## АСТРОФИЗИКА

## **TOM 21**

ДЕКАБРЬ, 1984

выпуск з

УДК: 524.45:[524.52:524.53

# ИЗЛУЧЕНИЕ ГАЗА И ПЫЛИ В СКОПЛЕНИЯХ ГАЛАКТИК В РАДИОДИАПАЗОНЕ

## В. К. ХЕРСОНСКИЙ, Н. В. ВОЩИННИКОВ Поступила 21 октября 1983 Принята к печати 15 мая 1984

Рассмотрены следствия гипотезы о присутствии пылевых частиц в межгалактической среде скоплений галактик. В предположении, что свойства пылинох подобны характеристикам межзвездной пыли, рассчитано излучение пыли и газа в диапазоне для: волн 0.04—50 см для скоплений галактик в Волосах Вероники и Персее. Показано, что излучение пыли не может компенсировать эффект Сюняева—Зельдовича в саятиметровом диапазоне длин волн. В субмиллиметровой и отчасти в миллиметровой области спектра излучение от скоплений галактик может значительно превышать излучение реликтового фона.

1. Введение. Новые данные, поступающие с рентгеновских опутников, постоянно повышают интерес к изучению горячего газа, находящегося в межгалактической среде скоплений галактик. Из втих наблюдений можно извлечь информацию о химическом составе, распределении температуры и концентрации газа в скоплении, что позволяет подойти к решению вопросов о динамическом равновесии, происхождении и эволюции скоплений галактик [1-7]. О характеристиках горячего межгалактического газа можно также судить по искажениям излучения реликтового фона в радиодиапазоне в направлении скоплений галактик (эффект Сюняева-Зельдовнча). Суть эффекта заключается в переработке фотонов реликтового нзлучения из рэлей-джинсовской области спектра в субмиллиметровую в результате обратного комптоновского рассеяния этих фотонов на горячих электронах [8, 9]. При этом должно наблюдаться понижение яркостной температуры реликтового излучения Т и миллиметровых и сантиметровых длинах волн и повышение T<sub>R</sub> на субмиллиметровых длинах волн.

Попытки обнаружить эффект Сюняева—Зельдовича предпринимались неоднократно [10—15] (обсуждение наблюдательных данных в миллиметровом и сантиметровом диапазонах длин волн для 25 скоплений галактик проведено в работах [16, 17]). К сожалению, результаты наблюдений зачастую противоречивы, а ошибки наблюдений, как правило, велики. Лейк [16] отмечает, что лишь для двух скоплений галактик (A 2218 и A 576) более-менее уверенно найдено уменьшение  $T_R$ . Однако недавние исследования, выполненные на длине волны  $\lambda = 6$  см [18], указывают на отсутствие искажений  $T_R$  в направлении A 576 и вероятное увеличение температуры реликтового фона в направлении скопления A 2218. Рост температуры фонового излучения в направлении скопления A 2218. Рост температуры фонового излучения в направлении ряда скоплений галактик отмечался и ранее [11—14]. Для объяснения этого факта были выдвинуты предположения о существовании в скоплениях галактик дискретных источников радиоизлучения или холодного компонента межгалактического газа. Еще одной причиной, позволяющей компенсировать эффект Сюняева—Зельдовича, как указывается в работах [19, 20], может быть излучение межгалактической пыли.

В настоящее время имеются наблюдательные данные, позволяющие предполагать наличие пыли в межталактической среде сксплений галактик. Они получены при изучении покраснения удаленных галактик в скоплениях, слабого оптического диффузного излучения в направлении скоплений, а также при статистических исследованиях распределения скоплений галактик и квазаров [5, 21-27].

Отметим, что при рассмотрении излучения пыли в скоплениях галактик в работах [19, 20] сделано несколько произвольных предположений о свойствах и концентрации пылинок (в частности, считалось, что неоднородно заряженные пылинки излучают как электрические диполи). Поскольку в межталактическую среду пыль попадает из галактик, было бы интересно установить, может ли излучение нагретых пылинок, аналогичных межзвездным, конкурировать с эффектом Сюняева—Зельдовича в скоплениях галактик. Расчеты инфракрасного (ИК) излучения таких пылинок с учетом последних данных об оптических характеристиках межзвездной пыли были проведены нами ранее [28].

Целью данной работы является вычисление ожидаемого излучения межгалактической пыли в радиодиапазоне (от субмиллиметровых до сантиметровых длин волн). При этом мы учтем также эффект Сюняева — Зельдовича и тепловое излучение межгалактического газа, а возможный вклад дискретных источников рассматриваться не будет. Результаты расчетов иллюстрируются на примере скоплений галактик в Волосах Вероники и Персее. Большое количество наблюдательных данных для этих скоплений позволяет более уверенно, чем в других случаях, выбрать параметры, необходимые для расчетов.

2. Яркостная температура и интенсивность ивлучения. Рассмотрим сферически симметричное скопление галактик с радиусом  $R_c$ . Яркостная температура излучения с частотой у  $T_r$  (p) от области, располо-

женной на прицельном расстоянии p (выраженном в единицах  $\mathcal{R}_{\epsilon}$ ) относительно центра скопления, связана с суммарной интенсивностью  $I_{\epsilon}(p)$  соотношением

$$T_{\nu}(p) = \frac{h\nu}{k} \left\{ \ln \left[ 1 + \frac{2h\nu^3}{c^2 I_{\nu}(p)} \right] \right]^{-1},$$
(1)

где h — постоянная Планка, k — постоянная Больцмана, c — скорость света. Интенсивность излучения I, (p) может быть представлена в виде четырех слагаемых

$$I_{\nu}(p) = I_{\nu 0} + \Delta I_{\nu}^{d}(p) + \Delta I_{\nu}^{d}(p) + \Delta I_{\nu}^{SZ}(p), \qquad (2)$$

где 1.0 — интенсивность реликтового фона

$$I_{\nu 0} = \frac{2h\nu^3}{c^2} (e^x - 1)^{-1}, \qquad x = \frac{h\nu}{kT_R}, \qquad (3)$$

 $T_R = 2.76 \,\mathrm{K}$  — температура реликтового излучения в современную эпоху. Слагаемые  $\Delta I_*^{d}(p)$ ,  $\Delta I_*^{g}(p)$  и  $\Delta I_*^{SZ}(p)$  представляют собой вклад излучения пыли, газа и эффекта Сюняева — Зельдовича соответственно. Для оптически тонкой среды имеем

$$\Delta J_{v}'(p) = \int_{-l}^{l} (B_d - I_{v0}) \times_{v_{v_a \text{ abs}}} \mathrm{d}z, \qquad (4)$$

$$\Delta I_{\nu}^{g}(p) = \int_{-l}^{l} (B_{g} - I_{\nu}) \times_{\nu, g} \mathrm{d}\mathbf{z}, \qquad (5)$$

$$\Delta I_{v}^{SZ}(p) = I_{v0}f(x) \int_{-l}^{l} \sigma_{T} n_{g} \frac{kT_{g}}{m_{e}c^{2}} dz.$$
 (6)

Здесь  $B_d$  и  $B_g$  — планковские интенсивности излучения пыли и газа с температурами  $T_d$  и  $T_g$ ,  $x_{v_{, abs}}$  и  $x_{v_{, -}}$ — коэффициенты поглощения для пыли и газа, причем  $x_{v_{, -}}$  при температурах  $T_g > 10^3$  К вычисляется по формуле (см., например, [29])

$$z_{v_{i}g} = 1.978 \cdot 10^{8} \frac{n_{e} n_{i}}{v^{3} T^{1/2}} \ln \left[ 4.7 \cdot 10^{10} \left( \frac{T_{g}}{v} \right) \right] \left( 1 - e^{-\frac{n^{2}}{k T_{g}}} \right) \mathrm{cm}^{-1}, \quad (7)$$

где n, и n, — концентрация электронов и ионов. Выражение для коэффициента поглощения пыли х, <sub>вы</sub> будет приведено в следующем параграфе. Через  $\sigma_T$ ,  $n_s$  и  $m_s$  в (б) обозначены томсоновское сечение рассеяния свободных электронов, концентрация газа и масса электрона соответственно; f(x) определяется выражением [9]

$$f(x) = \frac{xe^x}{e^x - 1} \left( x \operatorname{cth} \frac{x}{2} - 4 \right)$$
(8)

Пределы интегрирования в формулах (4)—(6) определяются границей скопления галактик по лучу зрения ( $l = \sqrt{R^2 - p^2}$ ).

Из соотношений, приведенных выше, видно, что для расчета яркостной температуры излучения межгалактической среды в скоплении галактик в интересующем нас диапазоне частот следует задать радиус скопления, распределения концентрации газа и пыли, определить температуру газа, а также найти температуру и коэффициент поглощения пыли.

Концентрация и температура газа были выбраны нами в соответствии с результатами наблюдений рентгеновского излучения. Согласно [30] для различных скоплений галактик пространственное распределение концентрации газа достаточно хорошо описывается зависимостью

$$n_{g}(R) = n_{g}(0) \left[ 1 + \left(\frac{R}{R_{g}}\right)^{2} \right]^{-3/2},$$
 (9)

где R — расстояние от центра скопления,  $R_g$  — характерный радиус газового распределения. При этом температура газа может быть принята постоянной  $T_g = T_0$  (изотермическое распределение).

3. Пылевые частицы в межгалактическом газе скопления галактик. Подробное обсуждение свойств пыли, а также возможных моделей ее распределения в межгалактической среде проведено нами в работе [28]. Здесь мы лишь кратко суммируем основные результаты.

В горячем и разреженном газе скопления конденсация пылевых частиц невозможна, поэтому пыль (если она существует в межгалактической среде) выбрасывается из галактик. В качестве модели пылинок мы выбрали двухкомпонентную смесь, состоящую из аморфных углеродных и кристаллических силикатных частиц [31]. Частицы каждого сорта имеют степенное распределение по размерам с показателем степени, равным — 3.5. Такая модель позволяет объяснить кривые межзвездного поглощения [32] и межзвездной поляризации [33].

Скорость разрушения пылевых частиц при температурах  $10^6 \text{ K} < T_g < 10^9 \text{ K}$  зависит лишь от концентрации газа и радиуса частицы [34]. В [28] показано, что при химическом составе межгалактического газа, близком к солнечному, и  $n_g = 10^{-3} - 10^{-2} \text{ см}^{-3}$  время жизни пылинок составляет  $10^7 - 10^9$  лет. Таким образом, если пылевые частицы

464

выметаются из галактик со скоростями  $(1 \div 2) \cdot 10^3$  км/с, они успевают удалиться от родительской галактики на достаточно большое расстояние.

Температуру пыли можно определить из условия баланса энергий нагрева при столкновениях пылинок с горячим газом и охлаждения при излучении в далекой ИК-области спектра. На больших расстояниях от центра скопления, где концентрация газа мала, в нагрев пылинок может давать вклад реликтовое излучение. После рассмотрения всех факторов, влияющих на нагрев пылинок, мы нашли [28], что для близких скоплений (красное смещение « 1) температура углеродных и силикатных пылинок составляет соответственно

$$T_{\rm C} = T_R (1 + 5.05 \cdot 10^7 n_g)^{1/5} \approx 95.8 n_g^{1/5},$$
  

$$T_{\rm Si} = T_R (1 + 1.16 \cdot 10^{10} n_g)^{1/6} \approx 131 n_g^{1/6}.$$
(10)

В качестве окончательного значения T<sub>d</sub> для углеродно-силикатной смеси используем среднее значение

$$T_{\rm d} = (T_{\rm C} + 1.07 \ T_{\rm Si})/2.07,$$
 (11)

получающееся с учетом того, что  $n_{\rm S}/n_{\rm C} \approx 1.07$  [31]. В работе [28] получено выражение для коэффициента поглощения  $x_{\rm h, abs}$  (или  $x_{\rm h, abs}$ ), усредненного по спектру размеров пылинок

$$x_{\lambda_{i} \text{ abs}} \approx 5.77 \cdot 10^{-18} n_{d} Q_{abs}^{'}(\lambda).$$
 (12)

Здесь  $n_d = n_{\rm Si} + n_{\rm C} \approx 2.07 n_{\rm C}$ ,  $Q_{\rm abs}$ —отношение фактора эффективности поглощения к радиусу частицы a, средневзвешенное по обоим компонентам смеси

$$Q_{abs}(\lambda) = \left[1.07 \frac{Q_{abs. SI}}{\alpha}(\lambda) + \frac{Q_{abs. C}}{\alpha}(\lambda)\right]/2.07, \quad (13)$$

причем значения  $Q_{abs}/\alpha$  для частиц каждого сорта могут быть аппроксимированы степенной функцией длины волны

$$\frac{Q_{\text{abs}}}{\alpha}(\lambda) = \left(\frac{Q_{\text{abs}}}{\alpha}\right)_{0.01 \text{ cm}} \left(\frac{0.01 \text{ cm}}{\lambda}\right)^{\text{s}}$$

Для силикатных частиц  $\varepsilon = 2.95$  при 25 мкм  $< \lambda < 100$  мкм,  $\varepsilon = 2.00$ при  $\lambda > 100$  мкм и  $(Q_{abs}/a)_{0.01 \text{ см}} = 50.1 \text{ см}^{-1}$ ; для углеродных частиц  $\varepsilon = 0.58$  при 25 мкм  $< \lambda < 100$  мкм,  $\varepsilon = 1.57$  при  $\lambda > 100$  мкм и  $(Q_{abs}/a)_{0.01 \text{ см}} = 411 \text{ см}^{-1}$ .

Исходя из того, что распределение яркости диффузного излучения хорошо соответствует распределению интегрального излучения скоплений

[25] можно считать, что пространственное распределение пыли (если она присутствует в межгалактической среде и является причиной диффузного излучения) скорее всего соответствует пространственному распределению галактик. По-видимому, это характерно для случая, когда пыль выметается из галактик давлением излучения звезд. Поэтому мы выбрали распределение концентрации пыли, согласно которому

$$n_d(R)/n_d(0) = \rho_{gal}(R)/\rho_{gal}(0)$$

 $(\rho_{gal}(R) - пространственная плотность галактик). В работах [35, 36] отмечено, что <math>\rho_{gal}(R)$  во многих случаях хорошо описывается при помощи соотношения

$$\rho_{\rm gal}(R) = \rho_{\rm gal}(0) \left[1 + \left(\frac{R}{R_{\rm gal}}\right)^2\right]^{-3/2},$$

где  $R_{gal}$  — радиус ядра скопления. Тогда выражение для пространственного распределения пыли выглядит следующим образом:

$$n_d(R) = n_d(0) \left[ 1 + \left(\frac{R}{R_{gal}}\right)^2 \right]^{-3/2}$$
 (14)

В работе [28] мы использовали также другую модель, согласно которой

$$n_d(R) = n_d(0) \left\{ \left[ 1 + \left( \frac{R}{R_{gal}} \right)^2 \right] \cdot \left[ 1 + \left( \frac{R}{R_g} \right)^2 \right] \right\}^{-3/2} \cdot$$
(15)

Однако различия результатов вычислений интенсивностей излучения для распределений (14) и (15) оказались малы, поэтому в дальнейшем мы ограничимся рассмотрением лишь зависимости  $n_d(R)$ , описываемой формулой (14).

4. Параметры скоплений галактик в Волосах Вероники и Персее. Для расчетов интенсивностей и яркостных температур излучения необходимо выбрать численные значения параметров  $T_0$ ,  $R_c$ ,  $R_g$ ,  $R_{gal}$ ,  $n_d$  (0) и  $n_g$  (0). Величины  $T_0$ ,  $n_g$  (0) и  $R_g$  могут быть определены из рентгеновских наблюдений, а  $R_{gal}$  — из оптических. В табл. 1 приведены параметры скоплений галактик в Волосах Вероники и Персее и ссылки на работы, из которых они взяты. При этом использовалось значение постоянной Хаббла  $H_0 = 50$  км/с/Мпс.

За радиус скопления обычно принимают, так называемый, приливной радиус  $R_t$  (см., например, [5]). Однако относительно втой величины в литературе имеются самые противоречивые сведения. Повтому мы выберем  $R_c$  из других соображений. Поскольку нас прежде всего интересует меж-

галактический газ, будем считать, что основной вклад в излучение дают те области скопления, где  $n_{e}(R)/n_{e}(0) > 10^{-3}$  (это касается и пыли, так как ее излучение существенным образом определяется величиной  $T_{d}$ , зависящей от распределения концентрации газа). Граница этой области может рассматриваться как радиус скопления  $R_{c}$ . Тогда, используя формулу (9), получаем  $R_{c} \approx 9.95 R_{g}$ . Значения  $R_{c}$ , вычисленные таким образом, указаны в табл. 1.

Таблица 1 ПАРАМЕТРЫ СКОПЛЕНИЙ ГАЛАКТИК В ВОЛОСАХ ВЕРОНИКИ И ПЕРСЕЕ

| Параметр                  | Волосы Вероники | Антература | Персей     | Антература   |
|---------------------------|-----------------|------------|------------|--------------|
| <i>T</i> <sub>0</sub> , K | 1.03-168        | [2]        | 7.9.107    | ]2]          |
| n, (0), cm-3              | 3.10-3          | [3]        | 7.10-2     | [4]          |
| Rg, Mac                   | 0.62            | [1]        | 0.26       | [6]          |
| Rgal, Mnc                 | 0.25            | [1]        | 0.24       | [6]          |
| D. Mnc                    | 113             | [29]       | 97         | [29]         |
| Rc, Mnc                   | 6.17            | 1.1.1      | 2.54       |              |
| -ext (4170 A)             | 0.4             | [22]       | 0.2        | [22]         |
| n <sub>d</sub> (0), cm-3  | 4.7.10-13       |            | 2.39.10-13 | ALC: NOTE: C |
| γ(0)                      | 2.9.10-3        | 7116       | 6.4.10-5   |              |

Вопрос о выборе величины  $n_d(0)$  может быть решен с учетом данных о покраснении удаленных галактик в скоплении. В работе [22] для ряда скоплений (в гом числе и для рассматриваемых) определена величина  $\tau_{ext}$  (4170) — оптическая толщина в синей области спектра на  $\lambda = 4170$  А (см. табл. 1). С другой стороны, оптическая толщина скопления по пыли при p = 0 равна

$$\tau_{\text{ext}}(\lambda) \doteq 2 \int_{0}^{R_{e}} x_{\lambda, \text{ext}}(R) dR.$$
 (16)

STALL MALLEN

Для  $x_{h, ext}$  можно написать выражение, аналогичное (12), заменив фактор эффективности поглещения  $Q_{abs}(\lambda)$  на фактор эффективности ослабления  $Q_{oxt}(\lambda)$ . Обозначая через  $\Lambda(\lambda)$  альбедо пылинок, перепишем (16) в следующем виде

$$\pi_{ext}(\lambda) = 1.15 \cdot 10^{-17} \frac{Q'_{abs}(\lambda)}{1 - \Lambda(\lambda)} \int_{0}^{R_{e}} n_{d}(R) dR,$$

4-882

#### 467

причем величина  $Q_{abs}(\lambda)$  вычисляется по формуле (13). Для оценок  $\tau_{ext}(\lambda)$  в видимой части спектра воспользуемся значением  $Q_{abs}$  на 1 мкм [31] и, считая, что  $\Lambda(1 \text{ мкм}) = 0.5$ , а  $\tau_{ext}(\lambda) \sim \lambda^{-1}$  для  $\lambda < 1$  мкм, получим при  $\lambda = 4170 \text{ A}$ 

$$\tau_{\text{ext}} (4170) \approx 1.14 \cdot 10^{-12} \int_{0}^{R_{e}} n_{d}(R) dR.$$
 (17)

С учетом (14) находим

$$n_d(0) = 8.77 \cdot 10^{11} \tau_{ext} (4170) R_e^{-1} \left[ 1 + \left(\frac{R}{R_{gal}}\right)^2 \right]^{1/2}$$
(18)

В табл. 1 приведены также значения отношения массы пыли к массе газа. в единице объема скопления, определенные по формуле

 $\gamma(R) \approx 1.86 \cdot 10^7 n_d(R)/n_e(R).$ 

Отметим, что даже в центре скоплений  $\gamma < 0.006$  — среднего отношения плотностей пыли и газа в межзвездной среде [37].

5. Ревультаты расчетов и обсуждение. Расчеты яркостных температуризлучения для скоплений галактик в Волосах Вероники и Персее были проведены для  $\lambda\lambda = 0.04$ —50 см. На рис. 1 и 2 для нескольких значений длин волн приведены относительные изменения яркостной температуры фона в направлении скоплений галактик в Волосах Вероники (рис. 1) и Персее (рис. 2),

$$\frac{\Delta T_{\lambda}}{T_R} \equiv \frac{T_{\lambda}(\vartheta) - T_R}{T_R},$$

в зависимости от углового расстояния в от центра скопления. При этом угол в определяется из соотношения

$$\vartheta = \frac{P}{D}$$
 (rad) = 3437.7  $\left(\frac{P}{R_c}\right) \left(\frac{R_c}{D}\right)$  угл. минут,

где D — расстояние до скопления (см. табл. 1). Из рассмотрения рис. 1 и 2 можно сделать несколько выводов.

а) На миллиметровых длинах волн излучение пыли может полностью компенсировать эффект Сюняева—Зельдовича, что приведет к существенным избыткам излучения по сравнению с фоновым от периферийных областей скопления. С уменьшением длины волны и в областях скопления,

более близких к центру, значения  $\Delta T_{\lambda}/T_R$  становятся положительными. При  $\lambda \leqslant 1$  мм ьсе скопление галактик в целом является мощным источником излучения. Количественные различия в распределении яркостных температур для рассмотренных скоплений обусловлены, главным образом, отличиями в концентрации газа, поэтому эффект Сюняева—Зельдовича даже на краях скопления в Персее превышает излучение пыли.



**Ф** (мин, дуги)

Рис. 1. Относительное изменение яркостной температуры фона в направлении скопления галактик в Волосах Вероники в зависимости от углового расстояния до центра скопления. Длины воли в сантиметрах.

б) Эначительная концентрация газа в межталактической среде скопления в Персее ведет к тому, что при  $\lambda \ge 10$  см тепловое излучение горячего газа в центральной части скопления становится господствующим. С ростом  $\lambda$  размеры втой области увеличиваются. В скоплении в Волосах Вероники подобный эффект практически отсутствует в рассмотренном диапазоне длин волн.



Рис. 2. То же, что на рис. 1, но для скопления галактик в Персее.

в) При выбранных параметрах скоплений в сантиметровом диапазоне данн волн эффект Сюняева—Зельдовича нельзя уравновесить тепловым -излучением газа и пыли. Лишь при увеличении оптической толщины скопления по пыли можно ожидать частичной компенсации эффекта Сюняева— Зельдовича и появления превышения излучения над фоном в направленин скоплений галактик. На рис. 3 нанесены зависимости  $\Delta T_{\lambda}/T_R$  от  $\vartheta$ для скопления галактик в Волосах Вероники при различных значениях параметра (4170). Увеличение концентрации пыли в 2—3 раза ведет к тому, что на  $\lambda = 2$  см значения  $\Delta T_{\lambda}/T_R$  становятся положительными для большей части скопления.

Результаты расчетов яркостных температур в субмиллиметровой области спектра представлены в табл. 2 и 3 (при этом использованы параметры скоплений, приведенные в табл. 1). Основной вклад в излучение скоплений, превышающее реликтовый фон, дают нагретые пылинки, тогда как слагаемое, обусловленное эффектом Сюняева—Зельдовича, даже на



Ф (мин. дуги)

Рис. 3. То же, что на рис. 1, но при различных значениях концентрации пыли в межгалактической среде.

 $\lambda = 0.8$  мм (вблизи максимума эффекта Сюняева—Зельдовича [9]) составляет ~ 1.3% и ~ 22% от «пылевого» слагаемото для скоплений в Волосах Вероники и Персее соответственно. Поэтому, если пыль присутствует в скоплениях галактик, то оценки ожидаемых потоков излучения от скоплений галактик в субмиллиметровой области спектра, приведенные в работе [38], следует увеличить в 200—400 раз, что даст разумные времена накоплеия ситнала от источника.

## В. К. ХЕРСОНСКИЙ, Н. В. ВОЩИННИКОВ

Таблица 2

ОЖИДАЕМЫЕ ЯРКОСТНЫЕ ТЕМПЕРАТУРЫ (В КЕЛЬВИНАХ) СУБМИЛЛИМЕТРОВОГО ИЗЛУЧЕ-НИЯ ДЛЯ СКОПЛЕНИЯ ГАЛАКТИК В ВОЛОСАХ ВЕРОНИКИ

| 8           | λ, мм |      |      |  |
|-------------|-------|------|------|--|
| о, угл. мин | 0.4   | 0.6  | 0.8  |  |
| 0.0         | 4.76  | 3.33 | 2.91 |  |
| 37.5        | 4.57  | 3.24 | 2.88 |  |
| 75.1        | 4.34  | 3.15 | 2.85 |  |
| 112.6       | 4.13  | 3.06 | 2.83 |  |
| 150.1       | 3.89  | 2.97 | 2.80 |  |
| 187.7       | 2.76  | 2.76 | 2.76 |  |

6. Заключение. Кратко резюмируем основные результаты работы.

а) В рамках предположения о том, что в межгалактической среде скопления галактик присутствуют пылевые частицы, а их свойства подобны характеристикам межзвездных пылинок, рассчитаны яркостные температуры и интенсивности излучения пыли и газа в диапазоне длин волн 0.04—50 см для скоплений галактик в Волосах Вероники и Персее.

> Таблица З ОЖИДАЕМЫЕ ЯРКОСТНЫЕ ТЕМПЕРАТУРЫ (В КЕЛЬВИНАХ) СУБМИЛЛИМЕТРОВОГО ИЗЛУЧЕ-НИЯ ДЛЯ СКОПЛЕНИЯ ГАЛАКТИК В ПЕРСЕЕ

| 0           |      | -    |      |
|-------------|------|------|------|
| 0, YFA. MEH | 0.4  | 0.6  | 0.8  |
| 0.0         | 4.43 | 3.12 | 2.84 |
| 15.4 _      | 4.31 | 3.06 | 2.82 |
| 30.9        | 4.16 | 3.01 | 2.81 |
| 46.3        | 4.00 | 2.95 | 2.80 |
| 61.8        | 3.81 | 2.90 | 2.78 |
| 77.2        | 2.76 | 2.76 | 2.76 |

б) Показано, что при концентрации пылинок, задаваемой на основании оптических наблюдений покраснения удаленных галактик в скоплениях, вффект Сюняева—Зельдовича нельзя компенсировать тепловым излучением пыли на сантиметровых длинах волн.

в) В субмиллиметровой и отчасти миллиметровой области спектра должно наблюдаться обусловленное пылью превышение излучения от скоплений над излучением реликтового фона, что может быть использовано в качестве теста, позволяющего судить о наличии пыли в межгалактической среде скоплений галактик.

Ленинградский филиал САО АН СССР Ленинградский государственный университет

## GAS AND DUST EMISSION IN THE GALAXY CLUSTERS IN THE RADIOWAVE REGION

#### V. K. KHERSONSKIJ, N. V. VOSHCHINNIKOV

The consequences of the hypothesis on the presence of the dust grains in the intergalactic medium of galaxy clusters are considered. Gas and dust emission in the range  $\lambda = 0.04-50$  cm in Coma and Perseus galaxy clusters are calculated. It is shown that the dust emission cannot compensate Sunyaev-Zel'dovich effect in the centimeter wavelength region. In the submillimeter wavelength region the galaxy clusters may be bright sources of emission.

#### **ЛИТЕРАТУРА**

- C. Jones, E. Mandel, J. Schwartz, W. W. Forman, S. S. Murray, F. R. Harnden, Ap. J., 234, L 21, 1979.
- 2. P. Hintzen, J. S. Scott, Ap. J., 232, L 145, 1979.
- 3. G. B. Field, Mitt. Astron. Ges., 47, 7, 1980.
- 4. A. C. Fabian, E. M. Hu, L. L. Cowie, J. Grindlay, Ap. J., 248, 47, 1981.
- 5. М. А. Аракелян. Итоги науки и техники, сер. Астрономия, ВИНИТИ, М., 18, 83, 1981.
- 6. R. J. Hanisch, Astron. Astrophys., 116, 137, 1982.
- 7. В. Г. Горбацкий, Тезесы докладов конференции «Структура галактик и эвездообразование», Киев, 1983, стр. 46.
- 8. R. A. Sunyaev, Ya. B. Zel'douich, Comm. Astrophys. Space Phys., 4, 173, 1972,
- 9. Я. Б. Зельдович, Р. А. Сюняев, Астрофизика и космическая физика, ред. Р. А. Сюняев, Наука, М., 1982, стр. 9.
- 10. S. F. Gull, K. J. E. Northover, Nature, 263, 572, 1976.
- 11. M. Birkinshaw, S. F. Gull, K. J. E. Northover, M. N. RAS., 185, 245, 1978.
- 12. L. Rudnik, Ap. J., 223, 37, 1978.
- 13. S. L. Perrenod, C. J. Lada, Ap. J., 234, L 173, 1979.
- 14. G. Lake, R. B. Partridge, Ap. J., 237. 378, 1980.
- 15. M. Birkinshaw, S. F. Gull, A. T. Moffet, Ap. J., 251, L 69, 1981.
- G. Lake, Objects of High Redshift, IAU Symp. eds. G. O. Abell, P. J. E. Peebles, Reidel, 92, 1980, p. 305.

- 17. G. Cavallo, N. Mandolesi, Astrophys. Lett., 22, 119, 1982.
- 18. A. N. Lasenby, R. D. Davies, M. N. RAS, 203, 1137, 1983.
- 19. P. S. Wesson, Astron Astrophys., 61, 177, 1977.
- 20. S. Atello, F. Melchiorri, F. Mencaraglia, Astrophys. Space Sci., 53, 403, 1978.
- 21. F. Zwicky, P.A.S.P., 64, 242, 1952.
- 22. И. Д. Караченцев, В. А. Липовецкий, Астрон. ж., 45, 1148, 1968.
- 23. R. S. Bogart, R. V. Wagoner, Ap. J., 181, 609, 1973.
- 24. K. H. Schmidt, Astron. Nachr., 295, 163, 1974.
- 25. T. X. Thuan, J. Kormendy, P.A.S.P., 88, 466, 1977.
- M. Aaronson, Infrared Astronomy, IAU Symp., eds. C. G. Wynn-Williams, D. P. Gruikshank, Reidel, 96, 1981, p. 297.
- T. Shanks, R. Foog, M. R. Green, R. G. Clowes, A. Savage, M. N. RAS, 203. 181, 1983.
- 28. N. V. Voshchinnikov, V. K. Khersonskij, Astrophys. Space Sci., 103, 301, 1984.
- 29. К. Ленз, Астрофизические формулы, Мир. М., 1978.
- 30. G. Chincarini, X-ray Astronomy, eds. R. Giacconi, G. Setti, Reidel, 1980, p. 197.
- 31. B. T. Draine, Ap. J., 245, 880, 1981.
- 32. J. S. Mathis, W. Rumpl, K. H. Nordsteck, Ap. J. 217, 425, 1977.
- 33. J. S. Mathis, Ap. J., 232, 747, 1979.
- 34. B. T. Draine, E. E. Salpeter, Ap. J., 231, 77, 1979.
- 35. I. R. King, Ap. J., 174, L 123, 1972.
- 36. H. R. Rood, T. L. Page, E. C. Kinter. I. R. Rood, Ap. J., 175, 627, 1972,
- 37. Л. Спитцер, Физические процессы в межзвездной среде, Мир, М., 1981.
- 38. И. И. Канаев, Г. Б. Шоломицкий, И. А. Маслов, В. М. Гроздилов, Итоги науки и техники, сер. Астрономия, ВИНИТИ, М., 22, 286, 1983.