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2. The description of problem 

 

Now consider the uniform rotation const=v  of a relativistic electron in the equatorial plane 

of a conductive ball in the magnetic field, in empty space (see Fig.1).  

 
Figure 1. A relativistic electron rotating about a ball in its equatorial plane. 

 

The permittivity of medium is the following step function of radial coordinate r: 

 

)()1()( bbb rrr −−+=  ,     (1) 

 

where br  is the radius of ball and bbb i +=  is the complex valued permittivity of the ball 

material  and )(x  is the Heaviside step function. The magnetic permeability of the substance 

of the ball is taken to be unity. The uniform rotation of electron (with speed v  and orbital 

radius er ) entails radiation at some discrete cyclic frequencies (harmonics) ek rkv/=  with the 

harmonic number ...3,2,1=k . It is convenient to introduce the following dimensionless quantity: 

 

kkkT NW /             (2) 

 

(the number of emitted quanta). Here kTW  is the energy radiated at cyclic frequency k  during 

one period v/2 erT =  of electron gyration, and k  is the energy of corresponding 

electromagnetic wave quantum. Let us also introduce the angular distribution )(kn  of the 

number of emitted quanta determined by the equation 
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where   is the corresponding polar angle. 

It is known [7,8] that if the space as a whole is filled with a transparent and homogeneous 

substance (with constant dielectric permittivity  ) then 
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where 0459.0/2 2

0 = ceN  , c/v  =  and )(xJ k  is the Bessel function of integer order. 

The case 1=  of these formulae corresponds to the synchrotron radiation in vacuum (see, e.g., 

[9,10]).  

In [11-13] (see also [14,15]) the following expression was derived:  
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for the number of quanta emitted by the electron during one revolution around a dielectric ball. 

In this case the angular distribution of the number of emitted quanta is determined by the 

equation 
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where )(
lmX


 are spherical vectors of electric ( 2= ) and magnetic ( 3= ) types, 1/ = eb rrx  

and 
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are dimensionless amplitudes describing the contributions of electric (E) and magnetic (H) type 

multipoles, respectively, )(yPk

l  are the associated Legendre polynomials and )(Ebl , )(Hbl  are 

the following factors depending on xk ,v,  and b : 
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Here )(n)()( yiyjyh lll +=  and )(yjl , )(n yl  are spherical Bessel and Neumann functions 

respectively. In (9) we used the following notations: 
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In the absence of dielectric ball ( 1=b ) the calculations by means of our formulae (6), (7) 

give the same results as those obtained using the well-known synchrotron radiation theory 

formulae (4), (5) where 1= . 

The simple analytical function )(b  often used to describe the dispersion law for the 

substance of conductive ball has the form 
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(the generalized Drude-Lorentz-Sommerfeld formula). This expression satisfactorily describes 

the dielectric function of noble metals. For example, for gold [16] 

 

 ,84.90 =Au  ,01.9 eVAu

p =    eVAu 072.0= .   (12)  

 

The effective parameter 10   describes the contribution of bound electrons, p  is the 

effective bulk plasma frequency which is associated with effective concentration of free 

electrons,   is the phenomenological damping constant of the electron motion. 

We will consider electromagnetic oscillations in the frequency range for which  

 

0)(   b .      (13)  

In this case, the generated electromagnetic oscillations inside the ball must be localized. 

 

3. Numerical results in the gigahertz frequency range 

 

We assumed that (a) the ball is made of a dielectric with a negligible mixture of gold, so that 

the plasma frequency of the free charge carriers is  

 

Hzp

10103=      (14)  
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( HzAu

p

16104.1 = ). In this case, (b) the dielectric should have a weak dispersion and should 

absorb light slightly in the gigahertz (GHz) frequency range. For this purpose melted quartz can 

be used with the dielectric permittivity of [17] 

 

)0001.01(78.3
2

iSiO +=      (15) 

 

in the mentioned frequency range. The parameter 0  in (11) we identified by 
2SiO  because of 

the small concentration of gold in the substance of the ball. In numerical calculations, two 

estimated values of parameter 500/1;125/1/ =p  have been used, where Au

p

Au  /125/1   

(the ball is entirely made of gold).  

Thus, the dielectric function )(b  was calculated from formula (11) with the following 

values of the parameters  

 

20 SiO  ,  ,103 10 Hzp =      500/1;125/1/ =p .   (16) 

 

The results of numerical calculations are shown in Figs. 2–5.  

 

 

 
 

Figure 2. The number of quanta of the electromagnetic field 1N  emitted by the electron at the first 

harmonic during its one revolution about the conductive ball. Along the axis of abscissa (a) the values of 

1 =q  (the upper part of the figure) and (b) the values of the real part )( 1 b
  of the dielectric constant 

of the ball (the lower part of the figure) are plotted.  The radius of the electron orbit is 1=qr  cm, 

125/1/ =p . Near the curves, the values of radius of the ball are indicated. 
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Comparing the course of the curves with =br  0.99, 0.8 and 0.6 cm in Fig. 2, we arrive at the 

following conclusions: 

1) The electron generates very intense radiation ( ceN /2

1  ) if it rotates about a 

conductive ball at a certain (resonant) frequencies; 

2) The resonant frequency res

q  
with which an electron rotates about a conductive ball 

depends on the ball radius br ; 

3) As the radius of the conductive ball br  (a) decreases, the maximum of the function 
1N  

decreases rapidly and (b) the value of the real part of the dielectric function of the ball b   

corresponding to this maximum tends to -2. 

In Fig.3 the dependence of angular distribution of the number of electromagnetic field quanta 

1n  generated by the electron during its one rotation around the ball, on the rotation cyclic 

frequency q  is presented. 

 

 

 
 

 

Figure 3. The angular distribution of the number of electromagnetic field quanta 1n  generated by the 

electron at the first harmonic (during its one rotation around the ball) as a function of rotation cyclic 

frequency q , 99.0=br . 

 

 

It can be seen from Fig.3 that the radiation intensity is just about evenly distributed in the 

region 2/4/    and tends to zero at 0→ . 

Similar numerical calculations have been done for the second harmonic and for 

500/1/ =p . The results are presented in Figs. 4 and 5.  
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Figure 4. The same as in Fig.2 for the 2-nd harmonic, 500/1/ =p . 

 

 
 

 

Figure 5. The same as in Fig.3 for the 2-nd harmonic, 500/1/ =p , 99.0=br . 

 

 

Comparing Figs. 4 and 5 with Figs. 2 and 3, we arrive at the following conclusions: 

4) For the second harmonic, the peaks are significantly narrower and at decreasing ball 

radius br , the maximum of the function 2N  decreases more rapidly (Fig.4). 

5) The angular density of radiation intensity for the 2-nd harmonic is maximal for 2/ =  

and rapidly tends to zero at 0→ . 

 

4. Conclusions 

The angular distribution of the intensive radiation of a charged particle uniformly rotating 

around a conductive ball, in its equatorial plane has been investigated, taking into account the 
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dispersion of electromagnetic waves inside a conductive ball. It is shown that  

1. Charged particle can generate powerful radiation if revolves around a conductive ball at a 

specific resonant frequency. In [4] it was shown that generation of powerful radiation is due to 

the fact that at a certain (resonant) particle rotation frequency, localized oscillations of a high-

amplitude electromagnetic field (Surface Plasma Waves (SPW)) can be generated inside the ball. 

Herewith, at large distances from the trajectory of the particle, these localized oscillations are 

accompanied by intense radiation, which is many times more intense than the analogous 

radiation in the case when the ball is absent. 

2. The angular density of this “resonant” radiation intensity is maximal for 2/   and 

tends to zero at 0→ . 

3. The linear dimensions of the resonators for SPW may be many times smaller than the 

linear dimensions of the cavities for the bulk electromagnetic waves. This fact may be used to 

develop powerful sources of electromagnetic radiation of small sizes. 
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