


Depth of Formation of Specular Reflection of X-Rays and Neutrons || AJP, 2020, vol. 13, issue 3 

219 
 

above this threshold occurs. Calculations show that in the region below the threshold of the TER 

this formation depth is exactly equal to the penetration depth of the exponentially decaying 

evanescent wave. However, in the region above the threshold of TER, where the penetration 

depth of radiation increases significantly, the GDT and the depth of reflection formation, on the 

contrary, are greatly reduced. Moreover, the GDT increases with increasing absorption in the 

medium, while the penetration depth decreases.  

It will be shown below that various attempts to determine the relationship between the depth 

of reflection formation and the GDT lead to some contradictions both in the physics of the 

phenomenon and in the specific numerical values of this depth, especially in the region above the 

threshold of the total external reflection. Moreover, a number of questions have not yet received 

an exhaustive explanation. Our proposed method for estimating the depth of reflection formation 

based on the first Born approximation in the scattering theory gives highly overestimated results 

in comparison with direct calculations of the GDT and the reflection time of wave packets. In 

conclusion, the possible causes of such a sharp discrepancy are briefly discussed.  

 

 

2. Calculation method  

 

Along with the Goos–Hänсhen effect [5, 6], which consists in the longitudinal displacement 

of the reflected wave beam during its oblique incidence on the surface of the medium (see also 

[7]), there is a phenomenon of time delay of the reflected pulse with amplitude ( )RA t  relative to 

the incident pulse 0( ) ( )exp( )in int A t i t = −  with slowly varying complex-valued amplitude 

( )inA t  (see, for example, the review [1] and references therein). In the framework of the spectral 

approach, it is easy to show that the slowly varying amplitude of the reflected pulse ( )RA t  is 

described by the integral relation  
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is the spectral amplitude of the incident pulse, ( ) ( ) exp( )R R i  =  is the amplitude reflection 

coefficient of a plane monochromatic wave with a frequency   from an arbitrary structure 

uniform in a plane perpendicular to its surface, ( )   is the reflection phase, 0  = −  is the 

frequency offset, 0  is the central radiation frequency of the incident pulse with the spectrum 

( )inA  .  



Bushuev et al. || Armenian Journal of Physics, 2020, vol. 13, issue 3 

220 
 

Consider the case when the modulus of the reflection coefficient ( )R   varies rather weakly 

within the spectrum ( )inA  . We represent the reflection phase as decomposition 

0 0( ) ( ) ( / )d d     +  +   and substitute this expression into the integral (1). As a 

result, up to insignificant phase factors, we obtain that the reflected pulse coincides in shape with 

the incident pulse, but it time shifted by  :  

 

0( ) ( ) ( )R inA t R A t  − ,                                              (3) 

 

where the value   is called the group delay time and is determined by the ratio  

 

d d

d dE

 



= = .                                                       (4) 

 

If the derivative of the phase in relation (4) is positive, then the pulse is reflected with some 

positive time delay 0  , which is quite natural, since the pulse spends some time on the 

forward and backward propagation in the medium.  

If the derivative (4) is negative, then we arrive at a physically impossible result 0  , 

namely, the pulse is reflected (or begins to be reflected) even before the incident pulse falls on 

the surface of the medium. Obviously, such a paradox arose due to the oversimplification of the 

general formula (1) as a result of the expansion of the reflection phase ( )   in a series accurate 

to the first term in  . In reality, the spectral dependences of the functions ( )R   and ( )inA   

under the sign of the integral in (1) must be taken into account precisely. For this reason, the 

GDT   (4) is only an approximate evaluation of the time shift of the reflected pulse.  

In a number of examples, it was shown in [1] that, when neutron pulses are reflected from 

layered structures of finite thickness, the GDT   can be either positive or negative, which, 

however, does not contrary to the principle of causality. It turns out that in the case 0   the 

shape of the reflected pulse is distorted in such a way that the position of its maximum is actually 

slightly ahead of the maximum of the incident pulse, but the condition ( ) ( )R inA t A t  is fulfilled 

for all times 0t  .  

In this paper, we consider the Fresnel (mirror) reflection of a wave from a homogeneous 

amorphous semi-infinite medium. The wave functions (or fields) of the incident, reflected, and 

transmitted radiation have the following form: exp( )in inA i = kr , exp( )R R RA i = k r  and 

exp( )T TA i = qr , respectively. In this case, for the complex amplitude reflection coefficient 

( ) /R inR A A =  there is the following well-known exact solution:  
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where zk  and zq  are the values of the z-projections of the wave vectors of the incident plane 

monochromatic wave in vacuum and in the medium, respectively (the z axis is directed deep into 

the medium perpendicular to the interface).  

For X-ray radiation, the z-projection sinzk k = , where / 2 /k c  = =  is the magnitude of 

the wave vector in vacuum,   is the frequency,   is the wavelength,   is the gliding angle with 

respect to the surface, 2 1/ 2(sin )z z zq q iq k   = + = +  is the z-projection of the wave vector in 

the medium in the region 0z  , ( ) ( ) ( )i      = +  is the complex polarizability of the 

medium, and the real value ( ) 0    is negative.  

For neutrons, by virtue of the potential dispersion law 2 2 2
bq k k= − , one can restrict oneself to 

the case of normal incidence. Here q q iq = + , ( ) /k MV =  is the wave number of neutrons 

in vacuum, M  is the neutron mass, V  is the velocity of incident neutrons with energy 

2 / 2E MV= = , bk  is the boundary (critical) value of the wave number of neutrons in the 

medium, which is determined from the relation 2 24 2 /bk Nb MU= = , where N  is the bulk 

density of nuclei, b b ib = −  is the complex length of coherent scattering, U U iU = +  is the 

effective complex potential of the medium. The neutron reflection coefficient can also be 

represented in the following form, equivalent to expression (5):  

 

( ) iE E U
R E R e

E E U

− −
= =

+ −
.                                          (6) 

 

The shape of the specular reflection curve 
2

( )R E , phase ( )E , and GDT ( )E  substantially 

depends on the energy of the incident neutron. In accordance with this, we will distinguish two 

cases: 1) sub-barrier reflection, when bk k  ( E U  ), and 2) over-barrier reflection, for which 

bk k  ( E U  ).  

The reflection phase is determined from the general relation tg /R R  = . In the case of 

E U   and UU   the phase arctg( )x = − , where 2 ( ) /(2 )x E U E E U = − − . To calculate 

the GDT   (4), we use the following simple relations: ( / ) ( / )( / )d dE d dx dx dE  = =  and 

2/ [arctg( )]/ 1/(1 )d dx d x dx x = − = − + . Taking into account these relations, after a series of 

mathematical transformations, we obtain the following final expression for the GDT (see also 

relation (12) in [1]):  

 

( )E U E
 =

 −
.                                                           (7)  

 

From formula (7) it follows that the GDT is maximum at energies 0E →  and E U → . In a 

real situation, of course, it is necessary to take into account the absorption, i.e. imaginary part of 

the potential U  , which leads to the disappearance of the divergence, which is done on a 

computer by numerically differentiating the reflection phase ( )E .  
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3. Results and Discussion  

The Fig. 1 shows the dependencies of the reflection phase, the reflection coefficient modulus, 

and its real and imaginary parts on the neutron energy. It should be noted that on the scale 

adopted here it may seem that the phase of reflection is zero at energy E U   above the 

threshold of total external reflection (TER). In reality, this phase is simply very small, since in 

this region the phase is determined by the imaginary part of the potential U U   (see also 

formula (9) below).  

 

 

 
 

 

Fig. 1. The module of the amplitude reflection coefficient R  (curve 1), the real R  (curve 2) and 

imaginary R  (curve 3) parts, as well as the reflection phase   (curve 4) depending on the energy of 

neutrons incident on a semi-infinite nickel medium. The inset shows the location and orientation of 

the wave vectors of the incident, reflected and transmitted waves. 

 

 

The depth of radiation penetration into the medium is determined by the ratio 1/ Im( )z zL q= . 

In the region below of the threshold of TER for neutrons, i.e. at energy E U  , the value zL  is 

equal to the attenuation depth of the evanescent wave: 2 2 1/ 21/( )z bL k k= − . From the most 

general intuitive considerations, we can assume that the delay time is equal to 2 /z zL V = . Here, 

the lower index z  indicates that this delay time is obtained from the assumption of the double 

passage of neutrons (deep into the medium and up to the interface) of the near-surface layer with 

an effective thickness equal to the penetration depth zL .  

The most surprising thing is that this estimated time z  exactly coincides with the GDT 

obtained from the exact relation /d d  =  (1) (see curves 2 and 3 in Fig. 2). Indeed, taking 

into account the relations 2 2 / 2E k M= , 2 2 / 2bU k M = , and also k MV=  and 

1/ Im( )z zL q=  from formula (7), it is easy to obtain that  
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2 2

2 2 2

Im( )

z
z

zb

M L

V q Vk k k
 = = = 

 −
.                                     (8) 

 

From this we can conclude that the depth of reflection formation RL  coincides with the depth 

of penetration into the medium, i.e. R zL L= . The reasons for this coincidence are completely 

incomprehensible, since there is no backward wave exp( )ziq z−  in a semi-infinite medium (see 

the inset in Fig. 1), and the assumption that the neutron velocity is equal V  in the medium and in 

the vacuum, and even in the field of total external reflection, does not correspond to reality. In 

the field of TER, the z-projection of the wave vector is purely imaginary and it is not entirely 

correct to talk about the neutron velocity.  

 

 

 
 

 

Fig. 2. The dependence of the reflection coefficient modulus R  (curve 1, right scale), GDT   (curve 

2) and the estimated time 2 /z zL V =  (curve 3) on the neutron energy E , when they are reflected 

from a semi-infinite nickel medium ( Ni 245 neVU  = ). Curve 3 is shown in the energy region up to 

245.1 neV, since then it increases very sharply. 

 

 

 

Nevertheless, rigorous calculations show that the delay time z  of the reflected pulse ( )RA t  is 

in very good agreement with the GDT calculated by the formula /d d  =  (see curves 2 and 3 

in Fig. 2 in the region E U  ). At this scale in Fig. 2, it may seem that in the region above the 

threshold of total external reflection the GDT 0 = , but this is not so, although indeed the group 

delay time is very short (see below for more details).  

Similar results are also valid for X-ray radiation, for which in the region of total external 

reflection (
1/ 2

c   = ) the group delay time is determined by the ratio 
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2 2 1/ 22 /[ ( ) ]c    = − , and the depth of mirror reflection formation is equal to 

/(2sin )zL c = .  

In the region above the total external reflection threshold, the penetration depth zL  increases 

significantly, while the GDT and, consequently, the depth of reflection formation / 2RL nV= , 

on the contrary, decrease significantly, where 2 1/ 2[1 ( / ) ]bn k k= −  is the refractive index (see 

Tables 1 and 2). Here, the lower index R  means that the depth of formation RL  in the region 

above the TER threshold is determined according to the GDT  , i.e. derivative (4) of the 

reflection coefficient phase R . Moreover, with a decrease in absorption, i.e. with a decrease in 

the imaginary parts b  for neutrons and   for X-rays, the depth zL  of radiation penetration into 

the medium increases, while the GDT decreases:  

 

2

22 3/ 2( )

b

b

Mk b

bk k k


 
=

−
,  ( )E U                                          (9) 

2
0 0

3
0

( )
2

( )

  


  


=


,  ( )c  .                                           (10) 

 

It can be seen from Tables 1 and 2 that in the region above the TER threshold, group delay 

times   are much shorter than the period T  of incident waves, and the corresponding depths of 

mirror reflection formation are generally comparable or even much smaller than atomic sizes. In 

this regard, the interpretation of the results obtained above within the framework of existing 

concepts based on the Fresnel formula, encounters certain difficulties.  

 

 

Table 1. Group delay time   and the depth of formation of neutron reflection RL  from nickel depending on the 

energy E  of incident neutrons ( 245 neVU  = , 0.024 neVU  = , period 8 nsT  ). 

 

Energy E , neV 200 240 244 250 270 

GDT  , ns 6.9 18.9 41.8 0.04 0.004 

Depth RL , Å 215 642 1430 0.22 0.04 

 

 

 

Table 2. Group delay time   and depth RL  of formation of reflection of X-ray CuK -radiation ( 1.54 = Å) from 

silicon depending on the angle of incidence   (critical angle of TER 13.4 arc.minc = , wave period 0.5 asT = ). 

 

Angle  , arc.min 10 13 14 20 30 

GDT  , as 0.18 0.64 0.08 0.007 0.005 

Depth RL , Å 95 264 28 1.8 0.8 
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Fig. 3. 1 - reflection coefficient 
2

( )R E , 2 - spectrum of the incident neutron pulse ( )inA E  with 

central energy 250 neVinE =  and spectral width 10 neVE =  (pulse duration 66 nsin = ), 3 - 

dependence of the group delay time ( / )d dE =  with a narrow sharp peak at energy E U =  on 

energy (right scale), Ni 245 neVU  =  

 

It is interesting to compare the real time shift t  of the reflected pulse, calculated according 

to the exact formula (1), with the value of the GDT   (4). It must be borne in mind here that the 

calculation results depend not only on the central neutron energy inE , which can be both above 

and below the threshold of total external reflection, but also on the duration of the incident pulse 

in . This is due to the fact that the pulse has a finite spectral width / inE  = , therefore, the 

“tail” of the spectrum ( )inA E  can penetrate into the total reflection region, in which the group 

delay time   is relatively large, even if the energy of the incident pulse UEin   is higher than 

the threshold (see Fig. 3 and Fig. 4).  

For comparison, we note that in the region up to the threshold of total external reflection, if 

220 neVinE =  and 10 neVE = , then the real time shift 9.5 nst = , that is only a little more 

than the GDT 8.9 ns = . However, if 240 neVinE =  and 10 neVE = , then the real time shift 

13.8 nst = , which is less than the GDT 18.9 ns = , is precisely because the “tail” of the 

spectrum penetrate into the region above the TER threshold. With increasing pulse duration, i.e. 

with a decrease in the width of its spectrum by 10 times, the values t  and   are practically 

compared ( 32.9 nst =  and 30.4 ns =  at energy 243 neVinE = , spectral width 1 neVE = , 

and the pulse duration 660 nsin = ). In the case of a relatively short pulse, even at energy 

Ni270 neV > =245 neVinE U =  and 10 neVE = , a real time delay is equal to 0.38 nst = , 

which is almost two orders of magnitude larger than the GDT 0.004 ns = , despite the very 

small amplitude of the spectrum ( )inA E in the region below the TER threshold.  
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Fig. 4. The intensity of the incident (curve 1) and reflected (curve 2) pulses. The duration of the 

incident pulse 66 nsin = , the group delay time at the energy 250 neVinE =  is equal to 

0.044 ns = , the real time shift 9.5 nst = , which is much more than the GDT   (4) 

 

 

It is clear that to exclude the influence of the “tails” of the spectrum ( )inA E , especially in the 

region below the TER threshold in the case when UEin  , it is necessary to use sufficiently 

long pulses. However, this raises the problem of determining extremely small time delays against 

the background of such long pulses.  

 

4. Conclusions  

 

Calculations of the group delay time   and the depth of reflection formation 1/(2 )R zL k  

within the framework of the first Born approximation of the scattering theory in the kinematic 

region above the TER threshold, where z zq k , give highly overestimated results compared to 

the depth RL  obtained both from the GDT (4), (8)-(10), and with the calculation of the reflection 

time based on rigorous calculations of the amplitudes of the reflected pulses ( )RA t  (1).  

It is possible that the role of a backward wave in a medium is played by a nonradiative wave 

of delayed excitation in a dispersive medium characterized by a spectral refractive index ( )n  . 

On the other hand, it is not entirely clear whether the macroscopic “bulk” and “structureless” 

concepts of polarizability ( )  , scattering length b , and effective potential U  can be 

transferred to microscopic regions with thicknesses much smaller than the wavelength and 

atomic sizes. It is possible that our a priori idea of the relationship between the reflection time, 

the depth of formation of the reflected pulse and the velocity of wave propagation in matter may 

also be incorrect.  
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