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In the present paper, we are developing an analytical method for solving the time-dependent
Kompaneets equation in its generalized form. The technique is generalizing the Dubinov and Kitayev
method. In the particular case of a low photon number density, for the corresponding linear
equation, the solutions are expressed in terms of Heun functions.
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1. Introduction. As it is known, the original Kompaneets equation [1],
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describes the time rate of change of the photon occupation number, n, of an
isotropic radiation due to Compton scatterings by a non-relativistic Maxwellian
electron gas.

In the above relation, x is defined by  kThx  , with h  representing the
photon energy and T the electron temperature, N is the electron number density
and T  is the Thomson cross section. With the dimensionless Comptonization
parameter
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where NctT  is the optical depth, the equation (1) gets the simpler expression
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where the three terms in the right hand side correspond to the diffusion of photons
due to the Doppler effect and the transfer of energy from electrons to the radiation,
the Compton effect and the induced Compton scatterings.

In the last sixty years, there have been a lot of attempts of finding analytical
solutions to the nonlinear equation (2) and only truncated or the time stationary
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cases have been successfully worked out [2-4].
As an example, in the approximation nn 2 , the well-known solution

obtained by Ibragimov [2] has been recently extended to wider classes of time-
dependent exact solutions arising from "non-classical symmetries" [5], each of
these solutions being expressed in terms of elementary functions.

In spite of the general conclusion that the nonlinear equation (2) has no time-
depending analytic solution, Dubinov and Kitayev have developed a method for
solving the equation (2), by separation of variables [6]. Even though the proposed
procedure is elegant and original, in the present paper we discuss its applicability
to more general forms of the Kompaneets equation, of interest in astrophysics and
cosmology, and the additional constraints that should be imposed for extracting
the actual solutions from the larger class of possible ones.

2. The non-linear generalized Kompaneets equation and the solution-
generating technique. Since the equation (2) is valid for 2mckTh   and
it fails to describe the down-Comptonization of high energy photons in hard X-
ray or  -ray astronomy, generalized forms of the original Kompaneets equation
have been proposed [7,8].

In order to include a wide range of possibilities, let us start with the general
differential equation
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where g and h are functions of x alone. One may notice that the terms n and
2n  are multiplied by the same function, h(x), and this can be physically motivated

once one imposes the current of the general form
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to vanish for the well-known equilibrium solution
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For the extended expression of (3), i.e.
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by looking for a solution in the multiplicative form

      ,  , yTxfxyn  (5)

one has to deal with the general expression

Dariesku.pmd 4/10/2020, 3:21 PM334



335NEW  SOLUTIONS  OF  KOMPANEETS  EQUATION

        , 2444 2222222 fhfxfxhhxTfxhhxfxghgxfgxTTf  (6)

where "dot" and "prime" mean the derivatives with respect to y and x.
Considering the fully quadratic time-dependent contribution, i.e. 2T , it is clear

that one can divide the above equation termwise by the last term and obtains [6]
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Next, by taking the y-derivative, one gets the following result:
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where, the variables being separated, one can impose each side to be equal to the
same constant, k. Let us notice that if one is dividing the equation (6) by one
of the other two terms, the main results would be almost the same.

For the time-depending part, the differential equation

22 T
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(8)

is satisfied by the Bose-Einstein distribution

    , 1
1  kyeyT (9)

where   is an integration constant. If k is positive, the function (9) is decreasing
from   1

1
e  (for 0x ) to zero, when x goes to infinity. In the opposite case

of negative k, the function T(y) is increasing, for y in the physically allowed range
kyy max 0 .

The equation for the function f, coming from (7), i.e.

     , 044 222  fkxhhxfxghgxfgx (10)

is a little bit more involved and its explicit form depends on the choice of the
functions g(x) and h(x).

At this stage, let us notice that the above procedure, proposed in [6] for
g = h = 1, does not depend on the explicit form of the paranthesis multiplying
the function 2T  in (6). Moreover, by replacing the function (9) in (6), a simple
calculation leads to the conclusion that not only the paranthesis multiplying T
should be equal to -kf, but also the one multiplying 2T  and this leads to the
additional constraint

  . 24 222 kffhfxfxhhx  (11)
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As an example, let us consider the case corresponding to h(x) = 1 in the
equation (3). The relation (11) becomes

, 42 2 kxffx  (12)

being satisfied by

  , 
2 x
kxf  (13)

which, replaced in (10), leads to the following form of the function g(x),
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Thus, we have been able to construct a solution to the general Kompaneets
equation (3), for h = 1 and the function g(x) given in (14), and this has the form
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A similar expression, i.e.

 
 

, 
1

4 ,
2gyex

gxn




can be obtained for h = 1/4 and g an arbitrary constant.
In the case analyzed in [6], corresponding to g = h = 1, once we impose the

condition (12), one may easily check that the solution (13) does not satisfy the
equation (10), with g = h = 1, i.e.

    . 04422  fkxfxxfx

What happens is the fact that the function f(x) obtained by the method
proposed in [6], which is ignoring the constraint (11), is practically the solution
to the truncated Kompaneets equation, without the term 2n , i.e.
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Indeed, its extended expression
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with the variables separation (5), has the form

     fxhhxfxghgxfgxTTf 44 222 

leading to the relation
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The solution of the time-depending part is

  , kyCeyT  (17)

while the function f(x) is satisfying precisely the equation (10). This has been
solved in [6], for the case g = h = 1, the authors suggesting that their solution is
satisfying the whole original Kompaneets equation (2).

In the other particular case corresponding to dominantly induced Compton
scatterings ( nn 2 ), the extended equation
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leads to the relation
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and one may apply the same variable separation technique described above.
For T(y) given in (9), the essential relations (10) and (11) turn into the

simpler forms
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Unlike the previous case, for k = 2, one is able now to find a solution for the
particular choice g = h = 1, and this is the Ibragimov solution [2]
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which is also similar to our expression (15).
For arbitrary constants h = h0 and g = g0, the solution
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agrees (for k = 2g0) with the form obtained in [5].

3. Linearly generalized Kompaneets equations and their Heun
solutions. Let us focus now on the general equation (10), coming from the linear
Kompaneets equation (16) with the time-depending part given in (17).

In the simplest case corresponding to g = h = 1, it becomes

    , 04422  fkxfxxfx (19)

its solutions being expressed in terms of the generalized Laguerre polynomials as
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where k4-9  and C1,2 are integration constants. For the essential value
k = 2, leading to 1 , the above functions are turning into the same expression

Dariesku.pmd 4/10/2020, 3:21 PM337



338 M.A.DARIESCU,  C.DARIESCU

  , 211 



  

x
eCxf x

and   yCeyT 2 .
Following [9], let us move to the physically important case 2mchkT 

by taking into account the contribution nax 2 , with
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which plays a significant role for highly energetic photons.
Thus, the starting equation being now
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one may identify the functions g and h as being: 21 axg   and h = 1. The time
depending part in the photon density is again (17), while the equation for the
function f(x) reads:

      . 04461 2322  fkxfxxaxfaxx (23)

Up to the normalization constants, the solutions are given in terms of Heun
general functions [10,11] as
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where the parameters are:
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with the same notation k4-9 . As it can be noticed, the argument of the

exponential implies automatically that 10  xa . Inserting here the explicit

form of the parameter a, it yields that
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where kmcT 2  stands for threshold temperature.
The Heun equation in its canonical form given in literature [10,11] has regular

singularities at 0z , 1z , az   and z . The expansion of the Heun general
functions  zqaG  , , , , , ,Heun   around 0z  is given by
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so that, for small x-values and k = 2, the photon number density has the simple
expression
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Finally, for describing more general Compton scattering processes in the non-
relativistic energy regime ( 2mch   and 2mckT  ) and with no comparison
between h  and kT, the original Kompaneets equation has been generalized by
Zhang and Chen to the new form [12]
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The general equation (26) has no analytic solution since, for g(x) = h(x) = 1 + bx,
we could not find any function to satisfy both the equation (10) and the constraint
(11). However, in the approximation 2nn  , one has to deal with the equation
(10) alone, which becomes

      . 045451 22232  fkxbxfxxbxbxfbxx (28)

Its solutions,
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are expressed in terms of Heun Confluent functions of parameters
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with k49  .
A polynomial form of the Heun Confluent functions can be achieve once we

impose the condition
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which, in our case, means the same condition as the one for the Laguerre
functions in (20), namely
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For 1 , leading to k = 2, the corresponding first degree polynomial is
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while n > 3 imposes a negative value of k.
Thus, for small x values, the solution to the linear Kompaneets equation

coming from (26) is given by the simple function
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4. Conclusions. Even though intensive studies have been conducted onto
the features and properties of the Kompaneets equation (2), closed-form solutions
are rarely found in literature.

A method for building solutions in the multiplicative form (5), to the
generalized Kompaneets equation (3), in its explicit form (6), is discussed in the
present paper.

For the time-evolving part, we have found the quasi-Bose-Einstein distribution
(9), while for the differential equation depending on the photon energy, whose
general form is (10), one has to impose the additional constraint (11). This
approach is generalizing the procedure proposed in [6].

Thus, one may conclude by saying that some solutions to the timedepending
Kompaneets equation (3) can be found as the product between the function T(y)
given in (9) and the function f(x) which, together with the functions g(x) and
h(x) should satisfy both the equation (10) and the constraint (11).

In the case of a low photon number density, the spontaneous scattering is
dominant over the induced one and, by neglecting the term 2n , we have arrived
to the linear equation (16).

For highly energetic photons, it turns out that the solutions are expressed in
terms of Heun functions in their general or confluent forms. In the last two
decades, these have been been intensively worked out and there is a raising number
of articles on the Heun functions and their applications in theoretical and applied
science [13-17].
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ÍÎÂÛÉ ÌÅÒÎÄ ÃÅÍÅÐÀÖÈÈ ÐÅØÅÍÈÉ ÄËß
ÎÁÎÁÙÅÍÍÎÃÎ ÓÐÀÂÍÅÍÈß ÊÎÌÏÀÍÅÉÖÀ È

ÑÎÎÒÂÅÒÑÒÂÓÞÙÈÕ ÔÓÍÊÖÈÉ ÃÎÉÍÀ

Ì.À.ÄÀÐÈÅÑÊÓ, ×.ÄÀÐÈÅÑÊÓ

Â íàñòîÿùåé ñòàòüå ìû ðàçðàáàòûâàåì àíàëèòè÷åñêèé ìåòîä ðåøåíèÿ
íåñòàöèîíàðíîãî óðàâíåíèÿ Êîìïàíåéöà â åãî îáîáùåííîì âèäå. Ìåòîäèêà
îáîáùàåò ìåòîä Äóáèíîâà è Êèòàåâà. Â ÷àñòíîì ñëó÷àå íèçêîé ïëîòíîñòè
÷èñëà ôîòîíîâ äëÿ ñîîòâåòñòâóþùåãî ëèíåéíîãî óðàâíåíèÿ ðåøåíèÿ âûðà-
æàþòñÿ ÷åðåç ôóíêöèè Ãîéíà.

Êëþ÷åâûå ñëîâà: êîìïòîíîâñêîå ðàññåÿíèå: óðàâíåíèå Êîìïàíåéöà: ôóíêöèè
   Ãîéíà
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