АСТРОФИЗИКА

TOM 20

ИЮНЬ, 1984

ВЫПУСК 3

УДК 524.7-55

УСТОЙЧИВОСТЬ ЭЛЛИПТИЧЕСКИХ ЗВЕЗДНЫХ ДИСКОВ. І. УРАВНОВЕШЕННЫЕ ДИСКИ

Г. С. БИСНОВАТЫИ-КОГАН Поступила 12 ноября 1983

Исследована устойчивость уравновешенных эллиптических КГП дясков в двойных системах и в сфероидальном гало относительно бароподобных возмущений. Показано, что в двойных системах вытянутые диски, а также сжатые диски, близкие к круговым, апериодически неустойчивы. Сильно сжатые диски устойчивы при большом отношенин масс: M/M_1 или M_2/M больше ~ 30 ; при промежуточных отношениях масс имсет место колебательная неустойчивость. Диски в сфероидальном гало стабилизированы относительно бароподобных возмущений, если гравитационный потенциал гало превышает половину от гравитационного потенциала диска.

1. Введение. В спиральных галактиках равновесие дисков определяется, в основном, балансом центробежной и гравитационной сил. В этих условиях осесимметричный самогравитирующий диск является неустойчивым относительно превращения в неосесимметричный бар как для фигур несжимаемой жидкости [1], так и для бесстолкновительных гравитирующих конфигураций, моделирующих спиральные галактики [2, 3].

Многие спиральные галактики входят в состав двойных систем. В парах диски галактик могут иметь некруговую форму, кроме того, наличие компаньона влияет на устойчивость. В работе [4] получены равновесные КГП (квадратичный гравитационный потенциал) решения для звездных дисков в двойных системах. При этом влияние соседней галактики учитывалось в приливном приближении. Приливный потенциал является квадратичной формой координат, что позволило получить аналитическое КГП решение. В [5] проведен анализ свойств этих равновесных решений и получены точные КГП решения для эллиптических дисков, окруженных однородным гало. В [5] показано, что с ростом вращательного момента галактики достигаются предельные решения, которые представляют собой либо уравновешенный диск, где по одной оси центробежная сила уравновешивает гравитацию, либо пылевой диск, где в каждой точке отсутствует дисперсия скоростей и звезды движутся по подобным эллипсам, В равновесном состоянии в двойной системе собственная угловая скорость 9-343

Г. С. БИСНОВАТЫЙ-КОГАН

галактики совпадает с орбитальной (как у Луны в системе Луна—Земля), поэтому она ориентирована относительно компаньона и может быть либо сжатой по направлению оси, соединяющей центры галактик, либо вытянутой в этом направлении. В вытянутом случае предельными решениями являются только уравновешенные диски, в сжатом случае — как уравновешенные, так и пылевые (см. [5]). Отметим, что предельным решением в одиночном случае является только уравновешенный диск [6].

Настоящая работа посвящена исследованию устойчивости эллиптических КГП дисков, входящих в двойные системы и окруженных однородным гало, относительно бароподобной моды. Используется метод исследования устойчивости, развитый в [7] (см. также [8]). В пределе одиночного диска полученные результаты полностью совпали с [9], тде использовался метод работы [10].

В первой части данной работы рассматривается устойчивость уравновешенных дисков. Получено, что однородное гало полностью стабилизирует бароподобную моду возмущений в уравновешенном КГП диске, если его гравитационный потенциал превышает половину гравитационного потенциала самого диска. Для гало в виде однородного шара стабилизация наступает, если отношение массы гало внутри радиуса диска к массе диска превышает величину $M_h/M_d \gtrsim 3\pi/8 \simeq 1.18$. Вытянутые уравновешенные КГП диски в двойных системах всегда неустойчивы, причем неустойчивость носит апериодический характер. Сжатые уравновешенные КГП диски устойчивы, если M/M_1 или M_1/M достаточно велики ($\gtrsim 30$). Существование равновесных апериодически неустойчивых КГП дисков является характерным свойством двойных систем, так как в одиночных дисках неустойчивость всегда носит колебательный характер.

2. Равновесные решения для уравновешенных дисков. Исследуемые диски имеют распределение плотности:

$$\sigma_d = \sigma_0 \sqrt{1 - \frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2}}$$
 (2.1)

Собственный гравитационный потенциал такого диска

$$\Phi_d = a_0 x^2 + b_0 y^2$$
 (нормировка несущественна), (2.2)

где [6]:

$$a_{0} = \frac{3}{2} \frac{GM}{\alpha (\alpha^{2} - \beta^{2})} [F(k) - E(k)],$$

$$b_{0} = \frac{3}{2} \frac{\alpha GM}{\beta^{2} (\alpha^{2} - \beta^{2})} [E(k) - (1 - k^{2})F(k)], \qquad (2.3)$$

$$k^{2} = 1 - \beta^{2}/\alpha^{2}, \quad M = \frac{2\pi}{3} \sigma_{0} \alpha \beta,$$

$$E(k) = \int_{0}^{\pi/2} (1 - k^{2} \sin \varphi)^{1/2} d\varphi, \quad F(k) = \int_{0}^{\pi/2} (1 - k^{2} \sin^{2} \varphi)^{-1/2} d\varphi.$$

Если диск погружен в однородное сфероидальное гало, то суммарный потенциал примет вид:

$$\Phi_0 = \Phi_d + h(x^2 + y^2). \tag{2.4}$$

При вхождении диска массы M в двойную систему с массой компаньона M_2 , равновесная скорость вращения в приливном приближении равна кеплеровской:

$$\Omega = \left[\frac{G(M+M_2)}{r_{12}^3}\right]^{1/2} \equiv \Omega_k, \qquad (2.5)$$

а величины α и b, входящие в суммарный потенциал

$$\Phi_0 = ax^2 + by^2, \tag{2.6}$$

имеют вид:

$$a = a_0 + \frac{1}{2} \frac{GM_2}{r_{12}^3}, \quad b = b_0 - \frac{GM_3}{r_{12}^3}$$
 (2.7)

для сжатого диска;

$$a = a_0 - \frac{GM_2}{r_{12}^2}, \quad b = b_0 + \frac{1}{2} \frac{GM_2}{r_{12}^3}$$
 (2.8)

для вытянутого диска. Здесь r₁₂ — расстояние между центрами галактик. Для выполнения условия приливного приближения необходимым является неравенство:

$$r_{12} \gg a.$$
 (2.9)

В предельном случае вытянутого уравновешенного диска центробежная сила балансирует суммарную гравитацию по большой оси, так что

$$\mathfrak{Q}^2 = 2a. \qquad (2.10)$$

В этом случае равновесная функция распределения, зависящая от координат (x, y) и скоростей (v_x, v_y) имеет вид [5]

$$f_{0} = \frac{\sigma_{0}\alpha}{2\sqrt{2}\beta} \frac{\delta(\upsilon_{x} - 2\Omega y)}{[(3a+b)\alpha^{2} - 4\alpha\beta^{2}]^{1/2}} \theta \left\{ 2 \frac{\beta^{2}}{\alpha^{2}} \left(1 - \frac{x^{2}}{\alpha^{2}} - \frac{y^{2}}{\beta^{2}}\right) \times \left[(3a+b)\alpha^{2} - 4\alpha\beta^{2} \right] - \left(\upsilon_{y} + \frac{2\Omega\beta^{2}}{\alpha^{2}} x\right)^{2} \right\}.$$
(2.11)

Здесь

$$\theta(x) = \begin{cases} 1 & \text{при } x > 0 \\ 0 & \text{при } x < 0 \end{cases}$$
(2.12)

Функция f нормирована к поверхностной плотности $\int f_0 dv_x dv_g =$

 $= \sigma_0 \sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{\beta^2}}$. Тот же вид функции распределения имеет место

и для одиночного уравновешенного диска [11]. Необходимым условием существования решения (2.11) является неравенство

$$(3a+b)a^2-4a\beta^2 > 0,$$
 (2.13)

которое всегда выполняется для вытянутого и одиночного дисков при выполнении (2.10).

Если в сжатом диске имеет место a < b, то для него имеется предельное решение (2.11). Очевидно, что на границе $a = b (a > \beta)$ неравенство (2.13) также выполняется.

При а > b и выполнении условий

$$(3b+a)\beta^2 - 4b\alpha^2 > 0, \ \Omega^2 = 2b$$
 (2.14)

имеет место другое предельное решение

$$f_{0} = \frac{\sigma_{0}\beta}{2\sqrt{2}a} \cdot \frac{\delta(v_{x} + 2\Omega x)}{[(3b+a)\beta^{2} - 4ba^{2}]^{1/2}} \,\theta \left[2\frac{a^{2}}{\beta^{2}}\left(1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{\beta^{2}}\right)[(3b+a)\beta^{2} - 4ba^{2}] - \left(v_{x} - \frac{2\Omega a^{2}}{\beta^{2}}\right)^{2}\right].$$
(2.15)

Решения (2.11) и (2.15) не смыкаются между собой [5].

3. Кинетическое уравнение для возмущений и невозмущенные траектории. Устойчивость КГП решений (2.11) и (2.15) проводится нестандартными методами [7, 10], т. к. обычный способ представления возмущенной функции в виде $f = f_0 + \delta f$ приводит к расходимости в уравнении для δf . Устойчивость одиночных вллиптических дисков исследовалась в [9] методом работы [10]. В данной работе мы используем метод [7].

Следуя [7], представим возмущенную функцию распределения уравновешенного диска для случая $\alpha < b$ в виде

$$f = \frac{\sigma_0}{2V\overline{c_0}} \left\{ \theta \left[c_0 \left(1 - \frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} \right) - \left(v_g + \frac{2\Omega\beta^2}{\alpha^2} x \right)^2 - \chi \right] \delta (v_x - 2\Omega y) + A\theta' \left[c_0 \left(1 - \frac{x^3}{\alpha^2} - \frac{y^2}{\beta^2} \right) - \left(v_g + \frac{2\Omega\beta^3}{\alpha^2} x \right)^2 \right] \delta (v_x - 2\Omega y) + (3.1)$$

УСТОИЧИВОСТЬ ЗВЕЗДНЫХ ДИСКОВ. 1

$$+ B \theta \left[c_0 \left(1 - \frac{x^2}{a^2} - \frac{y^2}{\beta^2} \right) - \left(v_y + \frac{2 \Omega \beta^2}{a^2} x \right)^2 \right] \delta' \left(v_x - 2 \Omega y \right) \right].$$

Здесь

$$c_0 = 2 \frac{\beta^2}{\alpha^2} [(3\alpha + b) a^2 - 4\alpha \beta^2]. \qquad (3.2)$$

Функции X, A и B зависят от переменных t, x, y, v_y . Подставим (3.1) в кинетическое уравнение для возмущенной функции распределения

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + v_y \frac{\partial f}{\partial y} + \left(2^2 x + 2 2 v_y - \frac{\partial \widetilde{\Phi}}{\partial x} \right) \frac{\partial f}{\partial v_x} + \left(2^2 y - 2 2 v_x - \frac{\partial \widetilde{\Phi}}{\partial y} \right) \frac{\partial f}{\partial v_y} = 0.$$
(3.3)

Здесь возмущенный потенциал Ф равен

$$\Phi = \Phi_0 + \Phi. \tag{3.4}$$

$$\widehat{L} = 2 \frac{\partial \Phi}{\partial y} \left(v_y + \frac{2 \Omega \beta^2}{\alpha^2} x \right) - B \left[4 \Omega \left(1 - \frac{\beta^2}{\alpha^2} \right) \left(v_y + \frac{2 \Omega \beta^2}{\alpha^2} x \right) - 2 \frac{c_0}{\alpha^2} x \right],$$
$$\widehat{L} = \frac{\partial B}{\partial x} - 2 \Omega \frac{\partial B}{\partial y}, \quad \widehat{L} = \frac{\partial \Phi}{\partial x}, \quad (3.5)$$
$$\widehat{L} = \frac{\partial}{\partial t} + 2 \Omega y \frac{\partial}{\partial x} + v_y \frac{\partial}{\partial y} - (6a + 2b) y \frac{\partial}{\partial v_y}.$$

Система (3.5) решается совместно с уравнением Пуассона для возмущения потенциала Ф:

$$\Delta \Phi = 4\pi Goo(z). \tag{3.6}$$

Возмущение поверхностной плотности э (x, y) определяется в виде

$$\sigma = \int (f - f_0) \, dv_x \, dv_y. \tag{3.7}$$

Введем обозначения

Г. С. БИСНОВАТЫЙ-КОГАН

$$u_{x} = v_{x} - 2\Omega y, \ u_{y} = v_{y} + 2\Omega \frac{\beta^{2}}{\alpha^{2}} x, \ \chi_{0} = \chi (u_{y} = 0),$$
(3.8)
$$\chi_{1} = \chi - \chi_{0}, \ u^{2} = u_{y}^{2} + \chi.$$

Тогда в линейном приближении

$$du_y = du - \frac{1}{2} \frac{\partial \chi}{\partial u} \frac{du}{u} + \frac{1}{2} \frac{\chi}{u^2} du. \qquad (3.9)$$

Подставляя (2.11) и (3.1) в (3.7) и интегрируя, получаем, с учетом (2.1), (3.8) и (3.9), воэмущенную плотность в виде:

$$\sigma = -\frac{\sigma_0}{\sqrt{1-\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}}} \frac{\chi_0}{2c_0} - \frac{\sigma_0}{4\sqrt{c_0}} \int \theta \left[c_0 \left(1-\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}\right) - u_g^2 \right] \times \\ \times \left(\frac{1}{u_y} \frac{\partial \chi}{\partial u_y} - \frac{\chi}{u_g^2}\right) du_g + \frac{\sigma_0}{2\sqrt{c_0}} \int A\theta \left[c_0 \left(1-\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}\right) - u_g^2 \right] du_g.$$
(3.10)

Решение системы уравнений для возмущений функций (3.5) находим с помощью метода «интегрирования по траекториям». Этот метод был предложен в плазме для исследования устойчивости неоднородных систем [12] и был применен для исследования устойчивости моделей травитирующих систем точечных масс в [13]. Фазовые траектории, соответствующие оператору \widehat{L} , определяются системой характеристических уравнений этого оператора, приводимой к виду:

$$\frac{dx}{dt} = 2\Omega y, \ \frac{dy}{dt} = v_y, \ \frac{d^3 y}{dt^2} = -2(3a+b)y.$$
(3.11)

Решение этой системы, определяющее величины x', y', u_y из (3.8) в момент времени t' в зависимости от их значений x, y, u_g в момент времени t, имеет вид

$$\begin{aligned} x' &= Px + \frac{2\Omega}{\omega_{1}^{2}} u_{y} + \left[(1-P) x - \frac{2\Omega}{\omega_{1}^{2}} u_{y} \right] \cos \omega_{1} (t'-t) + \\ &+ 2 \frac{\Omega}{\omega_{1}} y \sin \omega_{1} (t'-t), \\ t' &= y \cos \omega_{1} (t'-t) - \frac{\omega_{1}}{2\Omega} \left[(1-P) x - \frac{2\Omega}{\omega_{1}^{2}} u_{y} \right] \sin \omega_{1} (t'-t), \quad (3.12) \\ u'_{y} &= \frac{\omega_{1}^{2}}{2\Omega} (1-P) \left(Px + \frac{2\Omega}{\omega_{1}^{2}} u_{y} \right) - P\omega_{1} y \sin \omega_{1} (t'-t) - \\ &- P \frac{\omega_{1}^{2}}{2\Omega} \left[(1-P) x - \frac{2\Omega}{\omega_{1}^{2}} u_{y} \right] \cos \omega_{1} (t'-t), \end{aligned}$$

где

$$\omega_1^2 = 2(3a+b), P = 1 - \frac{43^2}{\alpha^2} \frac{\Omega^2}{\omega_1^2}$$
 (3.13)

4. Дисперсионное уравнение для бароподобных возмущений. Оператор L имеет смысл полной производной $\frac{d}{dt}$ вдоль траекторий (3.12). Решение системы (3.5) записывается в виде:

$$B = \int_{-\infty}^{t} \frac{\partial \Phi}{\partial x'} dt', \qquad (4.1)$$

$$A = \int_{-\infty}^{\infty} \left(\frac{\partial B}{\partial x'} - 2\Omega \frac{\partial B}{\partial y'} \right) dt', \qquad (4.2)$$

$$\gamma = \int_{-\infty}^{\infty} \left\{ 2 \frac{\partial \Phi}{\partial y'} u'_{y} - B \left[4\Omega \left(1 - \frac{\beta^{2}}{\alpha^{2}} \right) u'_{y} - 2 \frac{c_{0}}{\alpha^{2}} x' \right] \right\} dt'.$$
(4.3)

Зависимость от времени можно искать в форме

$$\Phi, B, A, \gamma \sim e^{-i\omega t}.$$
 (4.4)

Бароподобная мода соответствует квадратичному потенциалу возмущения:

$$\Phi_2 = g_{21} x^2 + g_{22} y^2 + i g_{23} x y. \tag{4.5}$$

Подставляя (4.5) в (4.1) с учетом (4.4) и (3.12), получаем после интегрирования

$$B = 2g_{21} \left[\frac{i}{\omega} \left(Px + \frac{2\Omega}{\omega_1^2} u_y \right) - \frac{i\omega \left(1 - P\right) x}{\omega_1^2 - \omega^2} + \frac{2i\omega\Omega}{\omega_1^2 \left(\omega_1^2 - \omega^2\right)} u_y - \frac{2\Omega y}{\omega_1^2 - \omega^2} \right] - \frac{ig_{23}}{\omega_1^2 - \omega^2} \left[i\omega y - \frac{\omega_1^2}{2\Omega} (1 - P) x + u_y \right]^2 = (4.6)$$

$$2g_{21} \left[\frac{i}{\omega} x + \frac{i2\Omega}{\omega\omega^2} v_y - \frac{2\Omega y}{\omega_1^2 - \omega^2} + \frac{2i\omega\Omega v_y}{\omega_1^2 \left(\omega_1^2 - \omega^2\right)} \right] - \frac{ig_{23}}{\omega_1^2 - \omega^2} (i\omega y + v_y).$$

Функция В не входит в определение σ , согласно (3.10), а служит для нахождения функций А и Х. Интегрируя (4.2) с учетом (4.4)—(4.6), получаем

$$A = -2g_{21}\left[\frac{1}{\omega^2}\left(1-\frac{4\Omega^2}{\omega_1^2}\right)-\frac{4\Omega^2}{\omega_1^2}\frac{1}{\omega_1^2-\omega^2}\right]-\frac{g_{23}}{\omega}\frac{2\Omega}{\omega_1^2-\omega^2} \quad (4.7)$$

Вычисление функции у из (4.3) значительно более громоздко, так как требует вычисления произведений типа $x'u'_{g}$, $y'u'_{g}$ и т.д. Члены в у, линейные по u_{g} , не дают вклада в σ .

В итоге из (3.10) получаем э в виде

$$\begin{split} \sigma &= \frac{z_{0}}{\sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{\beta^{2}}}} \left\{ \frac{x^{2}}{a^{2}} \left\{ -2g_{22} \left[\frac{2(1-P)}{\Omega_{1}} - \frac{1-2P}{\Omega_{2}} \right] + \right. \\ &+ 2g_{21} \left[\frac{2P}{w^{2}} \left(1 - \frac{4\Omega^{2}}{\omega_{1}^{2}} \right) - \frac{1+2P}{\Omega_{1}} \frac{4\Omega^{2}}{\omega_{1}^{2}} - \frac{1-2P}{\Omega_{2}} 4\frac{\Omega^{2}}{\omega_{1}^{2}} - \\ &- 8\frac{\Omega^{2}}{\omega_{1}^{2}} \left(1 - P - \frac{\beta^{2}}{a^{2}} \right) \frac{\omega_{1}^{2} + \omega^{2}}{\Omega_{1}^{2}} \right] - g_{33} \left[\frac{4\Omega P}{\omega\omega_{1}^{2}} - \frac{2\Omega\omega}{\omega_{1}^{2}} \frac{1-4P}{\Omega_{1}} + \\ &+ \frac{2\Omega\omega(1-2P)}{\omega_{1}^{2}\Omega_{2}} + \frac{8\Omega\omega}{\Omega_{1}^{2}} \left(1 - P - \frac{\beta^{2}}{a^{2}} \right) \right] \right\} + \frac{y^{2}}{\beta^{2}} \left\{ -2g_{22} \left(\frac{1-P}{\Omega_{1}} + \\ &+ \frac{1+P}{\Omega^{2}} \right) + 2g_{21} \left[\frac{P}{\omega^{2}} \left(1 - \frac{4\Omega^{2}}{\omega_{1}^{2}} \right) - (2+P) \frac{4\Omega^{2}}{\omega_{1}^{2}} \frac{1}{\Omega_{1}} + 4\frac{\Omega^{2}}{\omega_{1}^{2}} \frac{1+P}{\Omega_{2}} - \\ &- 4\left(1 - P - \frac{\beta^{2}}{a^{2}} \right) \frac{\omega_{1}^{2} + \omega^{2}}{\Omega_{1}^{2}} \frac{\Omega^{2}}{\omega_{1}^{2}} \right] + g_{32} \left[\frac{2\Omega P}{\omega\omega_{1}^{2}} + \frac{2\Omega\omega}{\omega_{1}^{2}} \frac{1+2P}{\Omega_{1}} - \\ &- \frac{2\Omega\omega}{\omega_{1}^{2}} \frac{1+P}{\Omega_{2}} + \frac{4\omega\Omega}{\Omega_{1}^{2}} \left(1 - P - \frac{\beta^{2}}{a^{2}} \right) \right] \right\} + \frac{ixy}{\beta^{2}} \left\{ g_{22} \frac{\omega}{\Omega_{1}} \left(1 - P \right) \times \\ &\times \left(\frac{1}{\Omega_{1}} - \frac{1}{\Omega_{2}} \right) + g_{21} \frac{4\Omega\omega}{\Omega_{1}} \left[\frac{P}{\omega^{2}} + \frac{2}{\Omega_{1}} \left(1 - P - \frac{\beta^{2}}{a^{2}} \right) - \\ &- \frac{3(1-P)}{\Omega_{2}} \right] - g_{23} \left[-\frac{2-3P}{\Omega_{1}} + \frac{4(1-P)}{\Omega_{2}} + \\ &\frac{\omega_{1}^{2} + \omega^{2}}{\Omega_{1}^{2}} \left(1 - P - \frac{\beta^{2}}{a^{2}} \right) \right] \right\} = \frac{\sigma_{0}}{\sqrt{1 - \frac{x^{2}}{a^{2}} - \frac{y^{2}}{\beta^{2}}} \left(f_{21}x^{2} + f_{22}y^{2} + if_{23}xy \right), \end{split}$$

где

+

$$\Omega_1 = \omega_1^2 - \omega^2, \quad \Omega_2 = 4\omega_1^2 - \omega^2.$$
 (4.9)

Из теории потенциала [14] (см. также [9]) следует связь между коэффициентами $f_{\alpha\beta}$ и $g_{\alpha\beta}$ из (4.5) и (4.8). При этом возмущение приливного потенциала равно нулю. Имеем:

$$-(a^{2}-\beta^{2}) g_{21} = a^{2} (2a_{0}a^{2}-a_{0}\beta^{2}-b_{0}\beta^{2}) f_{21} + \beta^{2} (b_{0}\beta^{2}-a_{0}a^{2}) f_{22}$$

$$-(a^{2}-\beta^{2}) g_{22} = a^{2} (b_{0}\beta^{2}-a_{0}a^{2}) f_{21} + \beta^{2} (a_{0}a^{2}+b_{0}a^{2}-2b_{0}\beta^{2}) f_{22} \quad (4.10)$$

$$(a^{2}-\beta^{2}) g_{23} = 2a^{2}\beta^{2} (a_{0}-b_{0}) f_{23}$$

Дисперсионное уравнение получается из равенства нулю определителя системы (4.10) с коэффициентами из (4.8). После громоздких алгебраических преобразований получаем:

$$\begin{split} & 2 \, \frac{a-b}{w_1^2} \Big(\frac{a_0-b_0}{a-b} - 1 \Big) \Big[\, P \Big(\frac{A_B}{w_1^2} - 2A_s \Big) \, \Omega_1^2 \Omega_s + \frac{P}{w_1^2} A_B + w^s \Omega_1^2 + \\ & + 2 \, (1-P) \, A_s w^s \Omega_1 \Omega_s - 4 \, (1-P) \, w_1^2 A_3 w^2 \Omega_s + 8 \, (1-P) \, A_B \, w_1^2 w^s + \\ & + 4A_B w^2 \, \Omega_1 \, \Big] + w^s \Big\{ - \Omega_1^2 \Omega_2 + \Big[\, 2 \, \Big(\frac{4\Omega^2}{w_1^2} A_1 + B_1 \Big) + 4a^3 \, \frac{a_0-b_0}{a^2-\beta^3} \, \frac{1-P}{w_1^2} \times \\ & \times (B_s - A_s - 3b_0 - 2w_1^2) \, \Big] \, \Omega_1^2 + \Big\{ \, 3a_0 \, \frac{8\Omega^2}{w_1^2} - 2 \, (1-P) \, \Big(\frac{4\Omega^2}{w_1^2} A_2 - B_s \Big) + \\ & + 2a^s \, \frac{a_0 - b_0}{a^s - \beta^s} \, \frac{1}{w_1^2} \Big[\, 2 - (1-P) \, \frac{w_1^2}{4\Omega^2} A_2 - 2PA_s - 2 \, (1-P) \, B_s + \\ & + 6 \, (1-P) \, b_0 + (3-4P) \, w_1^2 - (1-P) \, \frac{w_1^2}{4\Omega^2} w_1^2 \Big] \Big\} \, \Omega_1 \Omega_2 + \\ & + \Big\{ 4 \, (1-P) \, A_B \Big(\, 4 \, \frac{\Omega^2}{w_1^2} - 2s^2 \, \frac{a_0 - b_0}{a^s - \beta^s} \, \frac{1}{w_1^3} \Big) + 4a^s \, \frac{a_0 - b_0}{a^s - \beta^s} \, (1-P) \, \times \, (4.11) \cdot \\ & \times \, \Big[\, A_2 - (1-3P) \, \frac{w_1^2}{4\Omega^2} A_2 + B_s - (1-P) \, \frac{w_1^2}{4\Omega^2} B_s - 3 \, (a_0 + b_0) - w_1^2 \Big(1 - \\ & - \frac{w_1^2}{4\Omega^2} \Big) \Big] \Big\} \, \Omega_2 + \Big\{ -4A_B \, (2-P) + 8s^s \, \frac{a_0 - b_0}{a^s - \beta^s} \, (1-P)^s \, \frac{1}{4\Omega^2} A_s + \\ & + 4a^s \, \frac{a_0 - b_0}{a^s - \beta^s} \, \Big[-(1-P) \, A_1 + \Big(w_1^2 \, \frac{1-P}{4\Omega^s} - 2 + 3P \Big) B_1 + \\ & + 8s^s \, \frac{z_0 - b_0}{a^s - \beta^s} \, \Big[\, \frac{w_1^2}{4\Omega^2} (1-P) \, (1-3P) \, A_s + \\ & + (1-P)^s \Big(1 - \frac{w_1^2}{4\Omega^2} \Big) \Big(B_2 + \frac{B_1}{1-P} \Big) \, w_1^2 \, \Big] \Big\} = 0. \end{split}$$

Здесь

$$A_{1} = a_{0} (1 - 2P) + (2 - P) Q, \quad A_{2} = 2a_{0} + Q,$$

$$B_{1} = b_{0} (1 + P) + (2 - P) Q, \quad B_{3} = b_{0} - Q,$$

$$Q = \frac{a_{0}a^{2} - b_{0}\beta^{2}}{a^{2} - \beta^{2}}, \quad A_{B} = A_{1}B_{2} + A_{2}B_{1}.$$

(4.12)

Уравнение (4.11) справедливо для диска, окруженного однородным гало, вытянутого диска в двойной системе и сжатого диска достаточной сплюснутости с a < b. Для уравновешенного сжатого диска малой сплюснутости при a > b справедливо решение (2.15). Дисперсионное уравнение для такого диска получается из (4.11) при следующих заменах:

$$a \rightleftharpoons \beta, a \rightleftarrows b, a_0 \rightleftarrows b_0, \Omega \rightarrow (-\Omega).$$
 (4.13)

При этом параметры, входящие в (4.11), переопределяются следующим образом:

$$\omega_{1}^{2} = 2 (3b + a), P = 1 - \frac{4a^{2}}{\beta^{3}} \frac{\Omega^{3}}{\omega_{1}^{2}}, \Omega^{2} = 2b,$$

$$A_{1} = b_{0} (1 - 2P) + (2 - P) Q, A_{2} = 2b_{0} + Q,$$

$$B_{1} = a_{0} (1 + P) + (2 - P) Q, B_{2} = a_{0} - Q,$$

$$Q = (a_{0}a^{2} - b_{0}\beta^{2})/(a^{2} - \beta^{3}), A_{B} = A_{1}B_{2} + A_{2}B_{1}.$$
(4.14)

Отметим, что неравенства (2.13) и (2.14) эквивалентны условию P > 0, согласно (3.13) и (4.14), соответственно. Неустойчивость регистрируется по наличию отрицательных или комплексных корней уравнения (4.11). Левая часть (4.11) численно строилась как функция действительных w и устойчивость определялась по свойствам ее действительных корней (см. табл. 1).

5. Устойчивость уравновешенного диска в двойной системе.

а) Вытянутые диски.

Удобно ввести следующие безразмерные параметры:

$$l = \frac{\beta}{\alpha}, \quad m = \frac{M}{M_2}, \quad \tilde{b}_0 = \frac{b_0}{a_0}, \quad \tilde{a} = \frac{a}{a_0}, \quad \tilde{b} = \frac{b}{a_0}, \quad j = \frac{GM_2}{r_{12}^3 a_0}. \tag{5.1}$$

В вытянутом уравновешенном диске $Q^2 = 2a$, поэтому с учетом (2.5) и (2.8) имеем

$$f = \frac{2}{3+m} \tag{5.2}$$

5	5	7
J	J	

		-				
1	a	6 J.	11	U	a	
	-		_			

Na	Действительные корни (4.11) для ω ² Число корней со знаком		Моды				
			Гармони- ческие	Апериоди- ческая ус-	Апериоди-	Колеба- тельная	Колеба- тельная
	+, 0	-	HER	тойчивость	ТОЙЧИВОСТЬ	TEBOCTE	REBOCTE
1	4	0	8	0	0	0	0
2	3	1 1	6	1.0	1	0	0
3	2	2	4	2	2	0	0
4	1	3	2	3	3	0	0
5	0	4 .	0	4	4	0	0
6	2	0 .	4	0	0	2	2
7	1	1	2	1	1	2	2
8	0	2	0	2	2	2	2
9	0	0	0	0	. 0	4	4

Результаты решения дисперсионного уравнения (4.13) представлены на рис. 1. Все модели вытянутых сбалансированных дисков в двойных системах апериодически неустойчивы относительно бароподобных возмущений, что проявляется в наличии отрицательных корней для «³. Отметим, что неустойчивость одиночных эллиптических дисков имеет только колебательный характер [9]. При переходе к одиночному диску (т→∞ и $f \rightarrow 0$) инкремент апериодической неустойчивости стремится к нулю; уравнение (4.11) имеет нулевой корень $\omega^2 = 0$ при $f=0, a=a_0, b=b_0$. Часть моделей (см. рис. 1), расположенных выше кривой ав и внутри области cde, являются, кроме того, колебательно неустойчивыми. С ростом т отношение полуосей, при котором возникает колебательная неустойчивость, стремится к величине β/α → 0.7296, соответствующей одиночным дискам (см. [1], [9]). При увеличении массы компаньона область колебательной неустойчивости сужается, но при m < 0.063 появляется дополнительная область колебательно неустойчивых моделей, которая для очень больших масс $m \to 0$ находится в интервале $0.58 < \beta/\alpha < 0.78$.

Формальные решения для вытянутых уравновешенных дисков существуют на всей плоскости (β/α , m). Однако они имеют физический смысллишь в случае выполнения условия применимости приливного приближения $\alpha \ll r_{12}$, которое может быть записано в виде [5]:

$$\frac{3}{2} m f \frac{F(k) - E(k)}{1 - l^2} = \left(\frac{\alpha}{r_{12}}\right)^3 \ll 1.$$
 (5.3)

С учетом (5.2) получаем уравнение границы применимости на плоскости (β/a, m):

Г. С. БИСНОВАТЫЙ-КОГАН

$$m = 3 \left[3 \frac{F(k) - E(k)}{k^2} - 1 \right]^{-1}$$
 (5.4)

При $k \to 0$ н $k \to 1$ имеем, используя разложения эллиптических функций (см., например, [5]),

Рис. 1. Устойчивость уравновешенных вытянутых дисков в двойной системе на плоскости (β/α , $m = M/M_2$). Все модели являются апериодически неустойчивыми (заштрихованы горизонтально). Косой штриховкой выделевы области (выше кривой ab и внутри cds), где дополнительно имеет место колебательная неустойчивость. Цифры в кружочках соответствуют классификации мод из табл. 1. Кривая pqo является границей, отделяющей фивические решевия (слева $a < r_{12}$) от нефизических ($a > r_{12}$).

$$m = \frac{12}{3\pi - 4} \simeq 2.21 \quad (k=0),$$

$$m = \frac{3}{3ln\left(4\frac{\alpha}{\beta}\right) - 4} \quad \left(\frac{\beta}{\alpha} \to 0, \ k \to 1\right).$$
(5.5)

Кривая *pqo* на рис. 1, построенная по (5.4), отделяет физические (слева от кривой *pqo*) от нефизических решений для вытянутого диска в паре.

б) Сжатые диски.

В сжатом диске большой сплюснутости предельное вращение достигается при $\Omega^2 = 2a < 2b$, что в безразмерных переменных сводится к равенству

$$f = \frac{2}{m}$$
 (5.6)

Если в слабо сжатом диске $\Omega^2 = 2b < 2a$, то в безразмерных переменных

$$f = \frac{2b_0}{3 + m} \tag{5.7}$$

Для решений с a < b, наряду с (5.6), выполняется неравенство (2.13). Оно выполняется и при равенстве a = b, которое определяет границу применимости решений (2.11), справедливых при $l \leq l_2(m)$. Функция $l_2(m)$ находится из условия (см. (2.8), (5.1), (5.6)):

$$a = b, \quad \tilde{b}_0 = 1 + \frac{3}{2}f = 1 + \frac{3}{m}.$$
 (5.8)

Кривая adbgo на рис. 2, построенная численно по формуле (5.8), определяет границу $l_3(m)$.

Для решений с b < a, наряду с (5.7), требуется выполнение неравенства (2.14). При обращении его в равенство, условие b < a сохраняется. Граница применимости решения (2.15) $l_1 > l_1(m)$ определяется [из условия знака равенства в (2.14). Уравнение для $l_1(m)$, с учетом (2.8), (5.1), (5.7) имеет вид

$$l_{1}^{2}(m) = 4 \frac{\tilde{b}_{0}(1+m)}{3+m+\bar{b}_{0}(4+3m)} \begin{cases} \approx 1 - \frac{12}{19m} \\ \text{при } m \to \infty \end{cases}$$
(5.9)

Кривая *pta* на рис. 2, построенная численно по формуле (5.9), определяет границу $l_1(m)$. Между кривыми $l_1(m)$ и $l_3(m)$ решения для сжатых уравновешенных дисков не существуют.

Результаты исследования дисперсионного уравнения (4.11) для сжатых дисков представлены на рис. 2. Сжатые диски с. a < b (ниже кривой $l_2(m)$) устойчивы относительно бароподобных возмущений при большом и малом отношении масс компаньонов (правее кривой *ekc* и левей линии *dh*). Промежуточным значениям *m* соответствуют только неустойчивые решения. Неустойчивыми являются также диски, отношение осей которых лежит выше кривой *kc*. При $m \rightarrow \infty$ это соответствует l > 0.7296, в соответствии с одиночным диском. В обоих случаях неустойчивость носит колебательный характер (две неустойчивых моды). В области bdk происходит наложение этих двух неустойчивостей, поэтому число неустойчивых мод здесь равно 4.

m

Рис. 2. Устойчивость сжатых уравновешенных дисков в двойных системах на плоскости (β/α , $m = M/M_3$). Решения существуют в областях 1) выше линии alp, где имеет место a > b и 2) правее линии ogbda, где a < b. В незаштрихованных областях ogh и cfek имеет место устойчивость относительно бароподобной моды. Косая штриховка указывает на наличие колебательно неустойчивой моды (области atqs, abghek и adbkc), две косых штриховки (область dbk) указывают на наличие двух колебательно неустойчивых мод; горизонтальная штриховка (область atpqs) означает наличие апериодической неустойчивости. Цифры в кружочках соответствуют классификации мод из табл. 1. Кривая ots отделяет физически допустимые (слева $a < r_{12}$), решения от нефизических. Устойчивость сжатых дисков с a > b находится из решения уравнения (4.11) с учетом замен (4.13) и (4.14). Все модели таких дисков (область *atpqs*) имеют по три неустойчивых моды: одну апериодическую и две колебательных. В этом отношении они аналогичны моделям вытянутых дисков малой сплюснутости (см. рис. 1).

Физические решения для сжатых дисков, так же, как и для вытянутых, должны удовлетворять условию (5.3). Для дисков с a < b, с учетом (5.6), получается, что неравенство никогда не выполняется:

$$\left(\frac{\alpha}{r_{13}}\right)^{3} = 3 \frac{F(k) - E(k)}{k^{2}} > 1 \begin{cases} \Rightarrow \frac{3\pi}{4} \operatorname{при} k \Rightarrow 0 \\ \Rightarrow 3\ln\left(4 \frac{\alpha}{\beta}\right) \operatorname{прu} k \Rightarrow 1. \end{cases}$$
(5.10)

Для дисков с a > b условие равенства в (5.3) с учетом (2.3), (5.1), (5.7) принимает вид

$$m = 3 \left[\frac{3}{k^2} \left(\frac{E}{1-k^2} - F \right) - 1 \right]^{-1} \left| \stackrel{\Rightarrow}{\Rightarrow} \frac{12}{3\pi - 4} \approx 2.21 \text{ при } k \Rightarrow 0 \\ \Rightarrow 1 - k^3 \text{ при } k \Rightarrow 1. \right| (5.11)$$

Кривая sto на рис. 2 построена по формуле (5.11). Она нигде не пересекается с кривой ogbda ($l_2(m)$). Решения с a > b являются физически допустимыми лишь слева от линии st, однако они неустойчивы.

6. Устойчивость уравновещенного диска в однородном эллипсоидальном гало. Диоперсионное уравнение (4.11) применимо для исследования устойчивости дисков в сфероидальных гало, если

$$a = a_0 + h, \quad b = b_0 + h.$$
 (6.1)

Безразмерная величина

$$\chi = \frac{h}{a_0} \tag{6.2}$$

характеризует роль гало. Из (6.1) следует, что $(a_0 - b_0)/(a - b) = 1$, поэтому дисперсионное уравнение (4.11) становится бикубичным, как для одиночного диска. Результаты решения уравнения (4.11) при наличии однородного сфероидального гало представлены на рис. 3. При $\chi > 0.5$ уравновешенные диски, в том числе круговые с ненулевой дисперсией, оказываются стабилизированными. Для круговых дисков имеет место $a_0 = \frac{3\pi}{2} \frac{GM_d}{2}$, а для однородного сферического гало с радиусом, рав-

562

ным радиусу диска, имеем $h = \frac{GM_h}{2R^3}$. Таким образом, для этого случая

 $\chi = \frac{h}{u_0} = \frac{4}{3\pi} \frac{M_k}{M_d}.$ (6.3)

Рис. 3. Устойчивость дисков в сферондальном гало на плоскости (β/α , h/a_0). Штриховкой отмечена область колебательной неустойчивости *abd*. Остальные диски устойчивы относительно барошодобных возмущений. Цифры в кружочках соответствуют классификации мод из табл. 1.

Круговой КГП диск стабилизируется массой однородного сферического гало того же радиуса, если масса гало превышает

$$M_h \gtrsim \frac{3\pi}{8} M_d \approx 1.18 M_d. \tag{6.4}$$

Этот вывод находится в согласии с результатами работ [2, 10], где исследовалась устойчивость круговых дисков при наличии гало. Отметим, что в окрестности точки $\chi = 0.5$ впервые появляется возможность построения холодных некруговых дисков [5].

Институт космических исследований

УСТОИЧИВОСТЬ ЗВЕЗДНЫХ ДИСКОВ. І

THE STABILITY OF ELLIPTICAL STELLAR DISKS. I. BALANCED DISKS

G. S. BISNOVATYI-KOGAN

The stability of the balanced elliptical disks with quadratic gravitational potential (QGP) relative to bar-like perturbations for binary systems and in the presence of spheroidal halo is investigated. It is shown that in binary systems the elongated disks and compressed disks close to the circular ones are aperiodically unstable. Strongly compressed disks are stable for large ratio of masses: M/M_2 or M_2/M is greater ~ 30 ; the oscillating instability takes place for intermediate mass ratio. The disks in the uniform spheroidal halo are stabilized relative to the barlike perturbations if the gravitational potential of the halo exceeds one half of the gravitational potential of the disk.

ЛИТЕРАТУРА

- 1. С. Чандрасскар, Эллипсоидальные фигуры равновесия, Мир. М., 1973.
- 2. J. P. Ostriker, P. J. E. Peebles, Ap. J., 186, 467, 1973.
- 3. A. Toomre, Ann. Rev. Astron. Astrophys., 15, 437, 1977.
- 4. G. S. Bisnovatyi-Kogan, M. N. RAS, 174, 203, 1976.
- 5. Г. С. Бисноватый-Козан, Астрофизика, 19, 65, 1983.
- 6. K. C. Freeman, M. N. RAS, 134, 15, 1966.
- 7. В. Л. Поляченко, И. Г. Шухман, Астрон. ж., 50, 97, 1973.
- 8. В. Л. Поляченко, А. М. Фридман, Равновесне и устойчивость гравитирующих систем, Наука. М., 1976.
- 9. S. Tremaine, M. N. RAS, 175, 557, 1976.
- 10. A. Kalnajs, Ap. J., 175, 63, 1972.
- 11. Г. С. Бисковатый-Коган, Я. Б. Зельдович, В сб. «Динамика и эволюция звездных систем», ВАГО ГАО, М.—Л., 1975, стр. 138.
- 12. M. N. Rosenbluth, N. A. Krall, N. Rostoker, Ядерный свитез, Дополнение кн. 1, 1962, стр. 143.
- 13. Г. С. Бисноватый-Коган, Астрофизика, 7, 121, 1971.
- 14. Ф. Морс. Г. Фешбак, Методы теоретической физики, т. 2, ИЛ. 1960, стр. 283.