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 For a charged particle rotating around a dielectric cylinder, the spectral and angular distribution 

of the radiation intensity at large distances from the cylinder has been investigated in [7,8]. It was 

shown both analytically and numerically that if the Cherenkov condition for permittivity of the 

cylinder and for the velocity of the particle image on the cylinder surface is obeyed then strong 

narrow peaks appear in the angular distribution of the radiation intensity on a given harmonic. At 

these peaks the radiated energy density may exceed the corresponding value for the radiation in the 

absence of the cylinder by several orders of magnitude. Similar features for the radiation from a 

charge moving along a helical trajectory around a cylinder have been discussed in [9]. The radiation 

of surface waves on the eigenmodes of a dielectric cylinder by a charge circulating around the 

cylinder is discussed in [10]. The interference effects between the synchrotron and Smith-Purcell 

radiations from a charge rotating around a cylindrical grating have been studied in [11]. In all these 

investigations it has been assumed that the dielectric functions for both the cylinder and surrounding 

medium are positive and, hence, the cylinder modes corresponding to surface polaritons are absent. 

The radiation of surface polaritons by a charge rotating round a cylinder has been recently 

investigated in [12]. The radiation on the guiding modes of the cylinder in the same problem was 

discussed in [13]. The radiation intensity at large distances from the cylinder in the spectral range 

where the dielectric permittivity of the cylinder is negative has been considered in [14]. In the 

present paper we review these recent results.  

 

2. Radiation field  

Consider a point charge q  circulating around a cylinder with dielectric permittivity 0 . The 

cylinder is embedded in a homogeneous medium with permittivity 1 . The radii of the rotation orbit 

and cylinder will be denoted by 
qr  and cr , respectively. In the absence of the cylinder, for a charge 

rotating in a homogeneous medium we would have two types of radiations: synchrotron radiation 

and Cherenkov radiation (if the corresponding condition is satisfied). The presence of the cylinder 

gives rise to new types of radiations propagating inside the cylinder (guiding modes) and along the 

surface (surface modes).  

In cylindrical coordinates ( , , )r z , with the axis z  along the cylinder axis, for the current density 

in the Maxwell equations one has (0, ,0)j=j , with  

 

0( ) ( ) ( )q

q
j v r r t z

r
     = − − .     (1) 

 

Here v  is the velocity of the charge and 
0 / qv r =  is the corresponding angular velocity. Let ( , )tE r  

be the electric field strength generated by the source (2). The corresponding Fourier component 

( , )n zk rE  is defined by  
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0( )

0

( , ) 2 Re ( , )zin t ik z

z n z

n

t e dk e k r
 

+
−

= −

 
=  

 
 E r E  ,   (2) 

 

where the prime on the summation sign means that the term 0n =  should be taken with an 

additional coefficient 1/2. In the region outside the cylinder the Fourier component is decomposed 

into two contributions 
(0) ( )( , ) ( , ) ( , )c

n z n z n zk r k r k r= +E E E ,    (3) 

 

where (0) ( , )n zk rE  corresponds to the field in a homogeneous medium with permittivity 
1  (the 

cylinder is absent) and ( ) ( , )c

n zk rE  is induced by the presence of the cylindrical waveguide. For 

0 1 =  one has ( ) ( , ) 0c

n zk r =E .  

We are interested in the radiation of the surface polaritons. The corresponding intensity is 

expressed in terms the work done by the radiation field on the charged particle:  

 

 
2

( )

(SP)
0 0

rI dr d dzr



 

−
= −    j E , (4) 

 

where ( )r
E  is the electric field corresponding to surface polaritons. Substituting the analog of the 

expansion (2) for the radiation field we get  

 

( )

( )

0

2 Re ( , )r

SP z n z q

n

I q dk k r

+

= −

 
= −  

 
  v E  .    (5) 

 

The only nonzero component of the particle velocity is along the azimuthal direction and, hence, in 

(5) one needs the azimuthal component of the electric field only. 

The Fourier components ( , )n zk rE  are found by using the Green function given in [7]. For the 

azimuthal component the separate contributions are presented as  
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n

r
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k

k






  

 


 

  

+  + 

=

+

=

 
= − + 

 

 
= − + 

 





 (6) 

 

where min( , )qr r r = , max( , )qr r r = , ( )J x  is the Bessel function, (1)( ) ( )H x H x =  is the Hankel 

function of the first kind and we have defined  
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 2 2 2 2 2

0 / , 0,1j j zn c k j  = − = . (7) 

The coefficients 
( )

,

c

n pB  are given by  

 

 
0 1( ) 0 0

, 1

1

( ) ( )( )
( )

2 2

J

n p n p c n l qc n c
n p n p q H H H

ln p c n n p n l

V J r H rJ r
B H r p

i V r V V

  




+ + +

+

=+ + +

= − +  , (8) 

 

where for ,F J H=  we use the notation  

 

 
1 0 1 0 1 0( ) ( ) ( ) ( )F

n n c n c n c n cV J r F r F r J r      = −  (9) 

and n  is defined as  

 0 0 1
0

11 0

( )
( )

2

n l c
n n c H

l n l

H r
J r l

V

  
 

 
+

= +

= −
−

 . (10) 

 

The eigenmodes of the cylinder are determined from the equation 0n = .   

The integration range in (5) is divided into two parts. The first one corresponds 2 2 2 2

0 1 /zk n c   

and it describes the radiation propagating at large distances from the cylinder, 
qr r . For the 

second region, 2 2 2

1 /z nk c  , one has 1 1| |i =  and the Hankel functions are reduced to the 

Macdonald function ( )K x . The respective electromagnetic fields are exponentially small at large 

distances from the cylinder. The modes with 2 2 2

1 /z nk c   are further subdivided into guiding 

modes with 2

0 0   and surface-type modes with 2

0 0  . We are interested in the radiation fields for 

the second subclass.   

For the evaluation of the radiation intensity (5) we must separate the radiation field 

corresponding to surface-type modes. The exponent in (2) has no stationary points and for large 

values of z  and for fixed r  the radiation field is determined by the contributions from the poles of 

the integrand. These poles correspond to the zeros of the function n . For the surface-type modes 

2 0j   and the corresponding formula is presented as  

 

 
( )

( )
( ) 0 1

( )2 2 ( )2
1 01 0

( )
( ) ,

( )
 

s
sn z

n z s s

n

U k u u
k u

u uV n u


 
= = −

− −
, (11) 

with the notations  

 ( )
4 2 4 2

2( ) ( ) 0
0 1 1 0 1 02 2 2

0 1

( )s s n n c z
n z n

n n

I K n r k
U k V u u

I K c u u


   

  
= − − − 

 
 (12) 

and 
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 ( )

1 0

s n n
n

n n

I K
V u u

I K

 

= − . (13) 

 

Here 
0( )n nI I u= , 

1( )n nK K u= , ( )nI x  is the modified Bessel function and  

 

 2 2 2 2

0 /j c z ju r k n c = − . (14) 

 

The expression for the functions 
H

n pV +  is presented as  

 ( )( ) ( )2H s s

n p n n n

c

i
V K I V pnu

r
+ = + . (15) 

We note that 
H

n piV +−  is always positive and the function 
H

n pV +  has no zeros. Consequently, the only 

poles of the integrand in (2) correspond to the zeros of n .  As seen from (11), the equation 

( ) 0n zk =  is reduced to the equation  

 ( ) ( ) 0s

n zU k = . (16) 

 

This equation coincides with the equation for surface-type modes (on features of propagation and 

radiation of surface polaritons in cylindrically curved geometries of the interface see, for instance, 

[15-22] and references therein). From (16), as necessary condition for the presence of the surface-

type modes with 
2 0j  , we get 1 0/ 0   . Hence, in order to have surface-type modes the 

dielectric permittivities of the cylinder and the surrounding medium must have opposite signs. This 

condition is the same as that for surface-type modes on a planar interface between two media.   

We will denote by 
,z n sk k=  , 

, 0n sk  , the roots of (16) with respect to zk , where s  enumerates 

the roots for a given n . In the presence of the poles 
,z n sk k=  , we need to specify the integration 

contour in (2). By taking into account that in physically realistic situations j j ji   = + , with 

( ) 0j    for 0  , we can see that the contour should overcome the poles 
,z n sk k=  from below 

and the poles 
,z n sk k= −  from above. For the radiation fields in the region 0z   we close the 

integration contour by a semicircle with large radius in the upper complex plane and the integral is 

expressed in terms of the residues of the integrand. The azimuthal component of the radiation field 

outside the cylinder is presented in the form  

 

 
( )

( )

(1)(0)

,,( )

( ) ( )2
1 10 1 ,

(1)2 2
,2 0 1

, , 02 ( ) ( )
, 1

( )
( , )

2

( )
   cos ,

n l n s qn sr c

s s
n s l nn n n n s

n jp n p n s

n s n ss s
p j n

lK rqvr
E t

n V lnuI K k

I K rn
p k j n k z n t

c V jpnu





  

 
 


+


= =

+ +

=

=
+

 
 + + − 

+ 

  



r

  (17) 
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where ( )su  and ( )s

nV  are defined by (11) and (13) with ( )

,

j

j c n su r = , (0)

,( )n n n s cI I r= , (1)

,( )n n n s cK K r= , 

and  

 ( ) 2 2 2 2

, , , 0| ( ) | /j

n s j n s n s jk k n c   = = −  (18) 

 

The expression (17) corresponding to the surface-type modes is valid for all values of 0z  .  

 

 

3. Radiation intensity  

 

Having the radiation field (17), the radiation intensity is evaluated by using (4). It is presented as 

the sum of the intensities on separate harmonics (SP) (SP)

1

n

n

I I


=

= . After transformations, for the 

radiation intensity on a given harmonic n  we get  

 

 
( ) ( )

2
2 2 (1)(0)2

0 ,, (0) (1)

(SP) , ,( ) ( )2
11 0 ,

( )q c n l n s qn s n n
n n s n ss s

s l n n nn n s n

q r r lK r I K
I

n V lnu I Kk K

 
 

  

 
+

=

   
= − −   

− +    
  . (19) 

 

For a given 0 , the radius of the orbit enters in the form 
2 2 (1)

,( )q n l n s qr K r+ . From here it follows that at 

distances from the cylinder surface, 
q cr r− , much larger that the radiation wavelength the radiation 

intensity is suppressed by the factor 
(1)

,exp[ 2 ( )]n s q cr r− − .  For values of 0  close to 1−  the roots 
,n sk  

are large. The leading term in the radiation intensity is presented as  

 

 
( )

( )2 2
10

(SP) 2 2 3

1 0 0 1

4
exp 2

q cn
n

q n

r rq v
I

cr

 

    

 −
 − 

− − −  

 (20) 

 

and, hence, the radiation intensity tends to zero in the limit 0 1 → − . In the limiting case 0 1  −  

the surface polariton type modes are present for the main harmonic 1n =  only. In this range the 

roots for zk  are close to the limiting value 1 /n c   and one gets  

 

 ( )
2

2
02 20

(SP)1 5/2 2

1 1

| || |
/ 1 exp

2
q c

q c

cq c
I r r

r v



 

 
 − − 

 
 

. (21) 

Hence, the radiation intensity vanishes in the limit 0 → − . For 1n   and 1 /z nk c → , the 

dielectric permittivity of the cylinder, determined from the mode equation for surface polaritons, 
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tends to a finite limiting value, (1)

0 0n → . Consequently, the quantity (0)

,n s  in (19) tends to the finite 

limit 
(1)

1 0( / ) | |n nc  + . In this case the radiation intensity 
(SP)nI  approaches a finite limiting value.   

In Fig. 1 we have plotted the number of the radiated quanta in the form of surface polaritons on a 

given harmonic n  per period of the charge rotation 
02 /T  = ,  

 

 
(SP)

(SP)

0

n

n

I
N T

n
=  (22) 

 

as a function of 
0  for 

1 1 = , / 0.95c qr r = . The numbers near the curves correspond to the values of 

/v c  and the full (dashed) curves correspond to 1n =  ( 2n = ). For the critical values of the cylinder 

dielectric permittivity in the case 2n =  one has 0 1.52n  −  for / 0.5v c =  and 0 3.44n  −  for 

/ 0.9v c = . 

 

 
 

Fig. 1. The number of the radiated quanta in the form of surface polaritons versus the dielectric 

permittivity of the cylinder. The graphs are plotted for / 0.5,0.95v c =  (numbers near the curves) and 

for 1,2n =  (full and dashed curves, respectively). 

 

 

In Fig. 2 we have plotted the dependence of the number of the radiated surface polaritons on the 

dielectric permittivity of the cylinder for / 0.5v c =  and for higher harmonics 3,5,10n =  (numbers 

near the curves). Again we see the presence of critical values of the dielectric permittivity for the 

radiation of surface polaritons on the harmonics with 1n  . The critical value increases with 

increasing n . For 3,5,10n =  one has 0 1.37, 1.29, 1.26n  − − − , respectively. In these cases the 

critical values 0n  coincide with the limiting values (1)

0n .  
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Fig. 2.  The same as in Fig. 1 for / 0.5v c =  and 3,5,10n =  (numbers near the curves). 

 

It is of interest to compare the radiation intensity for surface polaritons with the radiation for 

guiding modes ( 2 2

1 00   ) from a charge rotating around a cylinder having dielectric permittivity 

0 0   in a given spectral range. The intensity for the part of the corresponding radiation 

propagating in the region outside the cylinder has been investigated in [10] (the radiation of guiding 

modes by a charge circulating inside the dielectric cylinder has been discussed in [23]). The 

numerical results were presented for a cylinder made of quartz. Note that for guiding modes, with 

increasing harmonic number n  the number of roots 
,n sk  increases for some critical values of the 

harmonic. For the example considered in [10], the number of roots was 1 for 1 7n  , 2 for 

8 12n  , and 3 for 13 16n  . For the corresponding number of the quanta radiated on the 

guiding modes per period of the rotation by an electron of energy 2 MeV and for / 0.99c qr r =  one 

has 
2

(GM) 0.25 / ( )nN q c . The numerical data for these values of the energy and the ratio /c qr r , 

similar to those depicted in Fig. 1, show that for 05 0−    the number of the radiated surface 

polaritons is essentially larger. For example, in the case of 1n =  one gets 
2

(SP) 4.23 / ( )nN q c  for 

0 3 = −  and 
2

(SP) 45.49 / ( )nN q c  for 0 1.5 = − .  

The radiation on the guiding modes for a charge rotating around the dielectric cylinder is 

investigated in [13]. This modes are radiated in the spectral range where 0 ( ) 0   . The 

corresponding intensity is given by the formula 

( )

( )

(1)2 2
,,

(GM) 2
1 11 0 ,

(1)22 2
,(1) 20 1

, ,2
1

2 ( )

       ,

ns
n l n s qc n s

n

s ln n s n n n

n p n s n p

n p n s q n s

p n n

lK rrq v
I

n k J K V lnu

J Jn
K r k

c V pnu V pnu



  

 


+

= =

+ −

+

=

= −
 −

  
 + −  

− +   

 



   (23) 
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where 2 2 2 2

, 0 0 ,/n s n sn c k  = − , 
,( )n n n s cJ J r= . The maximum value 

ns  in the summation over s  is 

determined from the condition , 0 0 /n sk n c  . For a given angular frequency 
0 , the contribution 

of the mode with a given 
,n sk  is exponentially suppressed for large values of the cylinder radius.  

 

 

Fig. 3.  The number of quanta emitted on the guiding modes of a cylinder made of fused silica, as a 

function of the radiation harmonic. 

 

The corresponding number of quanta of a given harmonic n , 
(GM) 0/ ( )n nN TI n= ,  emitted per 

period of rotation of the charge is depicted in Fig. 3 as a function of the harmonic number. The 

numerical data are given for an electron with the energy of 2 MeVeE =  and for the values of the 

parameters 1 01,  3.74 = =  (the dielectric constant of fused silica), and / 0.99c qr r = . As seen, for 

the examples considered the number of the radiated surface polaritons is essentially larger that the 

number of the guiding modes. 

For the problem under consideration, in addition to the radiation of surface polaritons, there is 

also radiation propagating at large distances from the cylinder. The latter corresponds to synchrotron 

radiation modified by the presence of the cylinder. For the respective electromagnetic fields one has 
2 2 2

1 /z nk c   and their radial dependence is given by the Hankel functions 
1( )n pH r+

 with positive 

1 . The features of synchrotron radiation for a cylinder made of material with negative dielectric 

permittivity have been investigated in [14]. It has been shown that the radiation intensity on a given 

harmonic, integrated over the angles, can be essentially amplified by the presence of the cylinder. 
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4. Conclusion 

We have investigated the radiation of surface polaritons by a charge rotating around a dielectric 

cylinder with permittivity 
0 . For the corresponding waves the component of the wave vector along 

the cylinder axis obey the condition 2 2 2

1 /z nk c   and they are radiated on the eigenmodes of the 

cylinder, determined by the zeros of the function ( )n zk  for a given harmonic. For the existence of 

solutions to this equation the dielectric permittivities for the cylinder and surrounding medium 

should have opposite signs. We have considered the case 0 10   . The radiation intensity for 

surface waves on a given harmonic n  is given by (19). For the main harmonic 1n = , the surface 

polaritons are radiated for all values of the cylinder dielectric function in the range 0 1  − . For 

higher harmonics 1n  , there exists a critical value 0n  with the absence of surface polariton 

radiation in the range 0 0n  − . The radiation wavelength increases with approaching 0  to the 

limiting value 1− . In that range, the wavelength of surface polaritons is much smaller than the 

wavelength of electromagnetic radiation in free space with the same frequency. We have also 

demonstrated that, for a given harmonic, the number of radiated quanta for surface polaritons can be 

essentially larger than that for guiding modes of the cylinder. 
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