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dS spacetime appears as a future attractor for the large scale geometry of the Universe. Consequently, 

the investigation of physical effects in dS background geometry is of interest for understanding both 

the early Universe and its future. As another motivation we can mention here the holographic duality 

between quantum gravity on dS spacetime and a quantum field theory living on its timelike infinity 

[6,7]. 

The dS spacetime is maximally symmetric and a large number of physical problems is exactly 

solvable on its background. In particular, the investigation of quantum field theoretical effects has 

attracted a great deal of attention. Among the most important points in the canonical procedure of the 

quantization on curved background geometries is the determination of a complete set of the solutions 

to the classical field equations (mode functions for the field). On the base of those mode functions a 

Fock space of states is constructed [8-10]. In particular, the vacuum state is defined as the state of a 

quantum field annihilated by the annihilation operator. The mode functions of fields depend on the 

choice of the spacetime coordinate system. This is already the case in quantum field theories on flat 

spacetime. The different coordinate systems, in generall, lead to different sets of Fock states, in 

particular, to inequivalent vacuum states. Examples are the inertial and the Fulling-Rindler vacua in 

Minkowski spacetime. The Fulling-Rindler vacuum is the state of a quantum field annihilated by the 

annihilation operator constructed on the base of the mode functions corresponding to a uniformly 

accelerated observer in the Minkowksi bulk. In curved spacetimes the natural choice of the coordinate 

system in the quantization procedure depends on the problem under consideration. For example, in 

inflationary models of the cosmological expansion the planar coordinates are used to describe the dS 

background (for different coordinate systems for dS spacetime see, for example, [11,12]). In 

considering thermal effects and entropy in dS spacetime, the appropriate coordinates are the static 

ones. Both the inflationary and static coordinates cover a part of dS spacetime. The whole spacetime is 

covered by global coordinates. In those coordinates the spatial sections of ( 1)D + -dimensional dS 

spacetime are D -dimensional spheres, 
DS . 

In the present paper we consider the mode functions for a massive scalar field in ( 1)D +

-dimensional dS spacetime described in the coordinate system with negative curvature spatial 

sections. The mode functions realizing the adiabatic vacuum in 3D =  spatial dimensions have been 

discussed in [13]. The coordinate system with negative curvature spatial foliation is widely used 

recently in considerations of the entanglement entropy in dS spacetime (see [14-20] and references 

therein). The paper is organized as follows. In the next section we consider the normalized mode 

functions for the general case of the vacuum state. In section 3, the limiting case of large curvature 

radius is considered and it is shown that the mode functions for the Milne universe are obtained. The 

special case of a conformally coupled scalar field is discussed in section 4. The corresponding modes 

are conformally related to the modes in static spacetime with negative constant curvature space. In 

section 5 we consider the adiabatic vacuum and show that it coincides with the conformal vacuum. An 

integral representation for the Wightman function for general vacuum is provided in section 6. The 

main results are summarized in section 7. 
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2. Scalar field modes for general vacua 

 

We consider ( 1)D + -dimensional dS spacetime. The line element will be written in the 

Friedmann-Robertson-Walker form with a negative spatial curvature (we use the units with 1c = =

): 

 
2 2 2 2 2 2 2

1sinh ( / )( sinh ),Dds g dx dx dt t dr rd 

   −= = − +    (1) 

 

where   is the curvature radius and 
2

1Dd −  is the line element on a sphere 
1DS −
 with unit radius. 

The spatial part of the line element is written in terms of the hyperspherical coordinates 

1 2( , , ) ( , , , , )nr r       , 2n D= − . Note that the radial coordinate r  is dimensionless. For the 

Ricci tensor and Ricci scalar one has 

 
2 2

( 1)
, ,

D D D
R g R 

 

+
= =   (2) 

 

with the metric tensor determined from (1). The dS spacetime is maximally symmetric and the Ricci 

scalar is constant.   

For a scalar field ( )x  with the curvature coupling parameter   the field equation has the form 

 

 ( )2 0,g m R

     + + =   (3) 

 

where   is the covariant derivative operator. For the special cases of minimally and conformally 

coupled fields one has 0 =  and ( 1) / (4 )D D D = = − . We present the solution to the field 

equation in the factorized form 

 ( ), , , ( ) ( ) ( ; , ),pt r f t g r Y m    =   (4) 

 

where the angular dependence is given by the spherical harmonic of degree l  (for the properties of 

the spherical harmonics in arbitratry spatial dimensions see [21]), ( ; , ).pY m   Here, 

0 1( , , , ),p nm m l m m=   0,1,2, ,l =  and 1 2, , , nm m m are integers obeying the conditions 

10 i im m −  , 1,2, , 1i n=  − , 1 1n n nm m m− −− . The spherical harmonics obey the equation 

 

 ( , ) ( ; , ) ( ) ( ; , ),p pY m l l n Y m      = − +   (5) 

 

where 2n D= −  and ( , )   is the Laplace operator on the sphere 
1DS −
 with unit radius. 
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Substituting (4) into (3) we get the following equations for the radial and temporal functions 

 

  

1

11 2

2 2 1

2

sinh ( ) ( )
( ) 0,

sinh sinh

sinh ( )
( 1) ( ) 0,

sinh sinh

D

r r

D

D

y y

D

r g r l l n
g r

r r

y f t
m D D f t

y y




 

−

−

   +   + − = 
 

      + + + + = 
 

  (6) 

 

where /y t =  and 
1  is the separation constant. As seen, both these equations have the same 

structure. From the second equation in (6) the following relation is obtained: 

 

 ( ) ( ) ( )( ) ( ) const sinh ,D

y yf t f t f t f t y  − −  =    (7) 

 

with the star corresponding to the complex conjugate. The solutions of the equations (6) are expressed 

in terms of the associated Legendre functions of the first and second kinds, ( )P x

  and ( )Q x

 , 

respectively (here the associated Legendre functions are defined in accordance with [22]). 

Alternatively, as independent solutions we can take ( )P x

  and ( )P x



−
. The solutions are presented 

in the form 

 1/2

( 1)/2 /2 1

(cosh ) (cosh )
( ) , ( ) , / ,

sinh sinh

iz

iz

D D

X y Y r
f t g r y t

y r



 
−

−

− −
= = =   (8) 

where 

 1 1/2 2 1/2

1/2 1 1/2 2 1/2

( ) ( ) ( ),

( ) ( ) ( ),

iz iz iz

iz iz iz

X u b P u b P u

Y u c P u c Q u

  

  

−

− −

− − −

− − −

= +

= +
  (9) 

 

ib  and ic , 1,2i = , are constants. In (8), we have introduced the notations 

 

 2 2 2/ 2 1, / 4 ( 1),l D D m D D   = + − = − − +   (10) 

 

and z  is expressed in terms of the separation constant as 
2 2

1 ( 1) / 4z D= − − . The parameter   

can be either positive or purely imaginary. Note that in both these cases  

 

 
1/2 1/2( ) ( ).iz izP u P u 




− −
  =    (11) 
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Near the origin, 0r → , one has 1/2(cosh ) sinhizP r r −

−  , 1/2(cosh ) sinhizQ r r − −

−  , and, hence, 

the part of the radial function with the associated Legendre functions of the second kind is irregular: it 

diverges as 
21/ l Dr + −
. In the normalization condition for the mode functions of a scalar field the radial 

integral appears in the form 
1/2 1/2

1
( ) ( )iz izduY u Y u 

 
− −

− −
    with coshu r= . In the part of this integral 

with the product 
1/2 1/2( ) ( )iz izQ u Q u 


− −

− −
   , near the lower limit the integrand behaves as 2 21/ ( 1) l Du + −−  

and the integral diverges. This shows that the mode functions with 2 0gc   are not normalizable. 

Hence, from the normalizability condition it follows that 2 0gc = . 

From the discussion above it follows that the normalizable modes, specified by the set of quantum 

numbers ( , )pz m = , are given by the expression 

 

 ( ) 1/2
1 ( 1)/2 /2 1

(cosh( / )) (cosh )
( ; , ).

sinh ( / ) sinh

iz

iz
pD D

X t P r
x c Y m

t r







  



−

−

− −
=   (12) 

 

The latter contains two independent constants. The one of them is determined by the choice of the 

vacuum state and the second one - from the normalization condition. In quantum field theory on 

curved backgrounds the choice of the vacuum state, in general, is not unique. Physically motivated 

choice is an important point in constructing a quantum field theory in a fixed classical gravitational 

background. The dS spacetime is maximally symmetric and it is natural to choose a vacuum state with 

the same symmetry. This requirement does not fix the vacuum state uniquely: there is a one-parameter 

family of maximally symmetric vacua (see, for instance, [23,24]). 

The orthonormalization condition for the modes (12) has the form [8]  

 

 ( ) ( ) ( )( ) ( ) ( ),
p p

D

t t m md x g x x x x i z z         

  
   −  = −    (13) 

 

where g  is the determinant of the metric tensor g . The integration over the angular coordinates is 

done by using the orthonormalization relation for the spherical harmonics:  

 

 ( ) ( ); , ; , ( ) ,
p pp p p m mY m Y m d N m    


  =   (14) 

 

where the explicit form for ( )kN m  can be found in [21]. For the radial part of the integral we use the 

orthonormalization relation for the the associated Legendre function:  

 

 1/2 1/2 21

( )
( ) ( ) ,

sinh( ) | ( 1/ 2 ) |
iz iz

z z
duP u P u

z z iz

   

 


− −

− −

−
=

 + +   (15) 



Scalar Field Modes in de Sitter Spacetime || Armenian Journal of Physics, 2020, vol. 13, issue 3 

321 

 

with the Euler gamma function ( )x . In what follows we will assume that the function 

(1 )/2( ) (cosh )sinhiz Df t X y y

−=  is normalized by the condition (7) with const i= . Under this 

condition, by using (14) and (15), from (13) we get 

 

 
2

2

1 1

sinh( ) | ( 1/ 2 ) |
.

( ) D

p

z z iz
c

N m

 

  −

 + +
=   (16) 

 

In terms of the function ( )izX u , the normalization condition for ( )f t  takes the form 

 

 
2

{ ( ), ( ) } ( ) ( ) ( ) ( ) ,
1

iz iz iz iz iz iz

u u

i
W X u X u X u X u X u X u

u
     

  

     =  −  =      −
  (17) 

 

where coshu y=  and 1 2{ , }W F F  is the Wronskian between the functions 1F  and 2F . This leads to 

a relation connecting two constants ib  in (9). By using the Wronskian relation 

 

 ( ) ( ) 
( )

( )
1/2 1/2 2

2 sinh
, ,

1

iz iz
i z

W P u P u
u

 





−

− − =
−

  (18) 

one finds 

 
( )

2 2

1 2 .
2sinh

b b
z




− =   (19) 

 

As it has been mentioned before, one of the coefficients is determined by the choice of the vacuum 

state. 

By making use of the relation  

 

 ( )
( )

( )
( ) ( ) ( )1/2 1/2 1/2

1/ 2 2
sinh ,

1/ 2

iz iz z iz
iz i

P u P u e z Q u
iz



  




 

−

− − −

 + −  
= −  + +  

  (20) 

 

we can write the function ( )izX u  as 

 

 ( ) ( )1 1/2 2 1/2( ) ,iz iz izX u d P u d Q u  − −= +   (21) 

 

where 
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( )

( )

( )
( )

( )

1 1 2

2 2

1/ 2
,

1/ 2

1/ 22
sinh .

1/ 2

z

iz
d b b

iz

izi
d e z b

iz










 

 + −
= +

 + +

 + −
=

 + +

  (22) 

 

The new coefficients are related by 

 

 ( ) ( )
2

1 1 2 1 2

2
sinh 1.zz d ie d d d d



−  − − =   (23) 

 

We can also write the function (cosh )izX y  in terms of the functions 1/2(coth )izP y−

−  and 

1/2 (coth )izQ y−

−  by using the relations  

 

 

( )


( ) 

( )

1/2 1/23/2 1/2

1/2

1/2
1/2 1/2

2 1/ 2
(cosh ) sinh( ) (coth )

sinh

cos (coth ) ,

(coth )2 /
(cosh ) .

sinh 1/ 2

iz

iz

i

iz

i
iz iz

iz
P y i z P y

y

iz e Q y

e Q y
P y

y iz





 

 




 



 





−

− −

−

−

−
− −
−

 + +
=

 + − 

=
 − +

  (24) 

 

These relations are obtained from the formulas relating the functions ( )2

1/2 1izP x x − −  and 

1/2( )izQ x−

− −  in combinations with the formulas relating the function 1/2( )izQ x−

− −  with 1/2 ( )izP x−

−  and 

1/2 ( )izQ x−

−  (those formulas can be found in [22]). 

 

3. Flat spacetime limit 

 

Let us consider the mode functions for a scalar field in the limit  → . In this limit the line 

element (1) takes the form 

 
2 2 2 2 2 2

1( sinh ).Dds dt t dr rd −= − +    (25) 

 

This geometry is flat and corresponds to the Milne universe. In order to see the limiting form of the 

mode functions (12), we note that in the limit under consideration im   and we need the 

asymptotic expressions for the associated Legendre functions 1/2( )iz

imP u−  and 1/2 ( )iz

imQ u−  for u  

close to 1. One has the following relations 
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 1/2lim (cosh( / )) ( ),w w

iu w
u

u P u J −

−
→+

=    (26) 

 

with ( )wJ   being the Bessel function of the first kind. Hence, 

 

 
 

1/2

( 1)/2 ( 1)/2

( )(cosh( / ))
lim lim( ) .

sinh( / )

iz
iz iz

D D

J mtP t
m

tt



 




 


−

− −→ →
=   (27) 

 

The factors ( )izm  can be absorbed in the phase of the constants 1b  and 2b . For the mode functions 

we get  

 ( ) ( )(M) ( ) 1 2
1 1/2( 1)/2 /2 1

( ) ( )
lim (cosh ) ( ; , ),

sinh

iz iz
iz pD D

b J mt b J mt
x x c P r Y m

t r



 


    −−
−− −→

+
= =   (28) 

 

where 
( ) ( 1)/2

1 1

Dc c −=  with 

 
2

( ) 2

1

sinh( )
| ( 1/ 2 ) | ,

( )p

z z
c iz

N m






 =  + +   (29) 

 

and the constants 1,2b  obey the relation (19). These mode functions (28) coincide with those in the 

Milne universe (see [8, 25] and references therein). 

The special case 2 0b =  with  

 
( )

2

1 .
2sinh

b
z




=   (30) 

 

corresponds to the conformal vacuum in the Milne universe. For the adiabatic vacuum in the Milne 

universe one has  

 
( )

/2

2 1 1, ,
2sinh

z
z e

b b e b
z


 



−= − =   (31) 

and  

 /2 (2)

1 2( ) ( ) ( ),
2

z

iz iz izb J mt b J mt e H mt
− + =   (32) 

 

where 
(2) ( )izH mt  is the Hankel function of the second kind. 
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4. Conformally coupled massless field 

 

First of all we can see that the line element (1) is conformally related to the line element of static 

spacetime with negative constant curvature space. In order to show that we introduce a new time 

coordinate   in accordance with  

 

  ln tanh( / 2 ) ,
sinh( / )

dt
t

t
  


= =   (33) 

 

or /tanh( / 2 )t e  = . For 0 t    the time coordinate   varies in the range 0−   . By 

taking into account that sinh( / ) 1/ sinh( / )t   = − , the line element (1) is written in a conformally 

static form 

 2 2 2 2 2 2

12

1
( sinh ) ,

sinh ( / )
Dds d dr rd 

 
−

 = − +     (34) 

 

with the conformal factor  

 2 2

2

1
sinh ( / ).

sinh ( / )
t 

 
 = =   (35) 

 

Note that in terms of the conformal time one has cosh( / ) coth( / )t   = − . 

For the metric tensors in the coordinate system ( , , , )r    one has the conformal relation 

2 ( )sg g = , where the metric tensor for static spacetime is given by the expression in the square 

brackets of (34). The conformally coupled scalar fields in the geometries described by the metric 

tensors g  and 
( )sg  are related by (see [8]) 

 

 ( ) ( )(1 )/2 ( ) .D sx x −=   (36) 

 

Note that for a conformally coupled field from (10) one gets 1/ 2 = . 

The mode functions in the static spacetime have the form [28] 

 

 
( ) ( ) 1/2

/2 1

(cosh )
( ) ( ; , ) ,

sinh

s s iiz
kD

P r
x c Y m e

r




   
−

−−

−
=   (37) 

 

where   is the corresponding energy and the normalization coefficient is given by  
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 ( ) 2 2sinh( )
| | | ( 1/ 2 ) | .

2 ( )

s

D

k

z z
c iz

N m





  
=  + +   (38) 

 

Note that 
2( ) 2

1| | / (2 )sc c = . For a conformally coupled massless field the energy is expressed in 

terms of z  by /z = . The corresponding mode functions in dS spacetime are obtained from (12) 

with 1/ 2 = :  

 

 ( ) 1/2 1/2
1 ( 1)/2 /2 1

(cosh( / )) (cosh )
( ; , ),

sinh ( / ) sinh

iz

iz
pD D

X t P r
x c Y m

t r






  



−

−

− −
=   (39) 

 

where 1/2 1 0 2 0( ) ( ) ( )iz iz izX x b P x b P x−= + . For the Legendre functions in this expression one has 

 

 

/2

0

1 1
( ) .

(1 ) 1

iz

iz x
P x

iz x



 + 
=  
 − 

  (40) 

 

From here it follows that  

 
/

0 ( coth( / )) ,
(1 )

iz
iz e

P
iz

 

  − =


  (41) 

 

and the mode functions are presented as 

 

 ( )
/ /

( 1)/2 1/21 2
1 /2 1

(cosh )
sinh ( / ) ( ; , ).

(1 ) (1 ) sinh

iz iz
D iz

pD

P rb e b e
x c Y m

iz iz r

   

    
−−

− −

−

 
= + 

 −  + 
  (42) 

 

Again, we see that the conformal vacuum corresponds to 2 0b =  and 1b  is given by (30). By taking 

into account that 
2

1| / (1 ) | 1/ (2 )b iz z − = , we see that the modes (42) for the conformal vacuum are 

related by (36) with the modes (37) in static spacetime with a negative curvature space. The 

boundary-induced vacuum effects in the latter geometry have been investigated in [26-28].  

 

5. Adiabatic vacuum 

 

The equation for the function (cosh( / ))izX t   can be written in terms of the conformal time 

coordinate   as 

 ( )2 2( ) , ( ) 0,h z h     + =   (43) 
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where ( ) ( coth( / ))izh X  = −  and 

 ( )
2

2 2

2 2

1 1/ 4
, .

sinh ( / )
z z


 

  

 −
= + 

 
  (44) 

 

From here it follows that in the region | |   the time dependence of the effective frequency 

( ),z   is weak, ( ), /z z    and 
2| | / 1   . In that region the influence of the expansion 

is weak and it corresponds to the adiabatic expansion regime. For a given time   the adiabatic regime 

is realized for large values of the quantum number z . 

The solution of (43) can be presented in the WKB form (see, for example, [8]) 

 

 
( )1

( ) ,
2 ( )

i d W
h e

W


 




 − =   (45) 

 

where the function ( )W   obeys the equation  

 

 

22

2 23
2 ( , ) 0.

2

W W
W z

W W

 
 

  
 − + − =   

 
  (46) 

 

In the adibatic regime the derivative terms in this equation are small. In the zeroth adiabatic order one 

has (0)( ) ( ) ( , )W W z   = = . In the same order, from (45) for the mode function we find 

 

 ( )
/2/2 1/2

(0) 2 coth
( ) sinh cosh ,

coth

ibiz
izb x

h x z x
b x


 



− −
−+ 

= + 
− 

  (47) 

 

where  =  ( , )z  , /x  =  and 
2 21/ 4b = − . In the region | |   one finds (0) /( ) izh e   −  

and the modes are reduced to the positive-energy Mnikowskian modes with the energy /z = . 

In order to specify the coefficients 1b and 2b  in (9) for the adiabatic vacuum let us consider the 

mode functions in the adiabatic region | |  . In terms of the proper time t  this corresponds to the 

region / 1t   . We need to have the asymptotic expressions for the functions 1/2(cosh( / ))izP t −  

when the argument is close to 1. They are directly obtained from the expressions of the associated 

Legendre functions in terms of the hypergeometric function [22] and are given by 

 

 
( )

/

1/2 (cosh( / )) ,
1

iz
iz e

P t
iz

 

 

− 


  (48) 
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Note that for 1/ 2 =  this relation is exact (see (41)). Hence, in the adiabatic region one has 

 

 
( ) ( )

/ /

1 2(cosh( / )) .
1 1

iz iz
iz b e b e

X t
iz iz

   

 
−

= +
 −  +

  (49) 

 

Now comparing with the beahvior of the zeroth adiabatic order modes (0) /( ) izh e   − , we conclude 

that the adiabatic vacuum corresponds to 2 0b =  and 1b  from (30). Hence, the adiabatic and 

conformal vacua coincide and for them 

 

 
( )

1/2

1/2

(cosh( / ))
(cosh( / )) .

2 sinh

iz
iz P t

X t
z








−=   (50) 

 

An alternative expression for the adiabatic vacuum is obtained by using the relation (24) for the 

function 1/2(cosh( / ))izP t − . This fact has been already mentioned in [8] for a quantum scalar field in 

dS spacetime described in planar coordinates. It is of interest to note that the adibatic and conformal 

vacua in the Milne universe differ. 

 

6. Wightman function 

 

The Wightman function is defined as the vacuum expectation value ( , ) 0 | ( ) ( ) 0W x x x x  =  , 

where 0  is the vacuum state. Expanding the field operator in terms of the complete set of solutions 

( ) ( ){ , }x x  
 and by using the commutation relations for annihilation and creation operators, the 

following mode sum formula is obtained  

 

 ( ) ( )( , ) .W x x x x 


  =   (51) 

 

Substituting the mode functions (12), with the normalization coefficient (16), for the summation over 

the spherical harmonics we use the addition theorem [21]  

 

 
/2

( ; , ) 2
( ; , ) (cos ),

( )
p

p n

p l

m p D

Y m l n
Y m C

N m nS

 
   +
  =   (52) 

 



Saharian et al. || Armenain Journal of Physics, 2020, vol. 13, issue 3 

328 
 

where the sum is taken over the integer values , 1,2, ,pm p n=  , in the limits defined after formula 

(4) and 
/2(cos )n

lC   are Gegenbauer polynomials. This gives 

 

 

 

 

1 /21

/2

( 1)/2
0

1/2 1/2
0

2

sinh( )sinh( ) 2
( , ) (cos )

sinh( / )sinh( / )

sinh( ) (cosh ) (cosh )

| ( 1/ 2 ) | (cosh( / ))[ (cosh( / ))] ,

DD

n

lD
l D

iz iz

iz iz

r r l n
W x x C

nSt t

dz z z P r P r

iz X t X t

 

 




  



  

−− 


−
=


− −

− −



 +
=





  + +



   (53) 

 

where the function ( )izX u  is given by (9) and the coefficients are related by (19). For the conformal 

and adiabatic vacua the function (cosh( / ))izX t   is given by (50). In a way similar to that used in 

[13] it can be seen that the function (53) depends on the spacetime coordinates in the form of the 

geodesic distance. This property is a consequence of the maximal symmetry of the dS spacetime. 

 

7. Conclusion 

 

In the present work we have considered a quantum scalar field in background of ( 1)D +

-dimensional dS spacetime. The geometry is described in the coordinates where the spatial sections 

correspond to a negative constant curvature space. The important step in the quantization is the 

determination of complete set of mode functions in terms of which the field operator is expanded. In 

the problem under consideration both the temporal and radial parts of the mode functions are 

expressed in terms of the associated Legendre functions and the complete set is given by (12). In 

addition to the normalization constant, two constants 1b  and 2b  are present, connected by the 

relation (19). The remaining degree of freedom is fixed by the choice of the vacuum state. In the limit 

of the large curvature radius we have shown that the mode functions are obtained in the Milne 

universe. Another special case corresponds to a conformally coupled massless scalar field. We have 

shown that in this case the scalar field modes are conformally related to the corresponding modes in 

static spacetime with constant negative curvature space. The conformal vacuum corresponds to the 

constant 2 0b = . Next we have considered another important vacuum state corresponding to the 

adiabatic vacuum. It has been shown that the latter coincides with the conformal vacuum. It is of 

interest to note that in the Milne universe the conformal and adiabatic vacua differ. Based on the mode 

functions discussed we have provided an integral representation of the Wightman function for the 

general case of the vacuum state.  
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