АСТРОФИЗИКА

TOM 21

АВГУСТ, 1984

ВЫПУСК 1

УДК 524.7—355

СПЕКТРОФОТОМЕТРИЯ СЕЙФЕРТОВСКОЙ ГАЛАКТИКИ NGC 4151. І. ПОИСК И ОТОЖДЕСТВЛЕНИЕ СЛАБЫХ ЛИНИЙ

В. А. ЛИПОВЕЦКИЙ, А. И. ШАПОВАЛОВА Поступила 12 августа 1983 Принята к печати 15 февраля 1984

Представлены результаты спектрофотометрии ядра сейфертовской галактики промежуточного типа NGC 4151. Расширенные спектры получены в прямом фокусе 6-м телескопа САО АН СССР со спектрографом UAGS и ЭОП УМ-92 в диапазоне $\lambda\lambda$ 4100—7300 АА. Описана методика поиска и отождествления слабых вмиссионных линий. Найдено и идентифицировано 77 линий. Показано хорошее согласие с результатами других авторов. Отмечено, что неопределенность в определении интенсивностей слабых линий составляет фактор 2—3. Обнаружены многочисленные узкие линии разрешенных переходов Fe II 37, 38, 40, 74, 210. Уверенно отождествлена линия [FeX] λ 6374 и высказано предположение о ее переменности с характерным временем 3—5 лет.

1. Введение. После ввода в эксплуатацию крупнейшето в мире 6-м телескопа (БТА) в САО АН СССР была начата обширная программа детальных исследований активных внегалактических объектов. Она включала изучение отдельных избранных галактик с разных точек эрения: уточнение класса активности [1], выяснение физических условий и определение параметров излучающето газа в ядре [2, 3], исследование контуров эмиссионных линий [4], кинематики и динамики околоядерных областей [5], связи различных морфологических и структурных особенностей с типом активности ядра [6] и др. Все спектральные наблюдения, за редкими исключениями, выполнялись в первичном фокусе БТА со спектрографом UAGS и трехкаскадным ЭОП УМ-92.

В 1977—1982 гг. нами были получены расширенные спектры полутора десятков галактик с активными ядрами, в основном сейфертовских промежуточного и второго типов, для спектрофотометрического изучения. К настоящему времени нами совместно с В. Л. Афанасьевым подробно исследованы две сейфертовские галактики второто типа, Маркарян 744 и 1066 [2, 3]. Наиболее интересным результатом явилось обнаружение у этих объектов слабых широких крыльев у водородных линий, эначительно уступающих по мощности таковым у сейфертовских галактик первого типа. Аналогичное явление было независимо обнаружено у нескольких рентгеновских галактик с узкими эмиссионными линиями в спектре [9], а также Остерброком [10] у пяти галактик, отнесенных им к типу Sy 1.8—1.9, что подтвердило наши результаты. Несколько неожиданным для нас было предварительное сообщение Остерброка [11] об ошибочной идентификации части линий в спектре Маркарян 744. По-видимому, в спектре этой галактики мы провели континуум ниже реального, поскольку не учли присутствия абсорбционных линий в звездной компоненте непрерывного излучения ядра.

В свое время для изучения возможностей нашей аппаратуры, а также применяемых методов и алгоритмов обработки, мы получили спектры известной сейфертовской талактики промежуточного типа NGC 4151 (Спектры сняты в ту же дату, что и большинство лучших спектров Маркарян 744). Существенно, что вклад звездного компонента в излучение довольно мощного ядра NGC 4151 много меньше, чем в случае Маркарян 744.

В данной работе приведены результаты выделения в спектре ядра NGC 4151 слабых линий и определения их интенсивностей по нашей методике, а также выполнено сравнение с данными других авторов.

Анализ результатов и некоторые астрофизические следствия будут опубликованы позже.

2. Наблюдения и обработка. Расширенные спектрограммы NGC 4151 были получены 18 марта 1978 г. в первичном фокусе БТА со спектрографом UAGS и ЭОП УМ-92. Применяемая аппаратура подробно описана в [12]. Спектры, регистрировались на фотопленку А-600 Н (диоперсил 92 А/мм). При ширине входной щели 0."9 полная ширина инструментального контура на половинной интеноивности составляют ~ 400 км/с. Расширение на спектрограммах — 1.5 мм, что соответствует ~ 25" в проекции на небесную сферу. Наблюдения проводились при изображениях ~4". Всего получено по 3 спектрограммы в синем $\lambda\lambda$ 4080—5400 и красном $\lambda\lambda$ 5600—7300 диапазонах спектра с вкспозициями от 25° до 85°. Для определения спектральной чувствительности аппаратуры снималась калибровочная звезда BD + 33° 2642 ($m_V = 9^m$ 5) с известным распределением энергии [13].

Полученные спектры записывались на микрофотометре с цифровым выходом и обрабатывались по программе «Спектр» [7, 8] на ЭВМ М-222. Ширина щели при записи составляла 50 мкм, шаг считывания — 10 мкм. В связи с тем, что наши спектры не перекрывались в области $\lambda\lambda$ 5400—5600. привязка двух диапазонов выполнена путем экстраполяции континуума, который в каждом диапазоне хорошо следует степенному закону $f_{\star} \sim v^{-\alpha}$, с $\alpha \sim 1.3 + 0.3$. Для поиска слабых линий применялись как суммарные в данном диапазоне, так и индивидуальные спектрограммы. Предварительно, в качестве эмиссионной линии рассматривались пики, превышающие шумовую дорожку в суммарном спектре в 3σ раз и проверялось их наличие в каждом отдельном спектре для исключения дефектов фотоэмульсии и возможных многовлектронных событий. В таблицу отождествлений вносились линии, присутствующие во всех спектрах. Наиболее уверенно выделены линии в областях длин волн $\lambda\lambda$ 4300—5300 и $\lambda\lambda$ 6100—7000, где имелись суммы всех трех спектров.

Как и ранее, при спектрофотометрии Маркарян 744 и 1066 [2, 3] для отождествления найденных линий использовались работы [14—20], а также результаты анализа линий Fe II в Sy I и QSO Филлипса [21]. Точность длин волн при отождествлениях порядка ~ 2 А. Список выделенных линий и результаты отождествлений приведены в табл. 1, где соответственно даны: 1 — порядковый номер линии; 2 — наблюдаемая длина волны; 3 — длина волны, исправленная за красное смещение, z = 0.0033; 4 — интенсивность линии в единицах $I_{H_{\beta}} = 10$ (узкий компонент); 5 — отождествление; 6 — примечания, в которых представлены интенсивности в тех же единицах и отождествления других авторов: Б — Боксенберга и др. [22], ОК — Остерброка. и Коски [23], Н — Нетцера [24]. В последнем случае мы сохранили обозначения «W» и «VW» для слабых и очень слабых линий, а также ввели знак «+» для ярких линий, интенсивность которых автором не оценивалась. Неуверенные значения в колонках 2—6 отмечены двоеточием.

На рис. 1a, b приведены регистрограммы спектров обоих диапазонов в относительных интенсивностях, не исправленные за спектральную чувствительность аппаратуры. Там же нанесены выделенные линии в несмещенной шкале длин волн.

Для определения интенсивностей линий мы провели континуум на записи каждого спектра, исправленного за спектральную чувствительность аппаратуры. Под интенсивностью слабой линии мы понимали значение интенсивности ее пика над континуумом. Контура широких линий были разделены на широкий и узкий компоненты, а также разделены бленды линий $H_s + [N II] \lambda\lambda 6548-83$ и [S II] $\lambda\lambda 6717-31$. В табл. 1 приведены средние значения интенсивностей из определения по всем спектрам данного диапазона, выраженные в единицах интенсивности узкого компонента $H_s (I_{H_{\beta}} = 10)$. Для линий водорода и гелия указаны интенсивности только узких компонентов. Погрешности в определении интенсивностей составляют, по нашим оценкам, 10-15% для $I > I_{H_5}$ и 50 % для $I > 0.2 I_{<\beta}$, для самых слабых линий ошибка в интенсивности может достигать нескольких раз (фактор 2-3). Основной трудностью при определении ин-

Таблица 1

ЭМИССИОННЫЕ ЛИНИИ В СПЕКТРЕ NGC 4151

No	$\lambda_{\rm H}$ $\lambda_{\rm H}$ /(1+z) I Or		Отождествление	Примечание			
1 2		3 4	5	6			
1	4088	4075	2.9	4076 [SII] IF	2.8, 4071 (Б); 3.8, 4071 [S II], (О. К.); +(Н);		
2	4114	4101	3.6	4101 Ha	1.35 (Б); 2.3 (О. К.) + (Н);		
3	4130:	4116	0.7:	4114 [FeII] 23F	VW (H);		
4	4258	4244	0.9	4244 [FeII] 21F	0.47 (Б); 0.65 (Н);		
5	4291	4277	1.7	4277 [FeII] 21F	0.65: (Б); 0.55 (Н);		
6	4301	4287	0.4	4287 [FeII] 7F	0.76: (Б); 0.20 (Н);		
7	4334	4320	0.5	4320 [FeII] 21F	0.47 (Б); 0.38 (Н);		
8	4354	4340	4.8	4340 H ₇	3.76 (Б); 4.2 (О. К.) + (Н)		
9	4372	4358	1.2	4358 [Foll] 21F; 4359 [Fell] 7F	S & S & S & S & S & S & S & S & S & S &		
10	4377	4363	4.6	4363 [OIII] 2F	3.35 (B); 3.8 (O. K) + (H);		
11	4386	4372	0.9:	4372 [FeII] 21F	V W (H);		
12	4404	4389	2.0	4385 Fell 27;	4387, Но I (Б).		
13	4428	4414	1.7	4414 [FeII] 7F; 4416 [FeII] 6F; 4417 FeII 27:	0.94 [Fe II] (B); 0.13 [Fe II] (H);		
14	4468	4453	1.3:	4452 [Fell] 7F; 4458 [Fell] 6F;	0.18 (Б) 0.26 (Н);		
15	4492	4477	0.9	4475 [FeII] 7F; 4471 HeI 14:	0.7, 4472, He I 14 (Б); 0.20 (H);		
16	4506	4491	0.7	4489, 4491 Fell 37; 4489, 4493 [Fell] 6F;	0.15 [Fe II] 6F (H);		
17	4522	4507	0.8	4508 Fell 38;	4.12, Fe II, (Б); 0.37, (H);		
18	4530:	4515	0.4	4515 Fell 37; 4515 [Fell] 6F;			
19	4538:	4523	0.3:	4523 Fell 38; 4520 Fell 37;			
20	4556	4541	0.8	4541 FeII 38;	0.29; He II, 2 (B); 0.20, He II, 2, (H)		
21	4572	4556	0.2:	4556 Foll 37;	? (H);		

00

В. А. ЛИПОВЕЦКИЙ, P И. ШАПОВАЛОВА

1	2	3	4	5
22	4584	4569	2.0	4571
23	4598	4583	0.9:	4583 Fell 37; 4584 Fell 38;
24	4611	4596	0.1:	4596 Fell 38
25	4624	4609	1.2	4610 [Ar V] 2F;
26	4636	4621	0.5:	4621 Fell 38
27	4644	4629	0.5:	4629 Fell 37
28	4672	4657	1.9	4658 [FellI] 3F
29	4701	4686	2.0	4686 Hell 1
30	4712	4697	0.4:	47C1 [FeIII] 3F
31	4726	4711	0.7	4711 [Ar IV] 1F
32	4756	4740	1.4	4740 [Ar IV] 1F
33	4770 -	4755	1.4	4755 [FeIII] 3F
34	4784:	4769	0.4:	4769 [Fe III] 3F
35	4817	4801	0.4:	4799 [Fe II] 4F; 4800 [Fe III] 3F
36	4830	4814	0.4:	4815 [Fe II] 20F; 4814]Fe III] 3F;
37	4842	4826	1.2	4824 [Fe III[3F:
38	4877	4861	10.0	4861 H3
39	4898	4882	1.5:	4881 [Fe III] 2F
40	4907	4891	0.6:	4850 [Fe I.] 4F; 4894 [Fe VII] 2F
41	4921	4905	0.2:	4905 [Fe II] 20F; 4906 [Fe IV]
42	4940	4924	0.5:	4922 He I 48; 4924 Fe II 42;
43	4975	4959	61.4	4959 [O 111] 1F
-44	5023	5007		5007 [O 111] 1F;

Таблица 1 (продолжение)

6

?(H); ?(H);

0.25 (H)

0.7(Б); 0.2 (О. К); 0.21 (Н); 1.47 (Б); 2.2 (О. К.); 3.0 (Н);

0.41 (Б); 0.2 (O. K.); + (H); 0.65 (Б); 0.3 (O. K.); + (H);

> W, (Fe II] 4F, (H); W, [Fe II] 20F, (H);

10 (Б); 10 (О. К); 10 (Н); W (Н); 0.59: [Fe VII] 2F (Б); W. [Fe II] 4F, (Н); 0.88: [Fe IV], (Б); W, [Fe II] 20F, (Н); ?He I 48 (Б); 0.6, широкая, (О. К.); 64.7 (Б); 45.7 (О. К.); + (Н); 152.9 (Б); 136.3 (О. К.); + (Н);

1	2	3	4	5
45	5060	5043	1.0	5043 [Fe II] 20F
46	5176	5159	0.6	5158 [Fe II] 18F; [Fe VII] 2F; 5159 [Fe II] 19F;
47	5216	5199	1.5	5198 Fe II 49; 5201 [N I] 1F
48	5253	5236	1.0	5235 Fe II 49;
49	5281 :	5264	0.6	5265 Fe II 48; 5262 [Fe II] 19F;
50	5298	5281	1.3	5276 [Fo VII] 2F; Fe II 49;
51	5324:	5307	0.5	5309 [Ca V] 1F
52	5738	5719	1.9	5721 [Fe VII] 1F
53	5776	5757	0.7	5755 [N II] 3F
54	5896	5876	2.1	5876 He I 11
55	6098	6068	1.4	and the second s
56	6104	6084	2.1	6085 [Fe VII] 1F; 6084 Fe II 46:
57	6146	6126	1.8	6129 Fe II 46:
58	6168	6143	1.1:	6148, 6149 Fe II 74
59	6258	6238		6288, 6240 Fe II 74;
60	6321	6300	8.9	6300 [O I] 1F
61	6385	6364	3.9	6364 [O I] 1F
62	6395	6374	1.6	6374 [Fe X] 1F
63	6426:	6405	1.0	6407 Fe II 74
64	6452	6431	0.9	6433 Fe II 40; 6435 [Ar V] 1F;
65	6476:	6455	0.9:	6456 Fe II 74
66	6538	6517		6516 Fo II 40;
67	6569	6548	8.9	6548 [N II] 1F

Таблица 1 (продолжение)

3

B

₽

ANNOBEUKHI'I, A.

Z

ШАПОВАЛОВ.А

6

10.6 (Б); 8.7, [O I] + [S III], (О. К.); 3.8, [O I] + [Fe X], (Б); 2.4 (О. К.) 1.2: (Б); 0.8 (О. К)

0.35: [AV 1F] (Б);

7.65 (B); 7.3 (O. K.);

1	2	3	4	5
68	6584	6563	42.0	6563 H _a
69	6605	6584	26.1	6584 [N II] 1F
70	6648	6626	2.0:	6627 Fe II 210
71	6698	6676	1.7	6677 Fe II 210; 6678 He I 46;
72	6739	6717	7.5	6717 [S II] 2F
73	6753	6731	8.9	6731 [S II] 2F
74	6831	6609		6807 [Fe II] 31F
75	6988	6965	3.6	6966 [Fo II] 31F
76	7028:	7005		7005 [Ar V] 1F
77	7156	7133	1.3:	7136 [Ar III] 1F
	1			

В. А. ЛИПОВЕЦКИЙ, А. И. ШАПОВАЛОВА

тенсивностей слабых линий является неопределенность проведения непрерывного спектра и блендирование линий. Для правильного учета крыльев широких линий, проведения уровня континуума и корректното выделения линий необходимо моделирование данных наблюдений синтетическим спектром, учитывающим звездную и нетепловую составляющие в прило-

жении к каждой конкретной галактике. Как убедительно показано в исследовании Шмидта и Миллера [25], в спектре NGC 4151 в диапазоне $\lambda\lambda$ 4000—5500 вообще не содержится участков спектра, свободных от эмиссионных линий. Поэтому мы считаем выделение слабых эмиссионных линий в спектре ядра NGC 4151 предварительным и далее сравниваем свои результаты с данными других авторов, полученными сходными методами. На рис. 2 приведены регистротраммы участка спектра по трем спектрограммам.

СПЕКТРОФОТОМЕТРИЯ ГАЛАКТИКИ NGC 4151

3. Сравнение с результатами других авторов. Впервые на присутствие слабых вмиссионных линий в спектре NGC 4151 в 1970 г. обратили внимание Кромвелл и Вейманн [26]. Затем подробное отождествление этих линий было выполнено Нетцером [24], Боксенбергом с соавторами [22]. Остерброком и Коски [23], Шмидтом и Миллером [25]. Некоторые сводные данные этих наблюдений приведены в табл. 2a, а результаты сравнений — в табл. 26, в.

Рис. 2. Регистрограммы спектров NGC 4151 в относительных интенсивностях. Соответственно *a*), *b*) и *c*) соответствуют спектрограммам, полученным с экспозициями 90^s, 60^s и 30^s. Внизу запись шумовой дорожки. Отмечены наблюдаемые длины воли, согласно колонке 1 из табл. 1.

а. Количество обнаруженных линий. Мы не проводим сравнения с результатами Остерброка и Коски [23], т. к. у них приведено существенно меньше линий и практически все они содержатся в отождествлениях Боксенберга и др. [22]. Отметим также, что в работе Шмидта и Миллера [25] есть только сообщение о выделении свыше 70 линий, но соответствующие таблицы не опубликованы, поэтому количественное сравнение с их результатами пока невозможно.

Из табл. 26 следует, что количество общих обнаруженных линий в одинаковых днапазонах спектра совпадает у всех исследователей и составляет ~ 75%, несмотря на различные приемники излучения, применявшиеся во всех исследованиях. Таким образом, полное количество выделяемых линий в большей степени будет зависеть от критериев определения слабой линии и в меньшей — от приемников излучения.

6. Интенсивности эмиссионных линий. Для корректного сравнения интенсивностей линий в табл. 1 результаты всех авторов были выражены в единицах интенсивности узкого компонента линии $H_{\beta}(I_{H_{\alpha}} = 10)$. На

Таблица 2а

СВОДНЫЕ ДАННЫЕ НАБЛЮДЕНИЙ ПО ПОИСКУ СЛАБЫХ ЛИНИЙ В NGC 4151

Автор	Дата	Телескоп+ приомник	Спектральное разрешение (А)	Наблюдаеный диапазон (А)	Количе- ство линий	
Нетцер [24]	27.1.1973	98"+спектракон	~ 3	3300-6100	77	
Боксенберг и др. [22]	I\ .1974	98"+сканер со счетом фотонов	~ 1 ~ 5	3700-5100 4900-8000	43 31 74	
Остерброк и Коски [23]	~1975	120" + сканер Ро- бинсона-Уомплера	10	3700-7800	46	
Анповецкий и Шапова- лова	18.111.1978	240″ + ЭОП УМ—92	~6-8	4080 - 5400 5600 - 7300	77	
Шмндт н Миллер [25]	VI.1979	120" + сканер Ро- бинсона-Уомплера + спектрополяри- метр	10	3700—7100	70	

Таблица 26

СРАВНЕНИЯ РЕЗУЛЬТАТОВ ПОИСКА СЛАБЫХ ЛИНИИ ПО ДАННЫМ РАЗНЫХ АВТОРОВ

	Найдон	о унний	Общий анапазон		
Авторы	Bcero	Общих	длен воли (А)		
Нетцер [24] Липовецкай и Шаповалова	53 56	40	4080 - 5400 5600 - 6100		
Боксенберг и др. [22] Липовецкий и Шаповалова	61 77	45	{4030-5400 5600-7300		
Нетдер [24] Боксенберг и др. [22]	73 59	43	3703-6100		

Таблица 23

СРАВНЕНИЯ ИНТЕНСИВНОСТЕЙ ЛИНИЙ ПО ДАННЫМ РАЗНЫХ АВТОРОВ

		lg I > 0.75			$0.75 > \lg l > 0.0$			lg / < 0		
Авторы	N	∆ lg I	$(\overline{\Delta \lg I^2})^{1/2}$	N	∆ lg I	$(\overline{\Delta \lg f^2})^{1/2}$	N	\ d Ig I	(<u>J lg /</u> 3) ^{1/2}	
λШ•−Б [22]	7	-0.02	0.07	10	0.15	0.20	18	0.20	0.30	
ОК [23]—Б [22]	7	-0.05	0.10	10	0.02	0.15	9	-0.05	0.35	
Н [24]—Б [22]	-	-	-	4	-0.20	0.36	16	-0.16	0.37	

настоящая работа

рис. З приведены логарифмы относительных интенсивностей линий, полученные Нетцером [24], Остерброком и Коски [23] и нами, по сравнению с данными Боксенберга и др. [2], которые мы считаем наиболее точными.

Рис. 3. Сравнение интенсивностей линий, полученных разными авторами. По осм абсцисс — десятичные логарифмы интенсивностей (lg I) по определениям Боксенберга и др. [22]; по оси ординат—lg I, согласно результатам Нетцер [24] (×). Остерброка и Коски [23] (О) и нашим (·), соответственно. Наши неуверенные результаты обозначены — (•).

Для количественного сравнения все линии разбиты на 3 группы: сильные $(I \gtrsim I_{H_{\beta}})$, умеренной интенсивности $(I > 0.1 I_{H_{\beta}})$ и слабые $(I < 0.1 I_{H_{\beta}})$. В табл. 2в представлены попарно для данных разных авторов средние разности $\Delta \lg I$ и среднеквадратичные уклонения $\Im = (\overline{\Delta \lg I^2})^{1/2}$ во всех трех группах линий. Как видно, у всех авторов хорошо совпадают интенсивности ярких линий со среднеквадратичной потрешностью 0.07—0.10 в lg I. Для линий умеренной интенсивности среднеквадратичная погрешность возрастает примерно вдвое и составляет 0.15—0.25, появляются небольшие систематические потрешности. Для слабых линий у всех авторов наблю-дается значительный разброс данных, составляющий $\overline{\Delta \lg I} = 0.30$ —0.35, и значительные систематические уклонения в определениях интенсивностей линий, что, по-видимому, в первую очередь связано с неопределенностью проведения континуума, а также неоднозначностью разделения бленд. Та-

ким образом, сравнительный анализ показывает, что при определении интенсивностей слабых линий ошибки всех авторов составляют фактор 2—3 и хуже, повтому полученные результаты могут рассматриваться лишь качественно, а для количественного анализа необходимо моделирование наблюдаемого спектра.

в. Отождествление слабых линий. Как следует из табл. 1, в области длин волн лл 4080-7300 АА (за исключением лл 5400-5600) нами выделено 77 эмиссионных линий. Как и в предыдущих спектральных исследованиях [22-27], мы отождествили яркие линии с разрешенными линиями H. He I, He II, имеющими узкие пики и широкие крылья, а также с запрещенными линиями [O III], [N II], [S II], [O I] и т. д. Среди слабых эмиссионных линий присутствуют типичные для Sy 2 линии [Ar IV] 1F, [Ar V] 2F, [Ca V] 1F, [N I] 1F, а также многочисленные запрещенные линии железа в разных стадиях ионизации: [Fe II] 4F, 6F, 7F. 18F, 19F, 20F, 21F, 31F; [Fe III] 2F, 3F; [Fe VII] 1F, 2F; [Fe X] 1F. Большинство отождествлений совпадает с данными [22] или [24]. Кроме того, нами найдено 19 новых узких линий, которые отсутствуют в результатах [22-24]. Среди них 10 линий составляют разрешенные переходы Fe II 37, 38, 40, 74, 210, остальные — линии [Fe II] и [Fe III]. Большинство выделенных линий Fe II, согласно вероятностям переходов [21], должны быть наиболее сильными в соответствующих мультиплетах. Отметим, что ранее в отождествлениях Нетцера [24] было указано на возможное присутствие 3-х линий Fe II 37 и 38, а Боксенбергом и др. [22] — на наличие широких линий Fe II 37, 38, 48, 49. Но только Шмидтом и Миллером [25] впервые было сообщено об отождествлении большого количества узких линий Fe II 37, 48, 49, 55, 74 и др.; к сожалению, в работе отмечен лишь факт их обнаружения без какой-либо подробной информации. Наши данные полностью подтверждают их результаты. Таким образом, в этой галактике разрешенные линии железа Fe II, вероятно, образуются как в широко-линейчатой, так и в узко-линейчатой областях, аналогично другим разрешенным линиям Н и Не.

На наших спектрах уверенно выделяется эмиссионная линия [FeX] λ 6374, которая присутствовала в данных Оука и Саржента в 1965 г. [27], Видмана в 1969—70 гг. [28], Шмидта и Миллера в 1979 г. [25], но не наблюдалась Нетцером в 1973 г. [24] и Боксенбергом и др. в 1974 г. [22]. Вероятно, эта линия переменна, с характерным временем ~ 3—5 лет и связана с излучающей областью размером ~ 1 пс.

Мы предполатаем, что кроме эмиссионных линий в области λ 5170 присутствует полоса поглощения Mg 1в с эквивалентной шириной ≈2 A, наличие которой ранее в спектрах NGC 4151 не отмечалось. Можно также подозревать наличие Na I D. Линии поглощения, скорее всего, образуются в диске и видны на наших спектрах из-за большого уширения вдоль щели (~25") и плохих изображений (~4").

4. Выводы. 1. Между нашими результатами и данными Нетцера [24], Остерброка и Коски [23], Боксенберга и др. [22] наблюдается удовлетворительное согласие в поиске и отождествлении слабых линий в спектре NGC 4151 (Совпадение результатов между каждой парой авторов составляет ~ 75%). Отметим, что отношение сигнал/шум на наших спектрограммах значительно куже, чем в [22—25], но, благодаря использованию нескольких спектрограмм, мы способны выделять слабые эмиссионные линии, в нашем случае имеющие эквивалентную ширину ~ 1 А. Таким образом, по расширенным спектрограммам, полученным в СПФ БТА со спектрографом UAGS и ЭОП УМ-92, можно успешно проводить поиск и отождествление эмиссионных линий по описанной методике.

2. Интенсивности ярких линий, полученные разными авторами, обычно совпадают в пределах 20—30%, а слабых линий — отличаются в несколько раз, в среднем — фактор 2—3. На наш взгляд, вто и является реальной точностью определения интенсивностей сегодня. Повтому часто можно довольно уверенно отождествить слабую линию, но не удается определить ее интенсивность с хорошей точностью, пригодной для количественных оценок.

3. Мы обнаружили большое количество узких линий Fe II в спектре NGC 4151, подтвердив данные Шмидта и Миллера [25]. Учитывая наличие широких компонентов линий Fe II, найденных ранее Боксенбергом и др. [22] и Нетцером [24], а также то обстоятельство, что потенциал ионизации Fe II одного порядка с водородом, можно полагать, что линии этих элементов возникают как в узколинейчатой (NLR), так и широколинейчатой (BLR) областях.

4. Факт обнаружения нами линии [FeX] λ 6374 совместно с данными других авторов говорит в пользу ее переменности на временах 3—5 лет.

- В заключение авторы выражают блатодарность В. Л. Афанасьеву за помощь и участие в проведении наблюдений.

Специальная астрофизическая обсерватория АН СССР

SPECTROPHOTOMETRY OF THE SEYFERT GALAXY NGC 4151. I. SEARCH AND IDENTIFICATION OF FAINT LINES

V. A. LIPOVETSKY, A. I. SHAPOVALOVA

The spectrophotometric results for the nucleus of the Seyfert galaxy NGC 4151 are presented. The widened spectra are obtained in prime focus of the 6-meter telescope at SAO USSR AS with the spectrograph UAGS and the image tube UM-92' in the range λ .4100 - 7300AA. The method of the search and identification of faint emission lines is described. 77 lines are identified in the spectra and good accordance is shown with the results of other authors. The error of determination of faint emission line intensity lies within factor of 2 - 3. We have discovered many narrow permitted lines of iron Fe II 37, 38, 40, 74, 210. The presence of line [Fe X] λ 6374 in the spectra is shown distinctly and assumption about its intensity variability with time scale of 3 - 5 years is suggested.

ЛИТЕРАТУРА

- 1. В. Л. Афанасьев, В. А. Липовецкий, Б. Е. Маркарян, Дж. А. Степанян, Астрофиэнка, 16, 193, 1980.
- 2. В. Л. Афанасьев, В. А. Липовецкий, А. И. Шаповалова, Астрофизика, 15, 557, 1979.
- 3. В. Л. Афанасьев, В. А. Липовецкий, А. И. Шаповалова, Астрофизика, 17, 643, 1981.
- 4. В. Л. Афанасьев, Э. К. Денисюк, В. А. Липовецкий, А. И. Шаповалова, Астрофиэнка, 18, 329, 1982.
- 5. В. Л. Афанасьев, А. И. Шаповалова, Астрофизика, 17, 404, 1981.
- 6. В. Л. Афанасьев, А. А. Пимонов, В. Ю. Теребиж, Сообщ. САО, 33, 5, 1981.
- 7. В. Л. Афанасьев, А. Л. Щербановский, Сообщ. САО, 16, 25, 1977.
- 8. А. И. Шаповалова, А. Л. Щербановский, Сообщ. САО, 22, 49, 1978; 25, 55, 1979.
- 9. P. Veron, P. O. Lindblad, E. J. Zwiderwijk, M. P. Veron, G. Adam, Astron. Astrophys., 87, 245, 1980
- 10. D. E. Osterbrock, Ap. J., 249, 452, 1981.
- 11. D. E. Osterbrock, Bul. Amer. Astr. Soc., 13, 824, 1981.
- 12. В. Л. Афанасьев, А. А. Пимонов, Изв. САО, 13, 76, 1981.
- 13. R. P. S. Stone, Ap. J., 193, 135, 1974.
- 14. C. E. Moore, A Multiplet Table of Astrophysical Interest, Princeton, 1945.
- A. B. Meinel, A. F. Avenl, M. W. Stockton, Catalogue of Emission Lines in Astrophysical Objects, Univ. Arizona Press, Tucson, 1969.
- 16. R. H. Garstang, M. N. RAS, 117, 393, 1957; 118, 572, 1958; 124, 321, 1962.
- R. H. Garstang, I. A. U. Symp. No. 34, Eds. D. E. Osterbrock and C. R. O'Dell, Reidel, Dordrecht, 143, 1968.
- W. L. Wiese, M. W. Smith, B. M. Glennan, Atomic Transition Probabilities, Vol. 1, Washington, 1964.
- 19. A. D. Thackeray, M. N. RAS, 113, 211, 1953; 135, 51, 1957..
- L. H. Aller, R. S. Polidan, E. J. Rhodes, G. W. Wares, Astrophys. Space Sci., 20, 93, 1963.

СПЕКТРОФОТОМЕТРИЯ ГАЛАКТИКИ NGC 4151

- 21. M. M. Phillips, Ap. J. Suppl. ser., 38, 187, 1978; 39, 377, 1979.
- 22. A. Boksenberg, K. Shortridge, D. A. Allen, R. A. E. Fosbury, M. V. Penston, A. Savage, M. N. RAS, 173, 381, 1975.
- 23. D. E. Osterbrock, A. T. Koski, M. N. RAS, 176, 61p, 1976.
- 24. H. Netzer, M. N. RAS., 169, 579, 1974.
- 25. G. D. Schmidt, J. S. Miller, Ap. J., 240, 759, 1980.
- 26. R. Cromwell, R. Weymann, Ap. J. Lett., 159, L147, 1970.
- 27. J. B. Oke, W. L. W. Sargent, Ap. J., 151, 807, 1968.
- 28. D. W. Weedman, Ap. J. Lett., 167, L23, 1971.