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The theory predicts another possibility for a significant increase in the CR intensity. It is 

related to the fact that the recent accelerators allow to generate trains of bunches with 

submillimeter separations. Tuning the distance between bunches, in [16] a powerful resonant 

(or, so-called, parametric [17]) coherent terahertz CR has been observed on a single waveguide 

mode. A different choice for the separation of bunches, allowing the generation of resonant CR 

on a large number of neighboring waveguide modes, was proposed in [18]. A clear explanation 

of this phenomenon is given in [18]. 

The radiation from a relativistic electron, crossing a ball (with an arbitrary dielectric function 

)(  and with magnetic permeability 1=  ) through its center, was studied in [19,20] (see also 

the references therein). It was shown, that the spectral distribution of radiation generated by the 

relativistic particle inside a ball at specified frequencies is strongly influenced by the ball-

vacuum boundary. 

In the present paper, we investigate the radiation by a train of one-dimensional electron 

bunches passing through the center of a ball made of a dielectric, a conductor, or a composite 

material. The possibility for generation of quasi-coherent CR by a train of equidistant bunches of 

relativistic electrons is shown. The radiation energy is evaluated for the case of a dielectric ball.   

 

2. Problem setup and the radiation intensity 

We consider a train of electron bunches flying through the center of a ball with dielectric 

function )(  and immersed in vacuum. The magnetic permeability for the material of the ball 

will be assumed to be unity (non-magnetic material). It is also assumed that there is an external 

field (for example, electric), which supports the uniform motion of particles inside the ball.  

 

 
 

Figure 1. A train of electron bunches flying through the center of a ball. 

 

 

In [9] a method is proposed for the evaluation of the Green function of the electromagnetic 

field in a medium consisting of 1N  spherically-symmetric layers having a common center 

and different dielectric permittivities. Based on this method, a formula is derived for the energy 

of radiation from a charged particle moving along an arbitrary trajectory in such medium. The 

special cases of a charged particle rotating around or inside a dielectric ball have been 

investigated in [21,11] (see also the references given therein). Another example of a charged 

particle uniformly moving along a straight line through the center of a ball with the radius br  

and the dielectric permittivity b , immersed in a homogeneous medium with permittivity 1 , is 

discussed in [19] (see Fig. 2).   

br
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Figure 2. A particle flying from a medium into a ball. 

 

 

Assuming that the trajectory of the particle is described by the equation tz v= , the 

corresponding current density can be written as   
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where q  and v  are the charge and velocity of the particle, and   is the polar angle of spherical 

system of coordinates  ,,r . For the corresponding Fourier transform one has  
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Expanding ),( rj
→

 in spherical vectors )(
lmX

→

 [22], we can evaluate the corresponding expansion 

coefficients:  
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As a result we find 
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Similarly, one can expand the vector potential ),( rA


 of the electromagnetic field in spherical 

vectors )(
lmX

→

. In the Lorentz gauge the expansion coefficients lmA  are given by the expressions 
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(for details see [9,11]). The magnetic type multipoles ( 3= ) are not generated and 0)(3 =rAlm . 

Here 

 





0

2

1 )(),()(
11

dxxxjxrPru lm

l

lm

l , 

},])1([)()(               

])1()[()({
4

12

2

vv

0

01

)1(

1

vv
1

)1(

00
0

1

1

11

dxeexjrh

dxeexhrj
lq

B

xi
l

xi
r

lbl

r

xi
l

xi

lbl
mlm

l

b 










−


−

−−+

+−−
+

=




  (6) 
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and )()()()1( yinyjyh lll +=  ( )(yjl  and )(ynl  are the spherical Bessel and Neumann functions 

respectively). In (6) the following notations are used   
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and for the fields outside the ball ( brr  ) one has  

 

)()(),( 01

)1(

bllbl rjrhrrP = .      (9) 

From the relations 

,)()( 1)1(

x

e
ixh

ix
l

l

+−     )2/sin(
1

)( lx
x

xjl − ,  lx  ,  (10) 

 

for the spherical Bessel and Hankel functions [23,24] it follows that at large distances from the 

ball one has 
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and 
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In (13) the following notations are introduced  
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According to [9] the spectral-angular and spectral distributions of the radiation energy (during 

the all time of the charge motion) are determined by the expressions  
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respectively. 

We now turn to the study of the spectral distribution of energy emitted by a train of electron 

bunches over the entire time of its movement: 

 

  dIdIF )()()( 1 .      (17) 

 

Here, )(1 I  is the spectral density of the energy emitted by a single electron and )(F  is the 

structure factor of the train of electron bunches. In what follows we will assume that the 

transverse size of bunches is much smaller compared with the radius of the ball and with the 

radiation wavelength.  

The structure factor in (17) is presented in the form [25, 26] 
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It is determined by the coherence factor of electrons inside bunches:  

 

)v/exp( 222−=ef       (19) 

 

(we assume Gaussian distribution of electrons with standard deviation  ), and by the coherence 

factor for the radiation of bunches inside the train:  
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Here, d  is the distance between bunches, en  is the number of electrons in the bunch, bn  is the 

number of bunches in the train. From (20) it follows that the train of bunches (with characteristic 

size essentially smaller than the radiation wavelength:  /2 c ) radiates coherently 

1)( ef , 1)( =trf  on discrete frequencies  
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(the frequency of emitted electromagnetic waves is proportional to the repetition frequency), and 

quasi-coherently 1)( ef , 1)(5.0  trf  near these frequencies with the bandwidth  
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3. Numerical results and their visual explanation. Ball made of melted quartz 

3.1.  Radiation from a single electron 

In this section we describe the features of the radiation for a ball made of melted quartz. The 

corresponding dielectric permittivity is given by [27] )0001.01(78.3 ii bbb +=+=  . In Fig. 3 

(see [19]) we display the spectral distribution of the radiated energy from an electron of the 

energy 2 MeV, flying through the center of the ball with radius 4=br cm (full curve).  

 

 

 
 

Figure 3. Spectral distribution of the radiated energy from an electron of energy 2 MeV flying 

through the center of the ball of melted quartz (full curve). The dashed curve corresponds to the 

motion of electron in a homogeneous medium with bb  =  provided the radiation is accumulated 

over the length of the path br2  (ball diameter). The Cherenkov condition is satisfied (for the graph in 

the upper left corner, see below). 
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Noteworthy is the fact that 

1. sharp peaks are observed on certain “resonant” frequencies (for example, 

45.640  GHz) with the wavelength of the order br , whose height is almost an order of 

magnitude higher than at neighboring frequencies. This circumstance indicates a strong 

effect of the ball – vacuum interface on the CR generated by the particle in the ball 

material.  

Numerical calculations show that  

2. Taking into account the dielectric losses of the material of the ball has practically no 

effect on the radiation intensity, with the exception of the vicinity of “resonant” 

frequencies. In the vicinity of these selected frequencies, even small losses of radiation 

energy in the material of the ball (as, for example, in melted quartz) noticeably reduce the 

intensity of radiation. This fact is seen in the graph shown in the upper left corner of 

Fig.3, where the dotted curve corresponds to the case of the absence of dielectric losses. 

The foregoing can be explained by the fact that  

3. the radiation amplification is caused by the constructive superposition of electromagnetic 

waves, multiply reflected from the inner surface of the ball. 

 

3.2.  Radiation from a train of electron bunches 

In Fig. 4 we have plotted the spectral distribution of the radiation energy generated by a train 

of electron bunches flying through a dielectric ball made of melted quartz. 

 

  

 
 

 

Figure 4. Spectral distribution of the radiation energy from a train of electron bunches of 

energy 2 MeV flying through the center of a ball of melted quartz, 
910=en , 100=bn , 

8,2d  cm. Other parameters are the same as those for Fig.3. 

 

 

The power of quasi-coherent radiation generated by a train of bunches in the range 

2/0    is given by 
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50~ MHz,  910en  is the number of electrons in the bunch, 100=bn  is the number of 

bunches and 8,2= dnl b m is the length of the train. 

The emergence of powerful quasi-coherent radiation is related to the fact that:  

a) for given choice of the values of system parameters, one of the resonant frequencies of the ball 

is equal to the repetition frequency of the bunches, 
d

v2
0


 =  (compare with (21)). In this case, 

the train of bunches will radiate coherently at this resonant frequency of the ball, with the highest 

spectral density:  

 

)()()( 0100  IFI = ,      where          22
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and  

b)  is quasi-coherent: 
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in the entire frequency range ]2/,2/[ 00  +− , because 

 

bn  ,   i.e.     dnb /v .     (27) 

4. Conclusions 

1. We have investigated the possibility of generating quasi-coherent CR by a train of 

equidistant one-dimensional electron bunches flying through the center of a ball made of a 

dielectric, a conductor, or of a composite material.  

2. In the case of a melted quartz ball, it was shown that with a special choice of the distance 

between the bunches 8.2d cm, the resonant quasi-coherent CR of 100 bunches is formed 

near the resonant frequency  GHz45.640   in a narrow frequency band MHz50 . 

3. In a real situation (a) a train of three-dimensional bunches is generated instead of one-

dimensional ones, and (b) this train should move along a hollow channel cuted through the 

ball (to reduce ionization losses). The influence of these factors will be insignificant if the 

radius of the channel is much smaller than the wavelength of radiation and larger than the 

transverse dimensions of the bunch.  

4. It is proposed to use this phenomenon for the development of high-power and narrow-band 

sources of electromagnetic waves in the giga-terahertz frequency range. 
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