Cayley-type theorems for g-dimonoids

Yu. M. Movsisyan and M. A. Yolchyan

Abstract. In this paper we prove Cayley-type theorems for *g*-dimonoids using the left (right) acts of sets and concept of dialgebra.

Key Words: g-dimonoid, dimonoid, act of set, dialgebra, morphism of acts, (l, r)-morphism of semigroup. Mathematics Subject Classification 2010: 20M30, 03C05

Introduction

The concepts of a dimonoid and a dialgebra were introduced by Loday [1]. Dimonoids are a tool to study Leibniz algebras [1]. A dimonoid is a set with two binary associative operations satisfying certain additional identities. A dialgebra is a linear analogy of a dimonoid. The concept of a g-dimonoid (a generalized dimonoid) is introduced in [2]. The Cayley-type theorems for dimonoids are proved in [3].

In this paper two Cayley-type theorems for g-dimonoid are suggested.

Definition 1 An algebra $(X; \prec, \succ)$ with two binary operations is called g-dimonoid [2] if it satisfies the following four identities of associativity:

$$(x \prec y) \prec z = x \prec (y \prec z), \tag{A1}$$

$$(x \prec y) \prec z = x \prec (y \succ z), \tag{A2}$$

$$(x \prec y) \succ z = x \succ (y \succ z), \tag{A}_3$$

$$(x \succ y) \succ z = x \succ (y \succ z).$$
 (A₄)

Definition 2 A g-dimonoid $(X; \prec, \succ)$ is called dimonoid [1] if it satisfies the following additional identity of associativity, too:

$$(x \succ y) \prec z = x \succ (y \prec z). \tag{A5}$$

Let us give two examples of a dimonoid.

Example 1 Let $(X; \prec)$ be a zero semigroup, that is $x \prec y = 0$ for all $x, y \in X$, where 0 is a fixed element of the set X. For fixed elements a, b of the set X, where $a \neq 0, b \neq 0, a \neq b$, we define on X the operation \succ , assuming

$$x \succ y = \begin{cases} a, & x = y = b, \\ 0, & otherwise, \end{cases}$$

for all $x, y \in X$. It is easy to see that $(X; \prec, \succ)$ is a dimonoid.

Example 2 Let $X \neq \emptyset$. Define the following operations on the set X:

$$\begin{aligned} x \succ y &= y, \\ x \prec y &= x, \end{aligned}$$

for all $x, y \in X$. Then the algebra $(X; \prec, \succ)$ is a dimonoid.

Let us give an example of a g-dimonoid which is not a dimonoid.

Example 3 Let X be an arbitrary nonempty set, $|X| \ge 2$, and let X^* be the set of all finite nonempty words in the alphabet X. Denote the first (respectively, the last) letter of a word $\omega \in X^*$ by $\omega^{(0)}$ (respectively, by $\omega^{(1)}$). Define the following operations \prec, \succ on X^* :

$$\omega \prec u = \omega^{(0)},$$
$$\omega \succ u = u^{(1)},$$

for all $\omega, u \in X^*$. It is easy to check that the binary algebra $(X^*; \prec, \succ)$ is a g-dimonoid, but is not a dimonoid.

Definition 3 Let S be a semigroup, $X \neq \emptyset$. The map $(\cdot) : S \times X \rightarrow X; (s, x) \mapsto s \cdot x$ is called a left S-act of X if the identity $(st) \cdot x = s \cdot (t \cdot x)$ holds.

Definition 4 Let S be a semigroup, $X \neq \emptyset$. The map $(\cdot) : X \times S \rightarrow X; (x, s) \mapsto x \cdot s$ is called a right S-act of X if the identity $x \cdot (st) = (x \cdot s) \cdot t$ holds.

Definition 5 Let the map (\cdot) be a left S-act of X and the map (\circ) be a left S-act of Y: The map $\varphi : X \to Y$ is called morphism of that left S-acts if $\varphi(s \cdot x) = s \circ \varphi(x)$ for all $x \in X$ and $s \in S$.

A morphism of right S-acts can be defined in a similar way. Let $(S; \bullet)$ be a semigroup, $X \neq \emptyset$. We can interpret the operation (\bullet) as a left and a right S-act of S.

Definition 6 Let $(S; \bullet)$ be a semigroup, $X \neq \emptyset$, and maps (\cdot) and (\circ) are respectively left and right S-acts of X; then the map $\varphi : X \to S$ is called (l, r)-morphism of semigroup S if the following conditions are valid:

$$\varphi(s \cdot x) = s \bullet \varphi(x),$$
$$\varphi(x \circ s) = \varphi(x) \bullet s,$$

for all $x \in X$ and $s \in S$.

Definition 7 A dialgebra is a vector space over a field equipped with two binary bilinear operations satisfying the axioms of a dimonoid [1].

For the second order formulae (and the second order languages) see [4, 5, 6]. Let us recall, that a hyperidentity [7, 8, 9, 10, 11, 12] (or $\forall(\forall)$ -identity) is a second-order formula of the following form:

$$\forall X_1, \ldots, X_m \forall x_1, \ldots, x_n (\omega_1 = \omega_2),$$

where ω_1, ω_2 are words (terms) in the alphabet of functional variables X_1, \ldots, X_m and objective variables x_1, \ldots, x_n . However hyperidentities are usually presented without universal quantifiers: $\omega_1 = \omega_2$. A hyperidentity $\omega_1 = \omega_2$ is said to be satisfied in the algebra $(Q; \Sigma)$ if this equality holds whenever every object variable x_j is replaced by an arbitrary element from Q and every functional variable X_i is replaced by an arbitrary operation of the corresponding arity from Σ . A possibility of such replacement is assumed, that is:

$$\{|X_1|, \dots, |X_m|\} \subseteq \{|A| \mid A \in \Sigma\} = T_{(Q,\Sigma)} = T_{(\Sigma)},$$

where |S| is the arity of S, and $T_{(Q,\Sigma)}$ is called the arithmetic type of $(Q; \Sigma)$. A T-algebra is an algebra with arithmetic type $T \subseteq N$. A class of algebras is called a class of T-algebras if every algebra in it is a T-algebra.

Definition 8 An algebra $(Q; \Sigma)$ is called idempotent, if the following hyperidentity of idempotency is valid:

$$X(\underbrace{x,\ldots,x}_{n}) = x,$$
 (id)

for all $n \in T_{(Q;\Sigma)}$.

The hyperidentity is said to be non-trivial if m > 1, and it is trivial if m = 1. The number m is called the functional rank of the given hyperidentity.

A binary algebra $(Q; \Sigma)$ is said to be a q-algebra (e-algebra) if there is an operation $A \in \Sigma$ such that Q(A) is a quasigroup (a groupoid with a unit).

A binary algebra $(Q; \Sigma)$ is called non-trivial if $|\Sigma| > 1$. It is known [7, 8] (see also [9, 13]) that if an associative non-trivial hyperidentity is satisfied in a non-trivial q-algebra (e-algebra), then this hyperidentity can only be of the functional rank 2 and of one of the following forms:

$$X(x, Y(y, z)) = Y(X(x, y), z), \qquad (asm)_1$$

$$X(x, Y(y, z)) = X(Y(x, y), z), \qquad (asm)_2$$

$$Y(x, Y(y, z)) = X(X(x, y), z).$$
(asm)₃

Moreover, in the class of q-algebras (e-algebras) the hyperidentity $(asm)_3$ implies the hyperidentity $(asm)_2$ which, in its turn, implies the hyperidentity $(asm)_1$.

The algebra $(Q; \Sigma)$ is called hyperassociative, if it satisfies the hyperidentity of associativity $(asm)_1$.

Example 4 Let A, B be nonempty sets, Σ be the set of all mappings from B to A, and Q be the set of all mappings from A to B. Then every element $\alpha \in \Sigma$ can be considered as a binary operation on Q,

$$\alpha(a,b) = a \cdot \alpha \cdot b,$$

where $a, b \in Q$ and $a \cdot \alpha \cdot b$ is the usual superposition of mappings. So we obtain hyperassociative algebra $(Q; \Sigma)$. Moreover, if A = B we obtain second degree (order) algebra $(Q; \Sigma; \cdot)$ in the sense of [14].

Thus, hyperassociative algebras are algebras with semigroup operations. Hyperassociative algebras under the name of Γ -semigroups (gamma-semigroups) or doppelsemigroups were considered by various authors [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

Note that a g-dimonoid $(Q; \prec, \succ)$ is hyperassociative iff (A_5) and the following identity of associativity hold:

$$(x \prec y) \succ z = x \prec (y \succ z). \tag{A6}$$

1 Main results

A Cayley-type theorem for dimonoids was proved in [3]. In this chapter we prove a more general result.

Theorem 1 Let S be a semigroup, $X \neq \emptyset$, and maps (·) and (o) be left and right S-acts of X respectively, and let the map $\varphi : X \to S$ be a (l, r)morphism of semigroup S. Define the operations \succ and \prec as follows:

$$\succ: X \times X \to X, \quad x \succ y := \varphi(x) \cdot y, \ \forall x, y \in X,$$

$$\prec: X \times X \to X, \quad x \prec y := x \circ \varphi(y), \ \forall x, y \in X.$$

Then the algebra $(X; \prec, \succ)$ is a g-dimonoid, which we denote by $C_S(X)$ and call Cayley's g-dimonoid.

Conversely, for any arbitrary g-dimonoid G there exists a semigroup S, and $X \neq \emptyset$, and left and right S-acts of X, and an (l,r)-morphism of semigroup S such that the g-dimonoid G coincides with $C_S(X)$, i.e. $G = C_S(X)$.

Proof. Let us prove the first part of the result. For this, it suffices to verify the following four identities:

$$\begin{array}{l} (A_1) \ (x \prec y) \prec z = (x \circ \varphi(y)) \prec z = (x \circ \varphi(y)) \circ \varphi(z) = x \circ (\varphi(y)\varphi(z)) = \\ x \circ \varphi(y \circ \varphi(z)) = x \prec (y \circ \varphi(z)) = x \prec (y \prec z), \end{array}$$

$$\begin{array}{l} (A_2) \ (x \prec y) \prec z = (x \prec y) \circ \varphi(z) = (x \circ \varphi(y)) \circ \varphi(z) = x \circ (\varphi(y)\varphi(z)) = \\ x \circ \varphi(\varphi(y) \cdot z) = x \prec (\varphi(y) \cdot z) = x \prec (y \succ z), \end{array}$$

$$\begin{array}{l} (A_3) \ (x \prec y) \succ z = (x \circ \varphi(y)) \succ z = \varphi(x \circ \varphi(y)) \cdot z = (\varphi(x)\varphi(y)) \cdot z = \\ \varphi(x) \cdot (\varphi(y) \cdot z) = x \succ (\varphi(y) \cdot z) = x \succ (y \succ z), \end{array}$$

 $\begin{array}{l} (A_4) \ (x \succ y) \succ z = (\varphi(x) \cdot y) \succ z = \varphi(\varphi(x) \cdot y) \cdot z = (\varphi(x)\varphi(y)) \cdot z = \\ \varphi(x) \cdot (\varphi(y) \cdot z) = x \succ (\varphi(y) \cdot z) = x \succ (y \succ z). \end{array}$

Hence, the algebra $(X; \prec, \succ)$ is a g-dimonoid and $(X; \prec, \succ) = C_S(X)$.

Now we prove the second part of the result. Let the algebra $D = (D; \prec, \succ)$ be a *g*-dimonoid. We denote by ~ the least congruence on D for which the quotient *g*-dimonoid is a semigroup. It is clear that ~ is the congruence generated by the relation $\sigma = \{(a, a), (a \succ b, a \prec b), (a \prec b, a \succ b) : a, b \in D\}$. Let $x \sim y$. According to the definition of the congruence, we can say that there exist $b_1, c_1, ..., b_n, c_n \in D$ and $o_1, o'_1, ..., o_n, o'_n \in \{\succ, \prec\}$ such that the following condition holds:

$$x = (b_1 o_1 c_1) \sigma(b_1 o'_1 c_1) = (b_2 o_2 c_1) \sigma(b_2 o'_2 c_2) = \dots = (b_n o_n c_n) \sigma(b_n o'_n c_n) = y.$$

According to the identities A_3 , A_4 , we have:

$$(b_i o_i c_i) \succ a = (b_i o'_i c_i) \succ a, \forall i = 1, ..., n, \forall a \in D.$$

Thus,

$$x \succ a = (b_1 o_1 c_1) \succ a = (b_1 o'_1 c_1) \succ a = \dots = (b_n o_n c_n) \succ a =$$
$$= (b_n o'_n c_n) \succ a = y \succ a \to x \succ a = y \succ a, \forall a \in D.$$

According to the identities A_1, A_2 , we have a $\prec x = a \prec y, \forall a \in D$, i.e.

$$x \sim y \rightarrow x \succ a = y \succ a \& a \prec x = a \prec y, \forall a \in D.$$

It means, that the congruence \sim is contained in the congruence:

$$\tau = \{ (x, y) \in D \times D \mid x \succ a = y \succ a \& a \prec x = a \prec y, \forall a \in D \}.$$

Now let us pick any congruence θ which satisfies the condition $\sim \subseteq \theta \subseteq \tau$. Hence D/θ is an algebra with two binary operations, which are equal, because θ contains the congruence \sim . So D/θ is a semigroup, which we denote by S, and for arbitrary $x \in D$ we denote by [x], the class of the congruence θ that contains x. Define the maps:

$$\cdot: S \times D \to D, \ [x] \cdot y := x \succ y, \tag{1}$$

$$\circ: D \times S \to D, \ x \circ [y] := x \prec y.$$

$$\tag{2}$$

The correctness of definitions of the maps \cdot and \circ follows from the fact that $\theta \subseteq \tau$. We now check that the maps \cdot and \circ are left and right S-acts of D, respectively:

$$([a] [b]) \cdot x = [a \prec b] \cdot x \stackrel{(1)}{=} (a \prec b) \succ x \stackrel{(A_3)}{=} a \succ (b \succ x) \stackrel{(1)}{=} a \succ ([b] \cdot x) \stackrel{(1)}{=} [a] \cdot ([b] \cdot x),$$

$$x \circ ([a][b]) = x \circ [a \succ b] \stackrel{(2)}{=} x \prec (a \succ b) \stackrel{(A_2)}{=} (x \prec a) \prec b \stackrel{(2)}{=} (x \circ [a]) \prec b \stackrel{(2)}{=} (x \circ [a]) \circ [b].$$

We now consider the map $\Phi: D \to S, \Phi(x) = [x]$ and show that it is a (l, r)-morphism of S:

$$\Phi([a] \cdot x) = \Phi(a \succ x) = [a \succ x] = [a][x] = [a]\Phi(x),$$

$$\Phi(x \circ [a]) = \Phi(x \prec a) = [x \prec a] = [x][a] = \Phi(x)[a].$$

Note, that the conditions of the first part of the theorem are satisfied, so $(D; \prec', \succ') = C_S(D)$ where:

$$\succ': D \times D \to D, x \succ' y := \Phi(x) \cdot y, \ \forall x, y \in D,$$
$$\prec': D \times D \to D, x \prec' y := x \circ \Phi(y), \ \forall x, y \in D.$$

Also note that:

$$\begin{array}{l} \succ' = \succ, \\ \prec' = \prec, \end{array}$$

hence $(D; \prec', \succ') = C_S(D)$. \Box

Let K be a field, X be a nonempty set: $X = \{x_i \mid i \in I\}$. Denote $G := \{\{\alpha_i x_i \mid i \in I\} \mid \exists J \subset I, |I \setminus J| < \infty, \alpha_j = 0, \forall j \in J, \alpha_i \in K\}$, where $\alpha_i x_i$ is just symbol. For any $x_t \in X$, considering $x_t = \{\alpha_i x_i \mid i \in I\}$, where $\alpha_t = 1$, and $\alpha_i = 0$ if $i \neq t$, we obtain that $X \subseteq G$. Now we define the operation + on G:

$$\{\alpha_i x_i \mid i \in I\} + \{\beta_i x_i \mid i \in I\} = \{(\alpha_i + \beta_i) x_i \mid i \in I\}.$$

Because K(+) is an abelian group, G(+) will be an abelian group, too. We now define the operation $\cdot : K \times G \to G$ as follows:

$$\alpha \cdot \{\alpha_i x_i \mid i \in I\} = \{(\alpha \alpha_i) x_i \mid i \in I\}.$$

Then G(+) with operation \cdot will be a free K-module, which we denote by K[X]. It is easy to see, that if D is a dimonoid, then K[D] is a dialgebra. This fact is used in the proof of the following result.

Theorem 2 Let S be a semigroup satisfying the following additional identity:

$$xyz = tlp. \tag{(*)}$$

Define the operations \succ and \prec on $S \times S$ in the following way:

$$(g,h) \prec (k,l) = (gk,hk), \qquad (op_1)$$

$$(g,h) \succ (k,l) = (gk,gl), \qquad (op_2)$$

where $(g,h), (k,l) \in S \times S$. Then $\overline{S} = (S \times S; \prec, \succ)$ is a g-dimonoid, which satisfies the following hyperidentity:

$$X(x, Y(y, z)) = Z(T(t, l), p).$$
 (**)

In particular the g-dimonoid \overline{S} will be hyperassociative.

Conversely, for any g-dimonoid D with the hyperidentity (**) there exists a semigroup H with the identity (*) such that D is isomorphically embedded into \overline{H} .

Proof. For proving the first part of the assertion, we use the previous theorem. Namely, we define the left and right S-acts of $S \times S$:

$$a \cdot (b, c) = (ab, ac),$$
$$(b, c) \circ a = (ba, ca).$$

We also define the operation $\varphi : S \times S \to S$, $(a, b) \mapsto a$ and check that the map φ is a (l, r)-morphism of S:

$$\varphi(a \cdot (b, c)) = \varphi((ab, ac)) = ab = a\varphi((b, c)),$$

$$\varphi((b,c) \circ a) = \varphi((ba,ca)) = ba = \varphi((b,c))a$$

Then

$$(g,h) \prec (k,l) = (gk,hk) = (g,h) \circ k = (g,h) \circ \varphi(k,l),$$
$$(g,h) \succ (k,l) = (gk,gl) = g \cdot (k,l) = \varphi(g,h) \cdot (k,l),$$

for all $(g, h), (k, l) \in S \times S$. Now according to Theorem 1, we obtain, that \overline{S} is a g-dimonoid. Using the identity (*), it is easy to check that \overline{S} satisfies the hyperidentity (**). We should check the following cases:

1. $(g,h) \prec ((k,l) \succ (p,t)) = ((m,n) \prec (r,s)) \succ (u,v),$ 2. $(g,h) \prec ((k,l) \succ (p,t)) = ((m,n) \prec (r,s)) \prec (u,v),$ 3. $(g,h) \prec ((k,l) \succ (p,t)) = ((m,n) \succ (r,s)) \succ (u,v).$ 4. $(q,h) \prec ((k,l) \succ (p,t)) = ((m,n) \succ (r,s)) \prec (u,v),$ 5. $(q,h) \succ ((k,l) \succ (p,t)) = ((m,n) \prec (r,s)) \succ (u,v),$ 6. $(q,h) \succ ((k,l) \succ (p,t)) = ((m,n) \prec (r,s)) \prec (u,v),$ 7. $(g,h) \succ ((k,l) \succ (p,t)) = ((m,n) \succ (r,s)) \succ (u,v),$ 8. $(q,h) \succ ((k,l) \succ (p,t)) = ((m,n) \succ (r,s)) \prec (u,v),$ 9. $(q,h) \prec ((k,l) \prec (p,t)) = ((m,n) \prec (r,s)) \succ (u,v),$ 10. $(g,h) \prec ((k,l) \prec (p,t)) = ((m,n) \prec (r,s)) \prec (u,v),$ 11. $(q,h) \prec ((k,l) \prec (p,t)) = ((m,n) \succ (r,s)) \succ (u,v),$ 12. $(g,h) \prec ((k,l) \prec (p,t)) = ((m,n) \succ (r,s)) \prec (u,v),$ 13. $(q,h) \succ ((k,l) \prec (p,t)) = ((m,n) \prec (r,s)) \succ (u,v),$ 14. $(q,h) \succ ((k,l) \prec (p,t)) = ((m,n) \prec (r,s)) \prec (u,v),$ 15. $(q,h) \succ ((k,l) \prec (p,t)) = ((m,n) \succ (r,s)) \succ (u,v),$ 16. $(q,h) \succ ((k,l) \prec (p,t)) = ((m,n) \succ (r,s)) \prec (u,v).$ Indeed:

1.

$$(g,h) \prec ((k,l) \succ (p,t)) = (g,h) \prec (kp,kt) = (gkp,hkp) \stackrel{(*)}{=} (mru,mrv) = (mr,nr) \succ (u,v) = ((m,n) \prec (r,s)) \succ (u,v);$$

 $(g,h) \prec ((k,l) \succ (p,t)) = (g,h) \prec (kp,kt) = (gkp,hkp) \stackrel{(*)}{=}$ $(mru, nru) = (mr, nr) \prec (u, v) = ((m, n) \prec (r, s)) \prec (u, v);$

3.

2.

$$(g,h) \prec ((k,l) \succ (p,t)) = (g,h) \prec (kp,kt) = (gkp,hkp) \stackrel{(*)}{=} (mru,mrv) = (mr,ms) \succ (u,v) = ((m,n) \succ (r,s)) \succ (u,v);$$

4.

$$(g,h) \prec ((k,l) \succ (p,t)) = (g,h) \prec (kp,kt) = (gkp,hkp) \stackrel{(*)}{=} (mru,msu) = (mr,ms) \prec (u,v) = ((m,n) \succ (r,s)) \prec (u,v);$$

5.

$$(g,h) \succ ((k,l) \succ (p,t)) = (g,h) \succ (kp,kt) = (gkp,gkt) \stackrel{(*)}{=} (mru,mrv) = (mr,nr) \succ (u,v) = ((m,n) \prec (r,s)) \succ (u,v);$$

6.

$$(g,h) \succ ((k,l) \succ (p,t)) = (g,h) \succ (kp,kt) = (gkp,gkt) \stackrel{(*)}{=} (mru,nru) = (mr,nr) \prec (u,v) = ((m,n) \prec (r,s)) \prec (u,v);$$

7.

$$(g,h) \succ ((k,l) \succ (p,t)) = (g,h) \succ (kp,kt) = (gkp,gkt) \stackrel{(*)}{=} (mru,mrv) = (mr,ms) \succ (u,v) = ((m,n) \succ (r,s)) \succ (u,v);$$

8.

$$\begin{split} (g,h)\succ ((k,l)\succ (p,t)) &= (g,h)\succ (kp,kt) = (gkp,gkt) \stackrel{(*)}{=} \\ (mru,msu) &= (mr,ms)\prec (u,v) = ((m,n)\succ (r,s))\prec (u,v); \end{split}$$

9.

$$(g,h) \prec ((k,l) \prec (p,t)) = (g,h) \prec (kp,lp) = (gkp,hkp) \stackrel{(*)}{=} (mru,mrv) = (mr,nr) \succ (u,v) = ((m,n) \prec (r,s)) \succ (u,v);$$

10.

$$(g,h) \prec ((k,l) \prec (p,t)) = (g,h) \prec (kp,lp) = (gkp,hkp) \stackrel{(*)}{=} (mru,nru) = (mr,nr) \prec (u,v) = ((m,n) \prec (r,s)) \prec (u,v);$$

11.

11.

$$(g,h) \prec ((k,l) \prec (p,t)) = (g,h) \prec (kp,lp) = (gkp,hkp) \stackrel{(*)}{=}$$

$$(mru,mrv) = (mr,ms) \succ (u,v) = ((m,n) \succ (r,s)) \succ (u,v);$$

12.

$$\begin{array}{l} (g,h)\prec ((k,l)\prec (p,t))=(g,h)\prec (kp,lp)=(gkp,hkp)\stackrel{(*)}{=} \\ (mru,msu)=(mr,ms)\prec (u,v)=((m,n)\succ (r,s))\prec (u,v); \end{array}$$

13.

$$(g,h) \succ ((k,l) \prec (p,t)) = (g,h) \succ (kp,lp) = (gkp,glp) \stackrel{(*)}{=} \\ (mru,mrv) = (mr,nr) \succ (u,v) = ((m,n) \prec (r,s)) \succ (u,v);$$

14.

$$(g,h) \succ ((k,l) \prec (p,t)) = (g,h) \succ (kp,lp) = (gkp,glp) \stackrel{(*)}{=} (mru,nru) = (mr,nr) \prec (u,v) = ((m,n) \prec (r,s)) \prec (u,v);$$

15.

$$\begin{array}{l} (g,h)\succ ((k,l)\prec (p,t))=(g,h)\succ (kp,lp)=(gkp,glp)\stackrel{(*)}{=} \\ (mru,mrv)=(mr,ms)\succ (u,v)=((m,n)\succ (r,s))\succ (u,v) \end{array}$$

16.

$$\begin{array}{l} (g,h)\succ ((k,l)\prec (p,t))=(g,h)\succ (kp,lp)=(gkp,glp)\stackrel{(*)}{=} \\ (mru,msu)=(mr,ms)\prec (u,v)=((m,n)\succ (r,s))\prec (u,v). \end{array}$$

Now, we turn to the proof of the second part of the theorem. Let $D = (D; \prec, \succ)$ be a g-dimonoid satisfying the hyperidentity (**). By D^0 we denote D with an adjoined element 0 (called zero) such that x * 0 = 0 = 0 * x, for all $x \in D^0$, and $* \in \{\succ, \prec\}$. Let K be a field and $H = (D/\theta)^0 \times K[D^0]$ (we invoke the notation from the proof of Theorem 1). On H we define a binary operation \bullet :

$$([a], x) \bullet ([b], y) = ([a \succ b], (a \succ y) + (x \prec b)),$$

for all $a, b, x, y \in D^0$. This operation is well-defined, because for a congruence θ we have:

$$a\theta a' \to a \succ y = a' \succ y \& x \prec a = x \prec a',$$

for all $x, y \in D$.

We now check, that \bullet is associative:

$$\begin{split} (([a], x) \bullet ([b], y)) \bullet ([c], z) &= ([a \succ b], (a \succ y) + (x \prec b)) \bullet ([c], z) = \\ ([a \succ b \succ c], (a \succ b \succ z) + (((a \succ y) + (x \prec b)) \prec c)) = \\ ([a \succ b \succ c], (a \succ b \succ z) + ((a \succ y) \prec c) + (x \prec b \prec c))) \stackrel{(A_5)}{=} \\ ([a \succ b \succ c], (a \succ b \succ z) + (a \succ (y \prec c)) + (x \prec b \prec c)) = \\ ([a \succ b \succ c], (a \succ ((b \succ z) + (y \prec c))) + (x \prec b \prec c)) = \\ ([a], x) \bullet ([b \succ c], (b \succ z) + (y \prec c)) = \\ ([a], x) \bullet (([b], y) \bullet ([c], z)). \end{split}$$

Then $H(\bullet)$ is a semigroup with zero element ([0], 0). Define a map $f: D \to \overline{H}$ in the following way:

$$f(x) = (([x], 0), ([0], x))$$

It is easy to see, that f is an injective map. Furthermore:

$$\begin{aligned} f(a) \succ f(b) &= (([a], 0), ([0], a)) \succ (([b], 0), ([0], b)) = \\ &\quad (([a], 0) \bullet ([b], 0), ([a], 0) \bullet ([0], b)) = \\ (([a \succ b], (a \succ 0) + (0 \prec b)), ([0], (a \succ b) + (0 \prec 0))) = \\ &\quad (([a \succ b], 0), ([0], a \succ b)) = f(a \succ b). \end{aligned}$$

We obtain $f(a) \prec f(b) = f(a \prec b)$ in a similar way. Hence, f is a monomorphism of the g-dimonoids. Then D is isomorphically embedded into \overline{H} . Using the hyperidentity (**), it is easy to show that the semigroup \overline{H} satisfies the identity (*). Indeed:

$$([g], x_g) \bullet ([k], x_k) \bullet ([t], x_t) = ([g \succ k], (g \succ x_k) + (x_g \prec k)) \bullet ([t], x_t) = ([g \succ k \succ t], (g \succ k \succ x_t) + ((g \succ x_k) \prec t) + ((x_g \prec k) \prec t)) \stackrel{(**)}{=} ([h \succ r \succ l], (h \succ r \succ x_l) + ((h \succ x_r) \prec l) + ((x_h \prec r) \succ l)) = ([h \succ r], (h \succ x_r) + (x_h \prec r)) \bullet ([l], x_l) = ([h], x_h) \bullet ([r], x_r) \bullet ([l], x_l).$$

2 Corollaries

Corollary 1 ([3]) Let S be a semigroup and X be both a left S-act and a right S-act with commuting actions, and let $\varphi : X \to S$ be a (l, r)-morphism of S. Then the set X with two binary operations \prec and \succ defined by the following rules:

$$\begin{aligned} x \prec y &:= x \circ \varphi(y), \\ x \succ y &:= \varphi(x) \cdot y, \end{aligned}$$

for all $x, y \in X$, is a dimonoid. Conversely, any dimonoid can be so constructed.

Corollary 2 (Cayley-type theorem for idempotent g-dimonoids) Let S be a semigroup and $X \neq \emptyset$, let the maps (·) and (o) be left and right S-acts respectively, let the map $\varphi : X \to S$ be a (l, r)-morphism of S which satisfies the following condition:

$$\varphi(x) \cdot x = x \circ \varphi(x) = x, \forall x \in X.$$
(#)

In this case $C_S(\mathbf{X})$ is an idempotent g-dimonoid.

Conversely, for any arbitrary idempotent g-dimonoid G there exists a semigroup S, and $X \neq \emptyset$, a left and a right S-acts of X, and a (l, r)-morphism of S, which satisfies (#) such that G coincides with $C_S(X)$, i.e. $G = C_S(X)$.

Corollary 3 (Cayley-type theorem for hyperassociative g-dimonoids) Let S be a semigroup and $X \neq \emptyset$, let the maps (·) and (o) be respectively left and right S-acts, let the map $\Phi : X \to S$ be a (l, r)-morphism of S which satisfies the following conditions:

$$(\varphi(x)\varphi(y)) \cdot z = x \circ (\varphi(y)\varphi(z)), \ \forall x, y, z \in X, \tag{##}$$

$$(\varphi(x) \cdot y) \circ \varphi(z) = \varphi(x) \cdot (y \circ \varphi(z)), \ \forall x, y, z \in X.$$
 (###)

In this case $C_S(X)$ is a hyperassociative g-dimonoid.

Conversely, for any arbitrary hyperassociative g-dimonoid G there exists a semigroup S, a non empty set X, and a left and a right S-acts of X, and a (l, r)-morphism of S, which satisfies (##) and (###), that G coincides with $C_S(X)$, i.e. $G = C_S(X)$.

Corollary 4 Let S be a commutative semigroup. Define the operations \succ and \prec on $S \times S$ as in (op_1) and (op_2) . Then $\overline{S} = (S \times S; \prec, \succ)$ is a g-dimonoid, which satisfies the following identity:

$$x \succ y = y \prec x. \tag{(***)}$$

Conversely, for any g-dimonoid D with the condition (***) there exists a commutative semigroup H such that D is isomorphically embedded into \overline{H} .

Definition 9 A g-dialgebra is a vector space over a field equipped with two binary bilinear operations satisfying the axioms of a g-dimonoid.

Open problem 1. Prove a Cayley-type theorem for *g*-dialgebras. **Open problem 2.** Characterize the free *g*-dialgebras.

Acknowledgments. This research is partially supported by the State Committee of Science of the Republic of Armenia, grants: 10-3/1-41, 18T-1A306.

References

 J. L. Loday, Dialgebras. Dialgebras and Related Operads, Lect. Notes Math., Springer, Berlin, (2001), pp. 7–66.

- [2] Yu. M. Movsisyan, S. Davidov, M. Safaryan, Construction of free gdimonoids, Algebra Discrete Math., 18 (2014), no. 1, pp. 138–148.
- [3] A. V. Zhuchok, A. B. Gorbatkov, On the structure of dimonoids, Semigroup Forum, (2016), pp. 194–203.
- [4] A. Church, Introduction to Mathematical Logic Vol.1, Princeton University Press, Princeton, 1956.
- [5] A. I. Mal'tsev, Some questions of the theory of classes of models (in Russian), Proceedings of the IVth All-Union Mathematical Congress, 1, (1963), pp. 169–198.
- [6] A. I. Mal'tsev, Algebraic systems, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [7] Yu. M. Movsisyan, Introduction to the theory of algebras with hyperidentities (in Russian), Yerevan State University Press, 1986.
- [8] Yu. M. Movsisyan, Hyperidentities and hypervarieties in algebras (in Russian), Yerevan State University Press, 1990.
- [9] Yu. M. Movsisyan, Hyperidentities in algebras and varieties, Uspekhi Mat. Nauk 53 (1), (1998), pp. 61–114, Russian Math. Surveys, 53 (1), (1998), pp. 57–108.
- [10] Yu. M. Movsisyan, Hyperidentities and Related Concepts. I, Armen. J. Math. 2, (2017), pp. 146–222.
- [11] Yu. M. Movsisyan, Hyperidentities and Related Concepts. II, Armen. J. Math. 4, (2018), pp. 1–85.
- [12] L. A. Skornyakov (Editor), General algebra. V. 2 (in Russian), Moscow, 1991.
- [13] Yu. M. Movsisyan, Hyperidentities and hypervarieties, Scientiae Mathematicae Japonicae, 54 (2001), no. 3, pp. 595–640.
- [14] Yu. M. Movsisyan, Biprimitive classes of algebras of second degree (in Russian), Matematicheskie Issledovaniya 9 (1974), pp. 70–84.
- [15] W. E. Barnes, On Γ -rings of Nobusawa, Pacific J. Math. **3** (1966), pp. 411–422.
- [16] N. Kehayopulu, On regular duo po-Γ-semigroups, Math. Slovaca 61 (2011), No. 6, pp. 871–884.

- [17] J. Luh, On the theory of simple Γ-rings, Michigan Math. J. 16 (1969), pp. 65–75.
- [18] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1(1964), pp. 81–89.
- [19] S. K. Sardar, S. Gupta, K. P. Shum, Γ-semigroups with unities and Morita equivalence for monoids, European Journal of Pure and Applied Mathematics, 6 (2013), no. 1, pp. 1–10.
- [20] M. K. Sen, On Γ-semigroup, In: Algebra and Its Applications, New Delhi, (1981), Lecture Notes in Pure and Appl. Math., Dekker, New York, 91 (1984), pp. 301–308.
- [21] M. K. Sen, N. K. Saha, On Γ-semigroup-I, Bull. Calcutta Math. Soc. 78 (1986), pp. 180–186.
- [22] A. Seth, Γ-group congruences on regular Γ-semigroups, Int. J. Math. Math. Sci. 15 (1992), no. 1, pp. 103–106.
- [23] M. K. Sen, S. Chattopadhyay, Γ-Semigroups. A Survey, In Book: Algebra and Its Applications, (2016).
- [24] A. V. Zuchok, *Relatively free doppelsemigroups*, Potsdam University Press, (2018).
- [25] A. V. Zuchok, Y. V. Zhuchok, J. Koppitz, Free rectangular doppelsemigroups, J. Algebra Appl. September (2019), DOI: 10.1142/SO219498820502059.

Yuri Movsisyan Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia. movsisyan@ysu.am

Marlen Yolchyan Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia. marlen.yolchyan94@gmail.com

Please, cite to this paper as published in Armen. J. Math., V. 12, N. 3(2020), pp. 1–14