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of copper in germanium. They proposed that the copper could be dissolved into two states, 

interstitial and substitutional. For the interstitial state the solubility of copper is two orders of 

magnitude less and the diffusivity many orders of magnitude greater than in the substitutional 

state. The conversion of these states is effected by lattice vacancies. The quasi-chemical theory 

of diffusion and viscosity was also developed by H. Eyring with co-authors [7]. Eyring 

developed the theory of absolute reaction rates for chemical reactions in gases [8] and in 

condensed phase [9] and then applied these ideas to transport phenomena. In this theory, the 

transport process is represented by an ensemble of elementary events. Each elementary event is 

represented by the creation or disintegration of an activated complex. The rate of the elementary 

process is given by the concentration of activated complexes, multiplied by the rate at which 

they decompose. The main constructive hypothesis is that it is possible to calculate the 

concentration of activated complexes by equilibrium statistical thermodynamics: the complex 

concentration is in quasiequilibrium with the stable components. Each complex has its “internal 

translational” degree of freedom. On the surface of potential energy, this corresponds to the 

“reaction path”. Complexes move along this path. The velocity of this motion is assumed to be 

just a thermal velocity and is proportional to√T. The additional reaction path degree of freedom 

has its own kinetic energy and, therefore, increases the complex heat capacity. We have to 

consider this in calculating the equilibrium constant. Collective models of diffusion were 

proposed too. One of the earliest collective models is the Z. Jeffries “ring mechanism” with 4 or 

more atoms. More details on the history of solid-state diffusion are presented in the review [10] 

and in a modern textbook [11]. On the surface, there are various mechanisms for collective 

diffusion [12] as well. Elementary events for these mechanisms involve many atoms 

simultaneously. A dynamic description of nonlinear multicomponent diffusion requires a unified 

framework that should satisfy basic physical principles. 

 

 

2. The Mechanisms of Diffusion Jumps 

 

We represent the physical space as a network of compartments [1]. Each compartment is 

modeled as a cubic cell with an edge size 𝑙. The stoichiometric equations of diffusion describe 

the interaction of two neighboring cells. To distinguish the quantities related to these two cells 

we use the upper indexes I and II. 

 

 

 
 

Figure 1: Cell Jump Model 

 

The mechanism of diffusion is defined as a list of elementary transitions between cells 

described by their stoichiometric equation. Since diffusion is a sort of jumping reaction on the 

border, for these jumps the stoichiometric equation is written as: 
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∑ 𝛼𝑟𝑖
𝐼

𝑖

𝐴𝑖
𝐼 + ∑ 𝛼𝑟𝑖

𝐼𝐼

𝑖

𝐴𝑖
𝐼𝐼 → ∑ 𝛽𝑟𝑖

𝐼

𝑖

𝐴𝑖
𝐼 + ∑ 𝛽𝑟𝑖

𝐼𝐼

𝑖

𝐴𝑖
𝐼𝐼 ,                                           (1) 

 

where 𝑟  is the number of processes, 𝛼𝑟𝑖
I,II

 and  𝛽𝑟𝑖
I,II

are the stoichiometric coefficients which 

indicate the number of particles in cells involved in the process. The direction of changes in the 

elementary event (1) is defined by two stoichiometric vectors  

 

𝛾𝑟𝑖
𝐼 = 𝛽𝑟𝑖

𝐼 − 𝛼𝑟𝑖
𝐼 ;      𝛾𝑟𝑖

𝐼𝐼 = 𝛽𝑟𝑖
𝐼𝐼 − 𝛼𝑟𝑖

𝐼𝐼 .                                                  (2) 

 

Coefficients 𝛼𝑟𝑖
𝐼,𝐼𝐼;  𝛽𝑟𝑖

𝐼,𝐼𝐼
are nonnegative. Usually, we assume that they are integers but, in 

some situations, real numbers are needed. 

Elementary events (1) describe diffusion and do not include the transformation of 

components (reactions). Therefore, for each 𝑖, the amount of 𝐴𝑖in the system  (𝐴𝑖
I + 𝐴𝑖

II) should 

not change. This means exactly that for all 𝑖, 𝑟 

 

𝛼𝑟𝑖
𝐼 + 𝛼𝑟𝑖

𝐼𝐼 = 𝛽𝑟𝑖
𝐼 + 𝛽𝑟𝑖

𝐼𝐼 .                                                                 (3) 

 

Within the framework of the Cell Jump Model (Fig.1), the description of an elementary act by 

means of a stoichiometric equation can be illustrated through the following schemes: 

 

 

 

𝐴𝑖
𝐼    𝐴𝑖

𝐼𝐼 

 

 𝐴𝑖
𝐼𝐼  𝐴𝑖

𝐼  

 

(a) Simple diffusion: a particle from cell I jumps into cell 

II and inversely 

 

𝐴𝑖
𝐼 𝑍𝐼𝐼  𝑍𝐼 𝐴𝑖

𝐼𝐼 
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𝑍𝐼 𝐴𝑖
𝐼𝐼  𝐴𝑖

𝐼 𝑍𝐼𝐼 

 

(b) Jumps to free places: a particle from cell I jumps to 

free place in cell II and inversely 

 

 

𝐴𝑖
𝐼 2𝐴𝑖

𝐼𝐼   3𝐴𝑖
𝐼𝐼 

 

2𝐴𝑖
𝐼 𝐴𝑖

𝐼𝐼  3𝐴𝑖
𝐼  

 

(c) Jumps with clustering: two particles attract the third one 

 

Figure 3: Elementary acts of diffusion, examples. 

 

The composition of each cell is vector 𝑁𝐼,𝐼𝐼. Components of this vector  𝑁𝐼,𝐼𝐼 = 𝑉𝐼,𝐼𝐼𝑐𝐼,𝐼𝐼 

are the amounts of 𝐴𝑖  in the corresponding cell and 𝑉𝐼,𝐼𝐼  are the volumes of the cells. We 

describe the dynamics of the compositions of two cells by the equations: 

 

𝑑𝑁𝐼

𝑑𝑡
= −

𝑑𝑁𝐼𝐼

𝑑𝑡
= 𝑆𝐼,𝐼𝐼 ∑ 𝛾𝑟

𝑟

𝑤𝑟(𝑐𝐼 , 𝑐𝐼𝐼)         ,                                        (4) 

 

where 𝑆 is the boundary area between two cells and 𝑤𝑟 is the process's rate. For many cells, the 

equations are the same, but with more pairs of cells interacting, more terms are used.  

If there are many cells then 

 

    

 

𝐴𝐼 , 𝑁𝐼 , 𝑐𝐼 𝐴𝐼𝐼 , 𝑁𝐼𝐼 , 𝑐𝐼𝐼 

 

    

 

Figure 4: Cell Jump Model with first surroundings. 
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𝑑𝑁𝐼

𝑑𝑡
= ∑ 𝑆𝐼,𝐽

𝐽

∑ 𝛾𝑟

𝑟

𝑤𝑟(𝑐𝐼, 𝑐𝐽)                                                         (5) 

 

with summation through all interacting pairs (I, J). 

The rates are intensive variables and should be defined as functions of concentrations or 

chemical potentials. The crucial question is: how to describe function  𝑤𝑟(𝑐I, 𝑐II)  where  𝑐I,II  

are concentrations components in cells. 

The real physics of diffusion may be more complicated. For example, the intensity of 

jumps and the reaction rate  𝑤𝑟(𝑐I, 𝑐II)  may depend not only on (𝑐I, 𝑐II)  but also on the 

surrounding. For example, direct simulation of the jumps on the surface [13] demonstrates that 

the influence of the surrounding is crucial for structures and critical effects on the surface.  

For each process (1) there is the space-inverted process that is defined simply by changing 

I to II and vice versa. We mark the quantities for the space-inverted processes by 0. For example, 

𝛾 ′ = −𝛾. The detailed space-inversion symmetry requires that the rate functions for them should 

differ just by the transposition of the vectors of variables, 𝑐I,  𝑐II : 

 

𝑤𝒓
′(𝑐I, 𝑐II) = 𝑤𝑟(𝑐I, 𝑐II) .                                                            (6) 

 

This requirement of detailed space symmetry allows us, in particular, to exclude various 

types of advection and transport driven by external force. Diffusion, by its definition, is driven 

by the gradients of the concentrations (or, in the thermodynamic approach, by the gradients of 

the chemical potentials). This is not the only way to formulate pure diffusion equations without 

advection. Another possibility is, for example, diffusion systems with complex balance. 

 

 

3. Mass Action Low (MAL) Equations for Diffusion 

 

Let us consider the system of stoichiometric equations (1) as a reaction mechanism for 

MAL [1].  

If we apply MAL then the rate of the elementary diffusion process is 

 

𝑤𝑟(𝑐𝐼 , 𝑐𝐼𝐼) = 𝑘𝑟 ∏(𝑐𝑖
𝐼)𝛼𝑟𝑖

𝐼

𝑖

∏(𝑐𝑖
𝐼𝐼)𝛼𝑟𝑖

𝐼𝐼

𝑖

 .                                             (7)   

For example, for Fick’s diffusion, we have two elementary processes, 𝐴𝑖
𝐼 → 𝐴𝑖

𝐼𝐼 and 𝐴𝑖
𝐼𝐼 →

𝐴𝑖
𝐼 

The corresponding reaction rates are 𝑘1𝑐𝑖
𝐼 and 𝑘2𝑐𝑖

𝐼𝐼. Equations (5) give 

 

𝑑𝑁𝑖
𝐼

𝑑𝑡
= −𝑆𝐼,𝐼𝐼𝑘1𝑐𝑖

𝐼 + 𝑆𝐼,𝐼𝐼𝑘2𝑐𝑖
𝐼𝐼    .                                                     (8) 
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The diffusion processes for which space-inverted elementary processes coincide with the 

inverse processes have a fundamental property: The entropy production is positive for the 

corresponding mass action law diffusion equations. 

There are three ways to define the rate functions: from a phenomenological law (like the 

massaction law), from thermodynamics (like the generalized mass action law) or by direct 

stochastic simulation of particles jumps in cells (as in the Gillespie approach [14, 15]). 

In our research, we focus on the first two approaches. Therefore, we consider our lattice 

model as a semi-discrete model (discrete in space and continuous in time). For this semi-discrete 

model, the system of kinetic equations (5) describes diffusion. The continuous limit of these 

equations gives us the diffusion PDE.  

The discrete scheme itself can be serve as a computational model.  

A couple of simple examples can clarify our approach: 

• Simple diffusion 𝐴𝑖
I → 𝐴𝑖

II and 𝐴𝑖
II  → 𝐴𝑖

I  with the same rate constants. Particles jump into 

the neighbor cells. For perfect mixtures,  𝑤𝑟 = 𝑘𝑐𝑖
I ,  wr

′ = 𝑘𝑐𝑖
II and in the continuous 

limit we get Fick’s law as the first Taylor approximation. In this approximation, 𝐷 = 𝑘𝑙 

where 𝑙 is the cell size. 

• Jumps to free places  𝐴𝑖
I + 𝑍II → 𝐴𝑖

II + 𝑍I  and 𝐴𝑖
II + 𝑍I → 𝐴𝑖

I + 𝑍II . According to the 

mass action law 𝑤𝑟(𝑐𝑖
I, 𝑐𝑖

II) = 𝑘𝑐𝑖
I𝑧II,  wr

′ (𝑐𝑖
I, 𝑐𝑖

II) = 𝑘𝑐𝑖
II𝑧II, where 𝑧 is the concentration 

of free places. In the first Taylor approximation 𝐽 = −𝑘𝑙(𝑧∇𝑐𝑖 − 𝑐𝑖∇𝑧), and we get the 

model proposed in [ 16]) 

To get the continuous limit, we take   𝑐𝐼 = 𝑐(𝑥)  ,  𝑐II = 𝑐(𝑥 + 𝑙)  and use the Taylor 

expansion: 𝑐(𝑥 + 𝑙) = 𝑐(𝑥) + 𝑙𝜕𝑥𝑐 + 𝜊(𝑙). If we consider a sequence of cell representations of 

diffusion with various 𝑙  then, for the invariance of the first order, the scaling rule should be 

implemented: 𝐷 = 𝑘𝑙 does not change with a size change, therefore, the rate constant 𝑘 depends 

on  𝑙 :  𝑘 = 𝐷/𝑙.  

It is not always possible to keep only to the first order. If this approach gives a negative 

diffusion coefficient then for regularity, we have to keep the higher derivatives. For example, let 

us take the diffusion mechanism with attraction: 

 

𝐴𝑖
I + 2𝐴𝑖

II → 3𝐴𝑖
II   .                                                                (9) 

 

The space-inverted process in this case does not coincide with the inverse one. If we 

change the upper indexes (I to II and II to I) then we obtain 

 

2𝐴𝑖
I + 𝐴𝑖

II → 3𝐴𝑖
I  .                                                               (10) 

 

This mechanism means that two particles attract the third one. The reaction rates are: 

 

𝑤𝑟 = 𝑘𝑟𝑐𝑖
I(𝑐𝑖

II)
2

,        wr
′ =  kr(𝑐𝑖

I)
2

𝑐𝑖
II  .                                               (11) 

 

The flux of 𝐴𝑖from the first cell to the second one is 
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𝐽 = 𝑤𝑟 − 𝑤𝑟
′ = 𝑘𝑟𝑐𝑖

𝐼𝑐𝑖
𝐼𝐼(𝑐𝑖

𝐼𝐼 − 𝑐𝑖
𝐼)  .                                                (12) 

 

Therefore, to first order we have 

 

𝐽 = 𝑘𝑙𝑐2 ∇c =
1

3
𝑘𝑙∇𝑐3,                                                          (13) 

 

the sign is opposite to standard diffusion. This flux goes in the direction of gradients.  

The diffusion equation is 

 

𝜕𝑐

𝜕𝑡
= −𝑘𝑙𝑑𝑖𝑣(𝑐2∇c) = 𝑘𝑙

1

3
∆𝑐3    .                                              (14) 

                                                   

Of course, if we take the mechanism (𝑛 > 1): 

 

𝐴𝑖
I + 𝑛𝐴𝑖

II → (𝑛 + 1)𝐴𝑖
I,   𝑛𝐴𝑖

I + 𝐴𝑖
II → (𝑛 + 1)𝐴𝑖

I  ,                                          (15) 

 

then we get the equation 

 

𝜕𝑐

𝜕𝑡
= −𝑘𝑙(𝑛 − 1)𝑑𝑖𝑣(𝑐𝑛∇𝑐) = −𝑘𝑙

𝑛 − 1

𝑛 + 1
∆𝑐𝑛+1    .                                       (16) 

 

This diffusion process has two properties: first, it goes along gradients and all deviations 

from the uniform state will increase. Second, this diffusion is slow for small concentrations (the 

diffusion coefficient goes to 0  when 𝑐  approaches  0  and accelerates with the increased 

concentration. 

The equation 𝜕𝑡𝑐 = −𝐷∆𝑐𝑛(𝑛 > 1) admits a family of self-similar solutions with bounded 

support, which collapse in finite time. These solutions have the form 

 

𝑐(𝜏) =
𝐴

𝜌𝑞 𝜙 (
𝑟

𝜌
),                                                                         (17)  

 

where 

• 𝜏 − is the time until collapse; 

• 𝑞 − is the dimension of space (usually, 𝑞 = 1, 2 or 3); 

• 𝜌 − is the radius of the sphere, outside of which the solution is zero 

 

𝜌 = 𝐵(𝐷𝜏)
1

𝑞(𝑛−1)+2;                                                                    (18) 

 

• 𝜙(𝜗) = (1 − 𝜗)
1

𝑛−1  for  𝜗 < 1  and  𝜙(𝜗) = 0  if  𝜗 ≥ 1; 

• The constants  А, 𝐵 depend on 𝑞, 𝑛 and the total amount  𝑁 = ∫ 𝑐(𝑥) 𝑑𝑥. 

This is the so-called Barenblatt solution [17] for the equation of porous media  𝜕𝜏𝑐 =

+𝐷∆𝑐𝑛 . Such solutions were used to analyze an explosion that starts from a singularity for 
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equations  𝜕𝑡𝑐 = +𝐷∆𝑐𝑛  (the classical review of self-similar solutions was published by 

Barenblatt and Zeldovich [18]). 

The cell model of diffusion with attraction (9) for a finite number of cells of a given size  𝑙  

is a rather regular system of nonlinear ODE, but to the first order of the Taylor expansion in  𝑙  

the PDE (14) produces a singularity in an arbitrarily short time from smooth initial data. The 

second order Taylor approximation adds nothing because the even terms in 𝑙 cancel out if we 

take into account the cell's left and right neighbors. The third order Taylor expansion gives a 

regularized equation: 

 

𝐽 = 𝐽 = 𝑤𝑟 − 𝑤𝑟
′ = 𝑘𝑙𝑐2

𝜕

𝜕𝑥
(𝑐 +

𝑙2

3

𝜕2𝑐

𝜕𝑥2
) + 𝜊(𝑙3) 

 

𝑑𝑐

𝑑𝑡
= −𝑘𝑙

𝜕

𝜕𝑥
𝑐2

𝜕

𝜕𝑥
(𝑐 +

𝑙2

3

𝜕2𝑐

𝜕𝑥2
)  .                                                       (19) 

 

This is an example of the Cahn–Hilliard type equation for spinodal decomposition with the 

regularizing term −𝑑𝑖𝑣(𝑐2𝑔𝑟𝑎𝑑 ∆𝑐). In this equation, the cell size cannot be eliminated by 

scaling. The length 𝑙 is the “regularization length”. All inhomogeneities of size smaller than 𝑙 are 

smoothed by the biharmonic term. 

As we can see, the mass action law and the cell representation of the elementary acts of 

diffusion give the opportunity to model the Cahn–Hilliard type phase separation. Nevertheless, 

the approach based on the non-perfect thermodynamic potential gives a better representation of 

the basic physics and does not require complicated elementary processes. Just the simplest Fick 

scheme, 

 

    𝐴𝑖
I → 𝐴𝑖

II,      𝐴𝑖
II  →   𝐴𝑖

I                                                          (20) 

 

with the non-perfect Ginzburg–Landau free energy gives the Cahn–Hilliard equation. The 

diffusion mechanism with attraction (9) differs from the elementary Fick mechanism and from 

the mechanism of jumps to free places. The dynamic difference is obvious, the diffusion 

mechanism with attraction generates instabilities of the homogeneous state, clustering and 

singularities. On the other hand, Fick’s law and the mechanism of jumps to free places allow a 

global Lyapunov functional and, in the systems without external fluxes, lead to homogeneous 

equilibrium. 

These mechanisms also have a very important structural difference. If we look at the direct 

and the space-inverted processes then we find that for the first two mechanisms, the space 

inverted processes coincide with the inverse processes, which we get just by inverting the arrow 

(or by the exchange 𝛼 and  𝛽 coefficients in the stoichiometric equations (1)). For the elementary 

processes with attractions, the inverse processes are processes with repulsion:  

 

3𝐴𝑖
II → 𝐴𝑖

I + 2𝐴𝑖
II,           3𝐴𝑖

I → 2𝐴𝑖
I + 𝐴𝑖

II    .                                               (21) 
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The diffusion processes for which space-inverted elementary processes coincide with the 

inverse processes have a fundamental property: The entropy production is positive for the 

corresponding mass action law diffusion equations. 

 

4. Continuous Diffusion Equation 

 

Let us consider an elementary process together with its space-inverted process 

 

∑ 𝛼𝑟𝑖
I

𝑖

𝐴𝑖
I + ∑ 𝛼𝑟𝑖

II

𝑖

𝐴𝑖
II → ∑ 𝛽𝑟𝑖

I

𝑖

𝐴𝑖
I + ∑ 𝛽𝑟𝑖

II

𝑖

𝐴𝑖
II 

 

∑ 𝛼𝑟𝑖
I

𝑖

𝐴𝑖
II + ∑ 𝛼𝑟𝑖

II

𝑖

𝐴𝑖
I → ∑ 𝛽𝑟𝑖

I

𝑖

𝐴𝑖
II + ∑ 𝛽𝑟𝑖

II

𝑖

𝐴𝑖
I                                      (22)          

 

The reaction rates are 

𝑤𝑟(𝑐I, 𝑐II) = 𝑘𝑟 ∏(𝑐𝑖
I)

𝛼𝑟𝑖
I

𝑖

∏(𝑐𝑖
II)

𝛼𝑟𝑖
II

𝑖

, 

 

𝑤𝑟
′ (𝑐I, 𝑐II) = 𝑤𝑟(𝑐II, 𝑐I) = 𝑘𝑟 ∏(𝑐𝑖

II)
𝛼𝑟𝑖

I

𝑖

∏(𝑐𝑖
I)

𝛼𝑟𝑖
II

                     (23)         

𝑖

 

 

where we take 𝑘′𝑟 = 𝑘𝑟  due to the symmetry in space. 

To first order in  𝑙, the flux vector for 𝐴𝑖 in this process is 

 

𝐽𝑟𝑖 = −𝛾𝑟𝑖[𝑤𝑟(𝑐(𝑥), 𝑐(𝑥 + 𝑙)) − 𝑤𝑟(𝑐(𝑥 + 𝑙), 𝑐(𝑥)) ] 

 

= −𝑙𝛾𝑟𝑖 ∑ (
𝜕𝑤𝑟(𝑐I, 𝑐II)

𝜕𝑐𝑗
II

|

𝑐I=𝑐II=𝑐(𝑥)

−   
𝜕𝑤𝑟(𝑐I, 𝑐II)

𝜕𝑐𝑗
I

|

𝑐I=𝑐II=𝑐(𝑥)

)

𝑗

∇𝑐𝑗(𝑥) 

(24) 

= 𝑙𝛾𝑟𝑖𝑤𝑟(𝑐(𝑥), 𝑐(𝑥)) ∑
𝛼𝑟𝑗

II − 𝛼𝑟𝑗
I

𝑐𝑗
𝑗

∇𝑐𝑗(𝑥) 

= −𝑙𝑘𝛾𝑟𝑖 (∏ 𝑐𝑞

𝛼𝑟𝑞
I +𝛼𝑟𝑞

II

𝑞

) ∑
𝛼𝑟𝑗

II − 𝛼𝑟𝑗
I

𝑐𝑗
𝑗

∇𝑐𝑗(𝑥). 

 

Here, 𝛾𝑟𝑖 = 𝛽𝑟𝑖
I − 𝛼𝑟𝑖

I  (input minus output in the first cell); the minus in front of the 

formula appears because the direction of flux from cell I to cell II (from 𝑥 to (𝑥 + 𝑙)) is positive. 

The factor  1/𝑐𝑗 never leads to a singularity in the flux because 𝑐𝑗 enters in the monomial 

∏ 𝑐𝑞

𝛼𝑟𝑞
I +𝛼𝑟𝑞

II

𝑞  with the power 𝛼𝑟𝑗
I + 𝛼𝑟𝑗

II . This power is strictly positive if the coefficient (𝛼𝑟𝑗
II −

𝛼𝑟𝑗
I ) is not zero. 
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The proper scaling of 𝑘 for grid refinement or coarsening is 𝑘𝑙 = 𝑑 = 𝑐𝑜𝑛𝑠𝑡 in order not to 

change the first order expression for flux (24). 

According to (24), the matrix of diffusion coefficients for the elementary process (22) 

(together with its space-inverted process) is 

 

𝐷𝑟𝑖𝑗(𝑐) = 𝑑 (∏ 𝑐𝑞

𝛼𝑟𝑞
I +𝛼𝑟𝑞

II

𝑞
)

𝛾𝑟𝑖(𝛼𝑟𝑗
II − 𝛼𝑟𝑗

I )

𝑐𝑗
,                                           (25) 

 

where  𝑑 = 𝑐𝑜𝑛𝑠𝑡 (= 𝑘𝑙).  

The corresponding diffusion equations have the divergent form: 

 

𝜕𝑐

𝜕𝑡
= 𝑑𝑖𝑣(𝐷(𝑐)∇𝑐),                                                                 (26) 

 

where 𝑐 is the vector of concentrations and 𝐷 is the matrix of diffusion coefficients (25). 

It might be useful to represent the flux (24) similarly to the Teorell formula [19, 20]. For 

this purpose, let us collect under ∇ the terms that represent the chemical potential in perfect 

media:  𝜇 = 𝑅𝑇𝑙𝑛𝑐 + 𝜇0. 

We assume that  𝑇 and  𝜇0  are constant in space. With these conditions, 

 

𝐽𝑟𝑖 = −
𝑙𝑘

𝑅𝑇
𝛾𝑟𝑖 (∏ 𝑐𝑞

𝛼𝑟𝑞
I +𝛼𝑟𝑞

II

𝑞

) ∑(𝛼𝑟𝑗
II − 𝛼𝑟𝑗

I )∇𝜇𝑗

𝑗

(𝑥) .                             (27) 

 

The deductive method described above for analyzing the mechanisms of the complex 

process of multicomponent diffusion does not allow us to answer the important question of 

determining the stoichiometric coefficients of the dominant (basic) mechanism that determines 

the course of diffusion transfer. 

However, knowing the numerical values of these coefficients is very important from both a 

theoretical and a practical point of view.  Firstly, it can be seen from expression (25) for the 

matrix of diffusion coefficients that these quantities determine what sign each member of the 

matrix has. Secondly, these values determine the degree of dependence of the diffusion 

coefficient on the concentrations of the components of a complex system. To solve this problem 

adequately, the experimental and theoretical methods for establishing the concentration 

dependence of the diffusion coefficients should be combined.  

 Such an approach can be called the inductive-deductive method of analyzing the 

mechanisms of diffusion transfer. 

 

5.   Inductive-deductive method of analyzing the mechanisms of the diffusion process  

 

We proceed to constructing a mathematical scheme to describe nonlinear multicomponent 

diffusion by analyzing the experimental curves of the dependence of the diffusion coefficients on 

the diffusant's concentration in complex (for example, biological) systems. The concentration 
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curves recorded under specific conditions reveal the degree of dependence of the intensity of 

diffusion transfer on the components of the concentration vector of a multicomponent system. 

Therefore, deciphering these curves will allow us to establish the degree of dependence (the law 

of dependence) of each diffusion coefficient on the concentration of particles participating in 

each elementary event of the diffusion jump. 

For simplicity, we restrict ourselves to approximating the pairwise interaction of diffusing 

microparticles and assume the absence of chemical transformations. 

In approximating the pair wise interaction of flows of various components, the 

stoichiometric equation that describes an elementary diffusion event within the framework of the 

cell-hopping model (see Fig. 1) will have the following form: 

 

𝑛𝑖𝐴𝑖
I + 𝑛𝑗𝐴𝑗

II → 𝑛𝑖𝐴𝑖
II + 𝑛𝑗𝐴𝑗

I   .                                                    (28) 

 

Under the assumption that the microdescription is invariant to time reversal, each process 

(28) also has an inverse process associated with it: 

 

𝑛𝑖𝐴𝑖
II + 𝑛𝑗𝐴𝑗

I → 𝑛𝑖𝐴𝑖
I + 𝑛𝑗𝐴𝑗

II  .                                         (29) 

 

The expression for the density vector of the total flux of the  𝑖 - th substance, diffusing 

according to the mechanism (28) and (29), will have the following form: 

 

𝐽𝑖 = 𝑘1𝑛𝑖𝑛𝑗𝑐𝑖
𝑛𝑖𝑐

𝑗

𝑛𝑗−1
∇⃗⃗⃗𝑐𝑗 − 𝑘2𝑛𝑖

2𝑐𝑖
𝑛𝑖−1

𝑐
𝑗

𝑛𝑗 ∇⃗⃗⃗𝑐𝑖  ,                                         (30) 

 

where  𝑘1 and  𝑘2 are the rate constants of elementary diffusion events by the mechanism (28) 

and (29); 𝑐𝑖 , 𝑐𝑗  are the concentrations of the components involved in the elementary act of 

diffusion. 

By analogy with Fick's law, from (30) we obtain, respectively, the expression for the 

coefficient of "self-diffusion" (coefficient before ∇⃗⃗⃗𝑐𝑖): 

 

𝐷𝑖𝑖(𝑐𝑖, 𝑐𝑗 , ) = 𝑘2𝑛𝑖
2𝑐𝑖

𝑛𝑖−1
𝑐

𝑗

𝑛𝑗
                                                          (31)     

 

and for the coefficient of "mutual diffusion" (coefficient before ∇⃗⃗⃗𝑐𝑗): 

 

 𝐷𝑖𝑗(𝑐𝑖, 𝑐𝑗 , ) = 𝑘1𝑛𝑖𝑛𝑗𝑐𝑖
𝑛𝑖𝑐

𝑗

𝑛𝑗−1
.                                                           (32) 

 

Thus, if experimental curves 𝐷𝑖𝑖 = 𝐷𝑖𝑖(𝑐𝑖, 𝑐𝑗 , )  or 𝐷𝑖𝑗 = 𝐷𝑖𝑗(𝑐𝑖, 𝑐𝑗 , )  are obtained, then 

from the form of these curves and using (31) or (32) we can determine the most probable values 

of stoichiometric coefficients 𝑛𝑖  and 𝑛𝑗  . Summing up our results, we conclude that the general 

quasi-chemical approach for describing nonlinear multicomponent diffusion allows us to develop 

a mathematical model for processing the data of a diffusion experiment and obtaining 
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information on the stoichiometry of the dominant diffusion mechanisms that determine the 

course of the process in each case.   

 

6.  Conclusion 

 

Processing the results of diffusion experiments is a complex and finally unsolved problem. 

First, the laws of diffusion are described by the sums of the series – which are bulky and poorly 

converging. Moreover, in many real-life situations, the initial differential equations cannot be 

expressed in elementary functions (for example, sequential diffusion in a layered medium) or, in 

principle, have no solution (for example, diffusion + a second-order chemical reaction). 

Currently, many branches of science and technology require the optimal control of 

unsteady mass transfer in chemically - or adsorption-active heterogeneous media with varying 

composition and structure in space and time. Such control is inconceivable without knowledge of 

the mechanism of the transfer of low molecular weight substances in a complex system, without 

selecting an adequate diffusion model and without calculating its parameters and their errors. 

We have demonstrated how an approach based on the mechanism of the elementary 

diffusion act allows diffusion to be described in a multicomponent system. The formalism 

developed in this work allows the effective numerical modelling of complex diffusion processes 

in multicomponent systems. 
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