny mbknupwpduwt nighuinnpubpp (324SM}) oquuugnpéynud Eu
pyuqhyuwnwhwljut hwenppuljuinipniiubph ghubpugdwi hwdwp, npnup punjugus
ku 1-tphg b 0-ukphg: Zwgnpuljuunipniip Ynsynid E pjuqhyuwinwhwljub, puth np uyl
niuh phudwt wuppbpnipmni, wyimwdbiuygthy, ks hpudwb quppbpmpiniiitinh nbypnid
Ejpuyhtt phunbph hwonppuwljwumpiniip htwpwynp £ ghunwplt] npybu yuwnwhwlwb:
Q24SN-u Juqujws E hwenppupup dhwgjws mbnuihnjudwt nighuwnpubphg, npnug jni-
nwpwisiniph wpdtpn thnpuwgynud £ biwpunpn nighuwniphg, hull Untinpuyhtt nkghuwinph wp-
dtipp hwjuwuwn E hbnwnwpd phunbkph dnnny Eplyne wpdbphtt: Zkwnwnupd phukph dhon-
gny unnwugynid kb dntnpuyghtt wpdbpubpp: @2USN-h Gpught phnbph ghubpugnudp qdw-
1ht E b qwhwbonud t Epup dwdwbwl ks hwonppuljunipniuttph ghubpugdwt hw-
dwp: Fhubpugdwi dudwiwlp ninpn hwdbdbwnwlut juwyng jupdws L wuwhwieynn
Epuyhtt phinbph pwtwlhg, b wjtt jupny E winpununiiug pughwinip hwdwlwupgh Jpu,
nputn oquuugnpdynid E @2US-t: Unynpupup @2US-ubpp oquuugnpdynid L Yphujun-
gpudhuymu’ njuyitiph Ynpyun]npdwi, gEnpuynpiut b COMA-nud’ wqnuiipwith dpuil-
dwt hwdwpn: Gipwyhtt phunkiph ghubpugdw dudwbwlh jpdundwut tyyunwlny whpw-
dtown L Junwpl) ghukpugdwt gniquhtnugnid: Upfjuwwnwbipnid tbpuyugynud G @2US-h
nkghuwnpubph wnwohfw wpdtputph hwjnbwpbpdwy Ukpnpupuiimipniup b Epuyhte ph-
nbph qhubpugdwt gqniquhbtnugnudp gutwugws tpupnipjut b hbnwnwupd juwny
Q2YS}-ubnh nhupnud:

Unwigpuyhll punkp. qduyhtt hbnwnupd juwny nbknuowpdudwt phighuwn (F2USLY),
,qniquhtn ghutpugnud, Java Spwughp:

52

P.K. AIINKSH

MAPAJUIEJIBHASI TEHEPAIIUA BBIXOJHBIX BUTOB JIMHEMHBIX
PETMCTPOB CJIBUT'A C OGPATHOM CBA3bBIO

Jluneiinsie peructpsl cusura ¢ oopatHoit ceszpio (JIPCOC) ncnone3yror uis rexe-
paluy MCeBIOCITYYalHBIX MOCIeI0BaTeNbHOCTEH, cocTosamx U3 “0” u “1”. [locnenoBarenb-
HOCTh Ha3bIBAeTCs IICEBAOCTYyYaitHON U3-3a MOBTOPSIOIIETOCs Meproja. JT0 03HAYAET, YTO Y
BbIxoAHbIX JaHHBIX JIPCOC ecTh mepuoja MOBTOPEHUS, OJHAKO ISl OOJIBIIUX MEPHO0B
MOCJICIOBATEIBHOCTH BBIXOJHBIX OMTOB MOXKHO paccMmarpuBath kKak ciydaiinbie. JIPCOC
COCTOSIT M3 CABHIOBBIX PETHUCTPOB, II€ 3HAUCHHS KaXKIOTO PETHCTpa MEPeNaroTcs OT ero
MpeIBIAYIIero perucTpa, a Bxoguoi out mst JIPCOC sBusercst pe3yIbTaToM CIIOKEHHS 110
MOJyJIIO JBa M3 €ro oOpaTHBIX cBs3eil. OOpaTHast CBS3b - 3TO MO3UIUHI PETUCTPOB, KOTOPHIE
WCTIONB3YIOTCS ISl pacdeTra BXOMHBIX 3HadeHHW. OOpaboTka BexomHbeix OmroB JIPCOC
SIBIISICTCS IMHEHHBIM TIPOIIECCOM, M KOTJa TeHepanus UACT IS OOJBIINX MOCIEI0BATENb-
HOCTEH, JUTS 3TOr0 TpeOyeTcs MHOTO BpeMeHH. [T0CKONBKY Mpoliecc TeHepaluu SBISETCS
JUHEWHBIM, BpEeMs TCHEPAlMU 3aBUCHT OT TPeOyeMOW JIMHBI BBIXOJHBIX OUTOB. Bpems
TeHepaly MOXET BIUATH Ha Bech mpouecc, riae ucnonbdytores JIPCOC. O6srano JIPCOC
HCIOJB3YIOT B Kpunrorpaduu s mudpoBanus u nemupoBaHusl TaHHBIX, a TAKKE JJISA
o0pabotku curHanoB B CDMA. [y cokparieHuss BpeMeHH T'eHepalry BhIXOJIHBIX OUTOB
LFSR HeoOxoamMo craenarh Mpolecc TeHepaliy MapajulelbHbIM. B cTaTthe o0Ocykmaercs
MeTOoJIMKa onpeaeneHus npencrosimero oobmiero coctosaus JIPCOC u reHeparuy napajnieib-
Horo BbIBoa i pasHbix JIPCOC ¢ pa3HOl ATMHON U TTO3UITUSIMU OOPaTHOM CBS3H.

Knroueevie cnosa: nuHEHHBI peructp casura ¢ obparsoit cesaspio (JIPCOC), ma-
pajuienbHas TeHepanys, mporpamma Java.

53

