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This article presents the theory of achromatic CDWP, formed by reactive mesogens (the 

polymerized LC) [19, 20], which simultaneously performs the chromatic and polarization 

separations. This design can provide ~ 100 %  efficiency over the entire visible wavelength range, 

achieving the achromatic diffraction by compensating the chromatic delay dispersion using the 

twisting effect. We use the Jones matrix method for computations.  

 

 

2. Birefringent thin film – a waveplate for polarization conversion 

 

Light beam, generally, is a superposition of two orthogonal polarized beams. Polarization is 

the attribute of light that provides means to easily and efficiently control its more discernible 

characteristics such as intensity and propagation direction. Its two orthogonal components, usually 

considered linear, are differently reflected, and a Brewster plate or a polarizing cube is used to 

easily separate those components acting as reflective polarizers. Dichroic absorptive film polarizers 

transmit only one of the linear components why absorbing the orthogonal one. In addition, the best 

of it all – the state of light polarization can be controlled with a thin layer of an optically anisotropic 

material. All it takes to reverse the state of polarization is an additional phase shift of one of the 

polarization components with respect to the other (called as phase retardation) equal to 𝜋/2. This is 

known as half-waveplate condition since it takes place when the difference in optical paths for the 

orthogonal polarized beams is equal to the half of the wavelength 𝜆: (𝑛∥ − 𝑛⊥)𝐿 = 𝜆 2⁄  where 𝑛∥ 

and 𝑛⊥ are the principal refractive indices of the material and 𝐿  is the layer thickness. Typically, 

𝑛∥ − 𝑛⊥~ 0.2 , and a birefringent film of nearly 1 𝜇𝑚  thickness is sufficient for transforming one 

orthogonal polarization into another thus capable of changing the state of an optical system from 

transmittive to reflective or absorptive. In general, the phase retardation of a simple parallel plate of 

single crystal is given by  𝛤 = 2𝜋(𝑛∥ − 𝑛⊥)𝐿/𝜆. In addition, the transmission of light through the 

single crystal placed between parallel polarizers and having optical axis with azimuthal angle  45°  

with respect to the polarizers is given by  𝑇 = cos2 𝛤/2. As we see phase retardation is strongly 

dependent on the wavelength via the  (1/𝜆)  factor on the right-hand side. For most transparent 

crystals, the chromatic dispersion of  (𝑛∥ − 𝑛⊥)  further increases the variation with the wavelength. 

In many optical applications, including LCDs, it is desirable to have waveplates whose phase 

retardation is insensitive to the wavelength variation. Such waveplates are known as achromatic. 

 

 

3. A system of birefringent thin films: photonics bandgaps 

 

Two and more such films provide new degrees of freedom to obtain the half-waveplate 

condition practically independent on wavelength in a wide spectral range [21]. A symmetric 

combination of waveplates is equivalent to single-waveplate. The equivalent phase retardation  𝛤𝑒  

of such a combination of waveplates depends on the azimuth angles as well as phase retardation of 
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individual plates. Under the appropriate conditions, the equivalent phase retardation  𝛤𝑒  can be 

insensitive to the wavelength variation. Such kinds of waveplates are called as Pancharatnam 

achromatic waveplates. In the case of the combination of three waveplates the transmission of 

Pancharatnam achromatic waveplate is proportional to  cos4 𝛤𝑒 /2 . That is way for more of 

wavelength half-wave condition will be close to satisfied. By increasing the number of waveplate 

layers, we can get much more power of  𝑐𝑜𝑠𝛤𝑒 /2 and wider range of achromaticity.  

A multitude of birefringent layers, each one having its optical axis orientation rotated with respect 

to its neighbor, produces a photonic bandgap. At the limit of continuous helical rotation of the 

optical axis orientation that happens naturally in materials known as cholesteric liquid crystals , the 

bandgap acts as a circular polarizer reflecting light with wavelengths in the spectral range 𝑛⊥𝑃 <

𝜆 < 𝑛∥𝑃 , where 𝑃 is the pitch of the helix. Only the component polarized according to the helix is 

reflected while the orthogonal one propagates as through an isotropic material. The bandgap 

becomes polarization-insensitive for periodically twisted structure of “swinging nematics”.  

 

 

4. Birefringent thin film with a twist 

 

Let us reset here the discussion and start over with a single layer of a birefringent material. It 

is not hypothetical, but a matter of fact, that the optical axis of birefringent materials can be twisted 

at high spatial frequencies in the plane of the layer. Liquid crystals (LCs) and LC polymers – no 

surprise indeed, − are the best-suited materials to produce a full rotation of the optical axis over a 

micrometer distance without breaking it structurally. More simple examples of birefringent 

materials having optical axis non uniform in the plane of the layer are axial and radial polarizers 

that can be built as a planar LC cell having thickness and birefringence selected so as to induce a 

inhomogeneous phase retardation 𝛤  at the working wavelength 𝜆 , for light propagation 

perpendicular to the cell plane walls (𝑧 axis). The LC molecular director 𝒏 is assumed to be uniform 

in the 𝑧  direction, but inhomogeneous in the 𝑥𝑦 plane of the cell, according to a prescribed pattern 

𝒏(𝑥, 𝑦) = (cos 𝛿(𝑥, 𝑦) ; 𝑠𝑖𝑛𝛿(𝑥, 𝑦); 0) , where 𝛿(𝑥, 𝑦) is the azimuth angle of the director field. As 

it was shown in [22] if we will have suitable distribution of phase retardation 𝛤(𝑥, 𝑦) then we can 

design all optical devices allowing to register orientation of Stokes vector or to visualize the light 

polarization. For this purpose let we consider collimated light with intensity  𝐼0  and unknown 

polarization propagates in 𝑧  direction through thin layer of NLC with inhomogeneous optical axes 

and retardation.  Light pass through plane polarizer with the direction of transmission 𝑥   and 

register by detector. Then the intensity of light passed through this system can be express by Stokes 

vector  𝐒  

 

𝐼(𝑥, 𝑦) =
1

2
[1 + 𝛈(𝑥, 𝑦)𝐒]     (1) 

were   

𝜂1(𝑥, 𝑦) = sin2( 𝛤/2) sin 4𝛿 
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𝜂2(𝑥, 𝑦) = sin 𝛤 sin 2𝛿     (2) 

 

𝜂3(𝑥, 𝑦) = 1 − 2sin2( 𝛤/2) sin2 2𝛿 

 

It is clearly seen from these expressions that the intensity could rich its maximum or minimum 

when vector 𝛈 will be parallel or antiparallel to Stokes vector  𝐒  of light under study. It means that 

by the distribution of intensity we can reconstruct Stokes vector of light.  

More complicated examples of birefringent materials having optical axis non-uniform in the 

plane of the layer are cycloidal diffraction gratings. The “cycloidal” orientation in LC materials is 

obtained by imprinting the pattern of boundary orienting forces on substrates that orient the 

adjacent layer of the LC materials. The imprinting is usually done by subjecting a thin  (10 −

50 𝑛𝑚)  photoalignment layer coating to the polarization modulation pattern of overlapping beams 

of orthogonal circular polarization. 

Thus we have cycloidal diffractive waveplate (CDW) confined between 0 < 𝑧 < 𝐿  with the optical 

axis 𝒏  rotating in transverse direction 𝑥 , so that a periodic structure 

 

𝐧0(𝑥) = {cos 𝑞𝑥; sin 𝑞𝑥; 0}, 𝑞 = 2𝜋/Λ     (3) 

 

is realized. Here Λ  is the director’s period. The Jones matrix of a such CDW we wright in the form 

𝑀 = 𝑀0 + 𝑀+1 + 𝑀−1, were  

 

𝑀0 = [
cos 𝛷 0

0 cos 𝛷
], 𝑀±1 =

𝑖𝑠𝑖𝑛𝛷

2
exp (±𝑖2𝑞𝑥) [

1 ±𝑖
±𝑖 −1

],   (4) 

 

where 𝛷 = 𝛤/2 = 𝜋(𝑛∥ − 𝑛⊥)𝐿/𝜆  is half phase retardation,  𝑛∥  and 𝑛⊥  are parallel and 

perpendicular to the Ox axis refractive indexes and 𝐿  is the thickness of the CDW,  𝜆  is the 

wavelength in the vacuum. 

Therefore, there are only three waves after the grating – an no diffracted wave (0𝑡ℎ order) and 

two diffracted waves – in the +1 and −1  orders. Matrix 𝑀0 determines the 0𝑡ℎ  order wave and 

𝑀±1 determine the two diffracted waves. To obtain the intensities and the polarization of the waves 

we have to multiply the Jones vector of the reconstructing wave 𝐸𝑖𝑛 by the matrix 𝑀. Let we take 

𝐸𝑖𝑛  to be linearly polarized at an angle 𝛽 with respect to the axis Ox: 

𝐸𝑖𝑛 = [
cos 𝛽
sin 𝛽

]      (5) 

The field after the grating is given by 

 

𝐸𝑜𝑢𝑡 = 𝑀𝐸𝑖𝑛 = (𝑀0 + 𝑀+1 + 𝑀−1)𝐸𝑖𝑛 = 𝐸0 + 𝑀+1 + 𝑀−1  (6) 
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The 0𝑡ℎ-order wave is 

𝐸0 = cos 𝛷 [
cos 𝛽
sin 𝛽

]      (7) 

 

It emerges with the same polarization and its intensity is proportional to 𝑐𝑜𝑠2 𝛷. The waves of ±1 

orders are  

𝐸±1 =
𝑖𝑠𝑖𝑛𝛷

2
exp(±𝑖2𝑞𝑥) exp(±𝑖𝛽) [

1
±𝑖

]                                           (8) 

 

The obtained optical component has a number of features quite counter-intuitive if to look at it as a 

diffraction grating. First, it deflects all the light into ±1𝑠𝑡 diffraction orders, and only those two 

orders, if its wavelength fulfills the half-waveplate condition (𝛷 = 𝜋/2). This is 100 %  diffraction 

efficiency in a technically thin grating. The diffracted beams are orthogonal circularly polarized if 

the incident beam is unpolarized or a linearly polarized beam. Only one of the orders is present in 

case of circular polarized incident beam, and the sign of (circular) polarization of the diffracted 

beam is reversed with respect to the incident beam. The diffraction caused by such a cycloidal 

grating may be fully cancelled if the second similar grating is placed after the first one.  

 

𝐸±1
′ = −

1

2
exp(±𝑖𝛽) [

1
∓𝑖

]                                                            (9) 

 

And the diffraction angle is doubled when one of them is rotated 180 degrees around the normal to 

the grating plane. 

 

𝐸±1
′ = −

1

2
exp(±𝑖𝛽) exp(±𝑖4𝑞𝑥) [

1
∓𝑖

]                                            (10) 

 

All these properties, unusual for a diffraction grating, become evident if we note that the cycloidal 

grating is indeed a waveplate. Due to half-waveplate condition, a linearly polarized incident beam is 

transformed by the waveplate with cycloidal orientation pattern of its optical axis into a beam with 

similarly rotating linear polarization pattern. The average field is therefore absent and there is no 

beam propagating in the direction of the incident beam. This pattern, however, corresponds to the 

polarization modulation pattern obtained in orthogonal circular polarized beams propagating in the 

direction of the ±1𝑠𝑡  diffraction orders. Two half-waveplates together make a full waveplate 

eliminating the polarization modulation, hence cancelling the diffraction. The two cycloidal 

waveplates combined with opposite signs double the modulation period, hence the diffraction angle.  
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5. Multilayer CDW coatings 

 

Pairing cycloidal waveplates in opposite orientation considerably widens the diffraction 

spectrum of the system that is already quite wide for an individual CDW exceeding 100 𝑛𝑚  in the 

visible spectrum even for as high as 95 %  diffraction efficiency. 

The Pancharatnam-Berry algorithm allows producing practically achromatic diffraction in a wide 

spectral range in a multilayer system. In a highly practical approach, the orientation of an individual 

layer of cycloidally oriented LC was further twisted using a chiral dopant in the direction 

perpendicular to the plane of the waveplate and a second LC layer was coated, however, with an 

opposite twist. The diffraction spectrum of such components can extend throughout the visible or 

near IR spectral range. Such a component diffracts practically 100 %  of a white light. Potentially, 

two LCP layers, right- and left-twisted, should be sufficient for producing an achromatic CDW. In 

practice, it is hardly possible, and the required twist angle and the layer thickness are obtained in a 

larger number of layers. Note that the diffraction spectra change widely with deposition of each 

layer staying at low efficiency levels up to the very last step. 

Combination of two half-wave waveplates into a full-wave waveplate eliminates polarization 

modulation at the output of the system thus cancelling the diffraction. In case of achromatic CDWs, 

the diffraction is cancelled for a wide spectrum of wavelengths, essentially, for all visible spectrum. 

Such a system, consisting of at least 8 layers, while allowing viewing through it as through a glass 

window, possesses with unusual spectral and angular optical characteristics. It provides important 

control opportunities due to the feasibility of selectively changing the optical properties of one of 

the components by light or electric fields. Azobenzene LCPs are used for imparting one or more of 

the films comprising the system with photoresponsive property. 

 

 

6. The theory of achromatic cycloidal diffractive waveplates with twisted orientation 

 

We want to discuss the system of two CDW with twist orientations in the direction 

perpendicular to the plate walls. These two chiral circular waveplates have opposite twist sense. We 

consider a CDW confined between 0 < 𝑧 < 𝐿   with the optical axis 𝒏   rotating in transverse 

direction 𝑥  and twisted in direction 𝑧 , so that a periodic structure 

 
 

𝐧0(𝑥) = {cos 𝛿(𝑥, 𝑧); sin 𝛿(𝑥, 𝑧); 0}  

 

𝛿(𝑥, 𝑧) = {
𝑞𝑥 + 𝛷𝑡

𝑧

𝐿
                       𝑤ℎ𝑒𝑛 0 < 𝑧 < 𝐿

𝑞𝑥 − 𝛷𝑡
𝑧

𝐿
+ 2𝛷𝑡     𝑤ℎ𝑒𝑛 𝐿 < 𝑧 < 2𝐿

  𝑞 = 2𝜋/Λ (11) 
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is realized. Here Λ  is the director’s period, 𝛿 is the azimuth angle of the director field, 𝐿  is the 

thickness, and   𝛷𝑡 is the twist angle of each chiral layer. The Jones matrix of first cycloidal 

diffractive waveplate we wright in the form 

 

𝑀𝐶𝐷𝑊(𝛷) = 𝑅(𝛿0) [𝑒−𝑖𝛷 0

0 𝑒𝑖𝛷
] 𝑅(𝛿0) = [

cos 𝛷 − 𝑖 sin 𝛷 cos(2𝛿0) −𝑖 sin 𝛷 sin(2𝛿0)

−𝑖 sin 𝛷 sin(2𝛿0) cos 𝛷 + 𝑖 sin 𝛷 cos(2𝛿0)
]       (12) 

 

where  𝛿0 = 𝑞𝑥 , 𝑅  is the rotation matrix. Following to [21], the CDW with a twist can be 

approximated as a stack of multiple (𝑁) thin CDW layers with a small phase shift  ∆𝛷𝑡 = 𝛷𝑡/𝑁 in 

the azimuth. The Jones matrix for this twisted CDW structure can be written as 

 

𝑀𝑇𝐶𝐷𝑊 = 𝑀𝑁𝑀𝑁−1𝑀𝑁−2 … 𝑀3𝑀2𝑀1 =    (13) 

      

∏ 𝑅(−𝑚∆𝛷𝑡)𝑀𝑚(∆𝛷)𝑅(𝑚∆𝛷𝑡)1
𝑚=𝑁 . 

 

Here 𝑀𝑚(∆𝛷) =  𝑀𝐶𝐷𝑊(∆𝛷) , 𝑁 is the number of CDW layers,  ∆𝛷 is the half retardation of each 

layer. Doing multiplication and, using the property of the rotation matrix, we can get 

 

𝑀𝑇𝐶𝐷𝑊 = 𝑅(−𝛷𝑡)[𝑀𝐶𝐷𝑊(∆𝛷)𝑅(∆𝛷𝑡)]𝑁        (14) 

 

This expression can be further simplified by using Chebyshev’s identity for unimodular matrices 

[23]: 

 

[
𝐴 𝐵
𝐶 𝐷

]
𝑚

= [

𝐴𝑠𝑖𝑛𝑚𝑍 − sin(𝑚 − 1) 𝑍

𝑠𝑖𝑛𝑍
𝐵

𝑠𝑖𝑛𝑚𝑍

𝑠𝑖𝑛𝑍

𝐶
𝑠𝑖𝑛𝑚𝑍

𝑠𝑖𝑛𝑍

𝐷𝑠𝑖𝑛𝑚𝑍 − sin(𝑚 − 1) 𝑍

𝑠𝑖𝑛𝑍

]                    (15) 

with       

     𝑍 = 𝑎𝑟𝑐𝑐𝑜𝑠 [
1

2
(𝐴 + 𝐷)] 

 

Thus for twisted cycloidal diffractive waveplate we have Jones matrix in the form 

 

𝑀𝑇𝐶𝐷𝑊 = 

[
cos 𝑋𝑐𝑜𝑠𝛷𝑡 + 𝛷𝑡sin𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
− 𝑖 𝛷 cos(2𝛿0 + 𝛷𝑡)

𝑠𝑖𝑛𝑋

𝑋
− cos 𝑋𝑠𝑖𝑛𝛷𝑡 + 𝛷𝑡cos𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
− 𝑖 𝛷 sin(2𝛿0 + 𝛷𝑡)

𝑠𝑖𝑛𝑋

𝑋

cos 𝑋𝑠𝑖𝑛𝛷𝑡 − 𝛷𝑡cos𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
− 𝑖 𝛷 sin(2𝛿0 + 𝛷𝑡)

𝑠𝑖𝑛𝑋

𝑋
cos 𝑋𝑐𝑜𝑠𝛷𝑡 + 𝛷𝑡sin𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
+ 𝑖 𝛷 cos(2𝛿0 + 𝛷𝑡)

𝑠𝑖𝑛𝑋

𝑋

] 

 

(16) 

where 𝑋 = √𝛷𝑡
2 + 𝛷2 . Here we have exact expression for the Jones matrix of a linearly twisted 

CDW plate. The Jones matrix can be split into three matrices 𝑀𝑇𝐶𝐷𝑊
0 ,  𝑀𝑇𝐶𝐷𝑊

+1 ,    𝑀𝑇𝐶𝐷𝑊
−1 . 
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𝑀𝑇𝐶𝐷𝑊 =  𝑀𝑇𝐶𝐷𝑊
0 +  𝑀𝑇𝐶𝐷𝑊

+1 exp [𝑖(2𝛿0 + 𝛷𝑡)] +  𝑀𝑇𝐶𝐷𝑊
−1  exp [−𝑖(2𝛿0 + 𝛷𝑡)]  (17) 

 

where  

 𝑀𝑇𝐶𝐷𝑊
0 = [

cos 𝑋𝑐𝑜𝑠𝛷𝑡 + 𝛷𝑡sin𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
− cos 𝑋𝑠𝑖𝑛𝛷𝑡 + 𝛷𝑡cos𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋

cos 𝑋𝑠𝑖𝑛𝛷𝑡 − 𝛷𝑡cos𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
cos 𝑋𝑐𝑜𝑠𝛷𝑡 + 𝛷𝑡sin𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋

],          (18) 

 

 𝑀𝑇𝐶𝐷𝑊
±1 =

1

2
𝛷

𝑠𝑖𝑛𝑋

𝑋
[

−𝑖 ∓1
∓1 𝑖

]                                                (19) 

 

 

As we know the transmission or diffraction efficiency for light transmitted through matrix  𝑀𝑖,𝑗 is 

equal 

𝑇 =
1

2
∑ |𝑀𝑖,𝑗|

2
2

𝑖,𝑗=1

                                                           (20) 

and we have  

𝜂0 = cos2 𝑋 + 𝛷𝑡
2 [

𝑠𝑖𝑛𝑋

𝑋
]

2

                                               (21) 

 

𝜂+1 = 𝜂−1 =
1

2
𝐺2 [

𝑠𝑖𝑛𝑋

𝑋
]

2

                                               (22) 

 

Now we consider the other TCDW with the same twist angle but opposite twist sense. In addition, 

because of the optical axis of front surface of this TCDW is rotated at the  𝛷𝑡 angle in respect to it 

for the first TCDW, then in (17), (18) and (19) we have to take  (𝛿0 + 𝛷𝑡) instead of 𝛿0. Beside this, 

because of we have the second TCDW with opposite twist sense so we will replace 𝛷𝑡 with −𝛷𝑡 . 

Than we will have  

 

𝑀𝑇𝐶𝐷𝑊
′ =  𝑀𝑇𝐶𝐷𝑊

01 +  𝑀𝑇𝐶𝐷𝑊
+1 exp [𝑖(2𝛿0 + 𝛷𝑡)] +  𝑀𝑇𝐶𝐷𝑊

−1  exp [−𝑖(2𝛿0 + 𝛷𝑡)]  (23) 

 

where    

 𝑀𝑇𝐶𝐷𝑊
01 = [

cos 𝑋𝑐𝑜𝑠𝛷𝑡 + 𝛷𝑡sin𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
cos 𝑋𝑠𝑖𝑛𝛷𝑡 − 𝛷𝑡cos𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋

−cos 𝑋𝑠𝑖𝑛𝛷𝑡 + 𝛷𝑡cos𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
cos 𝑋𝑐𝑜𝑠𝛷𝑡 + 𝛷𝑡sin𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋

]              (24) 
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The Jones matrix 𝑀𝐴𝑇𝐶𝐷𝑊 for achromatic twisted cycloidal diffractive waveplate composed of two 

chiral CDW with opposite twist sense can be obtained simply by multiplying the Jones matrices for 

each TCDW:  

 

𝑀𝐴𝑇𝐶𝐷𝑊 = 𝑀𝑇𝐶𝐷𝑊
′ 𝑀𝑇𝐶𝐷𝑊 =  𝑀𝐴𝑇𝐶𝐷𝑊

0 +  𝑀𝐴𝑇𝐶𝐷𝑊
+1 exp [𝑖(2𝑞𝑥)] +  𝑀𝐴𝑇𝐶𝐷𝑊

−1  exp [−𝑖(2𝑞𝑥)]    (25) 

 

where  

 𝑀𝐴𝑇𝐶𝐷𝑊
0 = {cos2 𝑋 + (𝛷𝑡

2 − 𝛷2) [
𝑠𝑖𝑛𝑋

𝑋
]

2

} [
1 0
0 1

]                           (26) 

 

 𝑀𝐴𝑇𝐶𝐷𝑊
±1 = 𝛷

𝑠𝑖𝑛𝑋

𝑋
(𝑐𝑜𝑠𝑋 ± 𝑖𝛷𝑡

𝑠𝑖𝑛𝑋

𝑋
) [

−𝑖 ∓1
∓1 𝑖

]                            (27) 

 

and for diffraction efficiencies we have  

 

𝜂0 = {cos2 𝑋 + (𝛷𝑡
2 − 𝛷2) [

𝑠𝑖𝑛𝑋

𝑋
]

2

}

2

                                                 (28) 

 

𝜂+1 = 𝜂−1 = 2𝛷2 [
𝑠𝑖𝑛𝑋

𝑋
]

2

{cos2 𝑋 + 𝛷𝑡
2 [

𝑠𝑖𝑛𝑋

𝑋
]

2

}                           (29) 

 

In the general case when we have elliptical polarized light instead of (29) we have 

 

𝜂±1 = 2𝛷2(1 ∓ 𝑆3
′ ) [

𝑠𝑖𝑛𝑋

𝑋
]

2

{cos2 𝑋 + 𝛷𝑡
2 [

𝑠𝑖𝑛𝑋

𝑋
]

2

}                       (30) 

 

The term  𝑆3
′ = 𝑆3/𝑆0  is a normalized Stokes parameter. 

If we need to have  𝜂0 = 0 in the wide range of retardation 2𝐺 or wavelength. Therefore, we 

have to solve the transcendent equation  
 

𝛷𝑡
2 + 𝛷2 cos 2 (√𝛷𝑡

2 + 𝛷2) = 0 or 
𝑠𝑖𝑛𝑋

𝑋
=

1

√2𝛷
  (31) 

 

Particularly, in the case of half CDW ( 𝛷 = 𝜋/2 ) we have  𝑋 = 2.0103 and  𝛷𝑡 = 1. 2546 =

71.88° . Following [24], to quantitatively evaluate the diffraction bandwidth, we introduce the 

spectral range Δ𝜆  (units of wavelength) for high diffraction efficiency as the range of wavelengths 

over which the total first-order diffraction  ∑ 𝜂±1  is ≥ 99.5 %  . The normalized bandwidth 

∆𝜆 𝜆𝑐𝑒𝑛𝑡𝑒𝑟⁄   (units of %) is defined as the ratio of the spectral range to its center wavelength 𝜆𝑐𝑒𝑛𝑡𝑒𝑟. 

CDW have a modest diffraction bandwidth given by ∆𝜆 𝜆𝑐𝑒𝑛𝑡𝑒𝑟⁄ ≅ 6.8%. In the case of exact 0 of 

diffraction efficiency  𝜂0 or ∑ 𝜂±1 = 1, when 𝛷𝑡 = 1. 2546 = 71.88 at the central wavelength the 
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bandwidth ∆𝜆 𝜆𝑐𝑒𝑛𝑡𝑒𝑟⁄ ≅ 34.23 % . In the case of [24] 𝛷𝑡 = 1. 22175 = 70°. And the bandwidth is 

∆𝜆 𝜆𝑐𝑒𝑛𝑡𝑒𝑟⁄ ≅ 41.12 % . If we will do the calculation more roughly we get the result of [24] 

∆𝜆 𝜆𝑐𝑒𝑛𝑡𝑒𝑟⁄ ≅ 34.3 % . We can get the maximum bandwidth for  𝛷𝑡 = 1. 20498 = 69.04° . 

Moreover, the bandwidth will be ∆𝜆 𝜆𝑐𝑒𝑛𝑡𝑒𝑟⁄ ≅ 44.15 %  . Note that this is a 6.5-fold enhancement 

in the maximum diffraction bandwidth as compared with CDW. For twist angles smaller than 

69.04° , the diffraction bandwidth increases gradually as the twist angle increases. On the other 

hand, the diffraction bandwidth decreases drastically for higher twist angles. The achromaticity of 

the diffraction can be explained by the counter chromatic dispersions of retardation by linear 

birefringence and induced circular birefringence due to twist. The former becomes larger for shorter 

wavelengths while the latter becomes larger for longer wavelengths and vice versa. When Δ𝑛𝑑 =

𝜆/2  and  𝛷𝑡 = 69.04°, the retardation compensation occurs by balancing out both effects and the 

achromatic diffraction is achieved.  

 

7. Conclusion 

 

While it comes as no surprise that a micron-thick material layer can be used for controlling 

the phase, hence, polarization of light, it used to be counter-intuitive to suggest that it also could 

deflect a beam like a thick prism or a thick Bragg grating. While DWs and multilayer DW coatings 

challenge Bragg gratings in some of their applications due to their ability to provide same efficiency 

in orders of magnitude thinner layers, the broadband nature of their diffraction both in angular as 

well as spectral space allowing them to act as high transmission broadband circular polarizers and 

beam splitters, steering of uncollimated and non-monochromatic light, including white light, open 

up new opportunities for information displays, spatial light modulators, high power lasers, and high 

–efficiency thin-film optics for infrared and THz applications. 

Light transmission or reflection from multilayer dielectric coatings exhibits spectral and 

angular characteristics rather different from that of Fresnel reflection from a single material layer. 

The opportunity of reducing reflection for given wavelength or wavelength range is one of their 

most important applications. One of the most interesting properties of multilayer CDW coatings is 

the opportunity of full cancellation of diffraction. 

The need for using two LCP layers to reach +70  or −70  degree twist is due to the 

photoaligning ability of the photoalignment material and LCP itself available at this point. Namely, 

achromaticity requires obtaining ±70-degree twist structures. The twist is induced by doping the 

LCP by chiral dopants of positive and negative helical twisting power. The required twist angle is 

obtained by setting a given thickness for the layer. It turned out, however, that such a layer of the 

currently available LCP is not oriented well on the photoalignment layer. Therefore, we use two 

layers. The first thin layer then plays two roles: enhancing the orienting ability of the 

photoalignment layer, and providing fine-tuning for the twist angle. 

The diffraction bandwidth of the ACDW, defined as the range of wavelengths when the 

diffraction efficiency exceeds 95% , spans from 410 to 640 𝑛𝑚  for the visible ACDW (Figure 

2(a)), and from 510 − 850 𝑛𝑚  for the near IR ACDW. 
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The fabrication process of ACDWs turned to be a highly challenging task both from the 

standpoint of making them in large area and high efficiency, as well as from the standpoint of 

finding the material compositions and coating regimes that would result in achromaticity at the very 

last, the 5𝑡ℎ  stage of the process. Figure 3 shows the change in the diffraction spectrum with each 

coating. These are transmission spectra obtained with a fiber optics spectrometer. Low transmission 

𝑇  is obtained not due to absorption, but due to the diffraction of the beam out of the receiving 

aperture of the spectrometer. Thus, the higher the diffraction, the lower transmission is registered. 

The diffraction efficiency 𝜂  is approximately equal 𝜂 = 1 − 𝑇. Thus, just before the last coating is 

applied, the diffraction efficiency is near 70% , and the last LCP layer provides the fine-tuning 

increasing the diffraction efficiency to near 100%  in a large portion of the spectrum. 
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