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ideal crystal in the reflection position, show that it is necessary to conduct special studies to 

elucidate the nature of the influence of the above factors on the intensity of X − ray scattering. 

Therefore, a further more detailed study of these issues is important both for the development of 

X − ray diagnostic studies and for the unambiguous interpretation of X − ray diffraction patterns 

using the interpretation of a section topogram, which the present work is devoted to. 

 

 

 
 

Fig. 1. A system consisting of a two-unit interferometer and a magnifying crystal 

 

 

 

 

 

 
 

Fig. 2. The components of the amplitude of the incident wave after diffraction in the first, second blocks and in the 

magnifier block 
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Obviously, the higher the resolution of the X − ray diffraction methods, the greater the 

visibility of the fine structure of the X − ray diffraction patterns, therefore, the more information 

received from these patterns is about the structural imperfections of crystalline materials. 

We, in order to increase the resolution of X − ray diffraction methods, propose a new method, 

which is theoretically proven, and with the help of which we experimentally observed 

displacement lines, moire bands, pendulum bands and other fine structures of diffraction images 

that are not observed by conventional methods. So, it is known [10] that, during X − ray 

diffraction in crystals, a strong angular increase in the beam occurs, which is expressed by the 

formula: 
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where d  - is the angle of convergence of the incident beam, d  -is the angle of divergence of 

the incident beam in the crystal, B -is the Bragg angle, -is the radius of the dispersion surface, 

K -is the wave number ( 1/ )K = . 

As can be seen from (1), a crystal is a powerful magnifier: when 
10M K emitting and (220)  

reflecting silicon, M  has an order of magnitude  This effect of angular magnification can be 

used to obtain linear magnification, which makes it possible to increase the resolution of X-ray 

diffraction patterns, which is the aim of the present work. This goal is achieved by the fact that a 

beam containing information about structural defects of the studied sample or moire patterns 

obtained from a two or three-block interferometer is passed through an ideal thick crystal in the 

reflection position. 

Thus, the aim of this work is to study the imperfections of crystalline substances on the basis 

of revealing the fine structure of X − ray diffraction patterns during dynamic X − ray scattering, 

using the interpretation of the obtained sectional topograms. 

 

 

2. Theoretical Analysis 

 

Let a spatially inhomogeneous wave packet with amplitude 
0

i  fall on a crystalline system 

consisting of a two-block system with a narrow gap and a thick absorbing crystal (Fig. 1). The 

third block (thick block) is located so far from the first two that the beams diffracted in the first 

two do not overlap each other on the input surface of this block, i.e. the third block plays the role 

of a magnifier. 

After diffraction in the first crystal, the incident beam is decomposed into two components: 

the transmitted wave with amplitude after diffraction in the first crystal, the incident beam is 

decomposed into two components: the transmitted wave with amplitude 0  and diffracted with 

amplitude h  (Fig.2). After diffraction in a two-block system with a narrow gap (after the 

second block), the beam decomposes into four components with amplitudes 0h , hh  , 0h  and 

00  (Fig.2).  
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Let us consider the diffraction of waves with amplitudes 0h  and 0h  in the third thick plate 

(the beams hh  and 00  do not differ from the considered ones in the nature of interference). In 

the third thick plate, the beams 0h  and hh  form four beams, with 00h and 
0 0h interfering in 

the direction of reflection, and 
0h h  and 

0hh  in the direction of incidence. To find the 

distribution of interference fringes, we need to know the phase value 
q   of the interfering 

beams, which are determined by the expression:  

exp( )q q qi =    

These phases can be easily found from the Takagi equation [11], using the stationary phase 

method [12,13] and omitting the terms corresponding to strongly absorbed wave modes. In the 

symmetric Laue case for the phases of the bundles 
0h h   and 

0hh  we obtain the following 

expressions: 
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where 
0 - is the real part of the extinction length, Z  - is the thickness of the thick plate, 

1Z  and 

2Z - are the thicknesses of the first and second crystals of the two-crystal system, the parameters 

1 1 2 2/ , /P tg tg P tg tg   = =   characterize the directions of energy fluxes, and   - is the Bragg 

angle. 

The 00h  and 0 0h bundles will not be considered, because by the nature of the interference, 

they are similar with the bundles 0hh  and 0h h . 

From (2) for the phase difference 0 0hh h h = −  we obtain 
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where 1 2( ) / 2P P P= +   and 2 1dP P P= −    calculated for the case of strong absorption, i.e. 

calculations are made for the central part of the topogram. Interfering rays, which make up the 

angles 1   and 2  with the normal of the input surface, satisfy the condition: 
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where Zg  - is the width of the air gap (non-diffracting zone). 

Combining the last expression with the condition of the maxima of the interference bands 

2 n =  where 1,2,3,...n =  you can get the coordinates of the surfaces (bands) of maximum 

intensity: 
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The direction of the X coordinate axis is shown in Fig. 1. In the central part of the topogram, 

without making a big mistake, we can assume that 
4

0( / ) 1gn Z    then for the period value of 

these bands we get: 
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                     (4) 

 

Since 
1gZ Z    and 

2gZ Z  , we get a family of parallel planes perpendicular to the 

scattering plane, the intersection of which with the photographic plate is a family of straight lines 

[14-17], and the general character of the decay of the period of the bands with an increase in 

their order n can be noted. 

When operating without a thick crystal, displacement bands are obtained with a period 
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Comparing the values of periods (4) and (5), we can conclude that the presence of a 

magnifying crystal makes it possible to obtain interference fringes with the following linear 

increase coefficient in the direction of the diffraction vector: 

 

1 2

1
Z

D
Z Z

= +
+

            (6) 

 

This increase is interference in nature and, as can be seen, depends on the thickness of the 

thick plate. When choosing a rather large value of , one can achieve an increase of up to 10 or 

more times and observe experimentally interference fringes with a large period and resolution. 

However, an excessive increase in the thickness of a thick plate is impractical because with 

increasing thickness, absorption increases and the intensity of reflected beams decreases. 

 

 

3. Experimental Part 

 

To confirm the validity of the above reasoning, experimental studies were carried out using a 

highly perfect single-crystal two-block system with a narrow air gap and from a thick absorbing 

ideal crystal in the reflection position (Fig.3). 
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Fig. 3. A system consisting of two thin, closely spaced blocks and a magnifying block 

 

 

Thickness of thin blocks of a two-crystal system 1 420 ,Z m=  2 1315Z m= a thick perfect 

crystal  5550Z m=  width of a non-diffracting zone 290gZ m=   radiation 
10M K , reflection 

(220) , width of a collimated beam 80 m . 

The system shown in fig. 3 is schematically shown in fig. 4, where a narrow X − ray beam, 

passing through a collimator with a diaphragm, falls on a two-block system consisting of crystals 

1 and 2. The diffracted beam falls on a perfect thick crystal 3, which is in the reflection position, 

and the transmitted beam is delayed by the screen 4. The diffracted beam containing moire 

patterns, passes through a thick crystal, which without changing the character of moire, increases 

this moire pattern. In fig. 4a shows a moire pattern formed by a dual-crystal system. 

 

 

 
 

 

Fig. 4. An increase in X-ray moire patterns obtained using a dual-crystal system. 4a moire 

pattern formed by a dual-crystal system; 4b — moiré pattern 4a after enlargement 

 

 

This image was obtained on a photographic plate 5 placed between the second and third 

blocks (Fig. 4). In fig. 4b shows the same moire pattern on film 6, located after the third block. 

As can be seen from these figures, after the second block, the moire on the film is almost 

invisible, and only after the third block, i.e. after enlargement, moire stripes are clearly visible. 
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4. Results and its Discussion 

 

In a similar way, one can obtain an increase in interference patterns obtained from 

interferometers of an arbitrary type, and also increase the resolution of X − ray topographic 

methods. 

This effect can be applied in areas of physical research, such as X − ray diffraction of 

microdefects, X − ray spectroscopy, X − ray interferometry, precision X − ray diffraction 

analysis, and also for studies of the fine structure of interference patterns. 

It may seem that the interference patterns observed after the magnifier (an ideal thick crystal) 

did not exist before it and formed in it, that is, the last crystal does not play the role of the 

magnifier, but participates in the formation of these patterns. The fact that the last thick crystal 

only increases the linear dimensions of the diffraction pattern and does not introduce any 

additional information into the interference pattern can be verified on the basis of the following 

theoretical considerations (reasoning) and experimental facts: 

1) The magnifying crystal is thick and ideal, therefore, the field having a large absorption 

coefficient completely disappears, and inside the crystal the distribution of the field having 

a period equal to the interplanar distance of the reflecting planes is not stored outside the 

crystal. Further, since the magnifier crystal is perfect and defects are not observed on its 

topogram, it follows from what was said in this section that the magnifier crystal does not 

change the nature of the intensity distribution in the beam passing through it. 

2) It can be seen from Figs. 4a and 4b that, after thin plates, the interference pattern is not 

observed (Fig. 4a), but after a thick crystal it is observed (Fig. 4b), and the primary moire 

pattern (Fig. 4a) and its enlarged pattern (Fig. 4b) differ only in dimensions in the 

scattering plane. 

3) We can verify that this interference pattern is not created by a thick crystal, but by the 

superposition of waves on the second crystal obtained in the first thin crystal as a result of 

splitting of the primary wave. Indeed, if one of these thin plates is removed or the distance 

between them is increased, then the interference pattern observed after the thick crystal 

disappears. Consequently, the interference pattern observed after the thick crystal arose in 

the subsystem of two thin crystals and became visible after magnification. 

 

 

 

5. Conclusion 

 

The results of our research form the basis for stating the following: 

1. The crystal-magnifier does not introduce new information into the interference pattern, but 

only increases its angular dimensions in the scattering plane. 

2. The magnifier crystal does not change the nature of the intensity distribution in the beam 

passing through it. 

3. The crystal-magnifier reduces the overall intensity without changing the interference 

pattern. 
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4. An increase in D  depends on the relative thicknesses of the magnifier Z  and the total 

thickness of the thin plates 
1 2( )Z Z+ : with an increase in Z  and a decrease in the sum of 

1 2( )Z Z+ , this parameter increases. 

5. With an increase in the sum 
1 2( )Z Z+  , the magnification in the thick crystal D decreases 

and tends to unity, i.e., the thick crystal ceases to play the role of a magnifier. But, as 

expression (6) shows, for large 
1Z  and 

2Z , the interference pattern is increased by these 

plates themselves and the need for an additional magnifier disappears. 
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